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ENTROPY BOUNDS FOR HIERARCHICAL MOLECULAR
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Abstract: In this paper we derive entropy bounds for hierarchical networks. More
precisely, starting from a recently introduced measure to determine the topological
entropy of non-hierarchical networks, we provide bounds for estimating the entropy
of hierarchical graphs. Apart from bounds to estimate the entropy of a single hier-
archical graph, we see that the derived bounds can also be used for characterizing
graph classes. Our contribution is an important extension to previous results about
the entropy of non-hierarchical networks because for practical applications hierar-
chical networks are playing an important role in chemistry and biology. In addition
to the derivation of the entropy bounds, we provide a numerical analysis for two
special graph classes, rooted trees and generalized trees, and demonstrate hereby
not only the computational feasibility of our method but also learn about its char-
acteristics and interpretability with respect to data analysis.

Keywords: Hierarchical networks; molecular networks; graph entropy; graph mea-
sures.

1. Introduction

The investigation of topological aspects of chemical structures concerns a
major part of the research in chemical graph theory and mathematical chem-
istry [12, 27, 36, 70]. Following, e.g., [5, 14, 8, 12, 27, 58, 66], classical and
current research topics in chemical graph theory involve, e.g., modeling of
chemical molecules by means of graphs, graph polynomials, graph-theoretical
matrices, enumeration of chemical structures, and aspects of quantitative
structure analysis like measuring the structural similarity of graphs and struc-
tural information. Further, a lot of the above mentioned contributions can
be integrated under the following thematic categories which are well know in
chemistry: QSAR and QSPR. QSAR (Quantitative structure-activity rela-
tionship) deals with descripting pharmacokinetic processes as well as biolog-
ical activity or chemical reactivity [6, 25]. In contrast, QSPR (Quantitative
Structure-Property Relationship) generally addresses the problem to convert
chemical structures into molecular descriptors which are relevant to a phy-
sico-chemical property or a biological activity [25, 26]. However, a main
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problem in QSPR is to investigate relationships between molecular structure
and physicochemical properties, e.g., the topological complexity of chemical
structures [8, 10, 11, 25].

This paper mainly deals with a challenging problem of quantitative graph
analysis: Deriving bounds for the entropies of hierarchical graphs. An impor-
tant application area of information-theoretic methods applied to networks
is, e.g., QSPR where our main focus lies on the examination of graph classes
which are widely used in chemical graph theory and computational biology.
Generally, there are two main directions in quantitative graph analysis: (i)
Comparing and (ii) characterizing networks. Network comparison addresses
the problem of measuring their structural similarity or distance, see, e.g.,
[17, 18, 19, 67, 68, 41, 73, 74]. In contrast, to characterize a network means
that one has to infer structural network statistics which capture certain struc-
tural information of the networks [16, 28, 4, 46]. For giving a short review on
information-theoretic methods to characterize graphs [14, 8, 11, 13, 23, 59],
we want to emphasize that the problem of quantifying certain structural in-
formation of systems was a starting point of an emerging field that deals
with applying information-theoretic techniques to networks, e.g., for inves-
tigating living systems [50, 56, 21, 44, 57, 71]. As a fundament, Shannon

[62] extended the concept of entropy that was known in thermodynamics
for transmitting information. For this, he considered a message transmit-
ted through information channels as a certain set of symbols denoted as an
outcome which was selected from the ensemble of all k such sets contain-
ing the same total number of symbols N [13]. By assigning probabilities
p1, p2, . . . , pk to each i-th outcome based on the quantities pi = Ni

N
where Ni

denotes the number of symbols of the i-th outcome, Shannon character-
ized the entropy H as the uncertainty of the expected outcome [13]. Then,
the classical Shannon-entropy formula to measure the average entropy of
information per communication symbol can be expressed by

Hm = −
k

∑

i=1

pi log(pi) = −
k

∑

i=1

Ni

N
log

(

Ni

N

)

bits/symbol. (1)

Hm is often called the mean information. Additionally, Brillouin [15] de-
fined the total information as

H = N log(N) −

k
∑

i=1

Ni log(Ni) bits. (2)
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Now, the topics we just mentioned [50, 56, 21, 44, 57, 71] have been mainly
influenced by the, at that time, novel insight that an inferred or constructed
graph structure can be considered as the result of a certain information
process or communication between the elements of the underlying system
[11, 62]. As a consequence [8, 54], Equation (1) and Equation (2) can be now
interpreted as the mean information content

Im(G) = −

k
∑

i=1

pi log(pi), (3)

and the total information content

I(G) = |V | log(|V |) −

k
∑

i=1

|Vi| log(|Vi|), (4)

of a graph G. Here, |V | denotes the number of vertices of a graph G, k
denotes the number of different (obtained) sets of vertices, |Vi| is the num-

ber of elements in the i-th set of vertices, and it holds pi = |Vi|
|V | . The first

attempt in this direction was given by [57] who developed a technique to
determine the structural information content of a graph. This technique is
based on the principle of finding distinguishable vertices of a graph to ap-
ply Shannon’s entropy (Equation (3) and Equation (4)) for determining
the information content of such a graph-based system. Also, [54, 51, 52, 53]
investigated this problem by using algebraic methods, i.e., determining the
automorphism groups of graphs. We remark that the mentioned methods,
e.g., [54, 51, 52, 53, 57, 71] for measuring the structural information content
of a graph-based system are based on the following principle: Starting from
a certain equivalence criterion, a graph-based system with n elements can
be partitioned into k classes, see, e.g., [11]. As a consequence, a probabil-
ity distribution can be obtained that leads directly to the definition of an
entropy of the system under consideration (Equation (3) and Equation (4)).
Following [11, 54, 23], the structural information content of such a system is
interpreted as the entropy of the underlying graph topology. As a remark, we
note that graph entropy definitions which are rooted in information theory
can be found in [34, 42, 43, 64].

A major contribution of this paper addresses the problem of finding bounds
for the entropies of hierarchical graphs, which often occurs in chemical graph
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Figure 1. Overall approach to derive entropy bounds for hier-
archical graphs.

theory and computational and systems biology. Here, the term “hierarchi-
cal” means that we deal with graphs having a distinct vertex that is called a
root. To achieve this goal, we use an approach for determining the entropy
of undirected and connected graphs that has been recently presented in [23].
In contrast to the classical methods which we have already outlined above,
this method is based on assigning a probability value to each vertex in a
graph by using a special information functional. The information functional
we have presented in [23] is based on metrical properties of graphs, more
precisely, on so-called j-spheres. In terms of practical applications, we want
to point that the task of deriving bounds for the entropies of graphs is cru-
cial because the exact entropy value can often not be calculated concretely,
especially regarding large graphs. For this reason, entropy bounds for special
graph classes help to reduce the complexity of such problems and can be also
used for characterizing graphs or graph classes by using information-theoretic
measures, e.g., see Section (2.3). As mentioned, hierarchical (rooted) graph
structures do have a large application potential in chemical graph theory and
computational biology. Therefore, we restrict our analysis on such graph
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structures. A further reason for focusing on rooted graphs is, to our knowl-
edge, such a study does not exist. Another contribution of this paper deals
with demonstrating the practical ability of the used graph entropy approach
[23] by interpreting the produced numerical results. Starting from two graph
classes, ordinary rooted trees and so-called generalized trees [38, 48], we show
that our entropy measure captures important structural information mean-
ingfully. To summarize the main contribution of this paper, Figure (1) shows
the overall approach exemplarily.

This paper is organized as follows: Before starting with our main contribution
in Section (2.3), we express some relevant application areas and problems
dealing with hierarchical graphs in Section (2.1). Further, in Section (2.2) we
briefly repeat the construction of the graph entropy measure [23] that is the
fundament of our theoretical analysis. In Section (2.3), we derive bounds for
the entropies of rooted trees and generalized trees. Here, we focus on so-called
implicit bounds, i.e., the entropy of a graph is characterized by another graph
entropy expression based on an estimation. Section (3.1) presents numerical
results. The paper finishes in Section 3.2 with a summary and conclusion.

2. Analysis

2.1. Applications of Hierarchical Graphs. In this section, we briefly
outline some applications of hierarchical graphs in chemical graph theory
and computational biology.

2.1.1. Mathematical Chemistry. There is a universe of problems dealing
with trees for modeling and analyzing chemical structures [1, 12, 27, 36,
70]. However, also rooted tree structures are of particular interest because,
e.g., considering such graph classes often helps to solve more general graph
problems. In the following, we state some interesting applications of rooted
trees in chemical graphs theory:

• Enumeration and coding problems of chemical structures by using
rooted trees [2, 55, 47, 29].

• Describing so-called signatures as molecular descriptors for problems
in QSAR [72].

• Graph polynomials of hierarchical graphs [75].
• Chemical graph analysis by using algebraic and metrical graph prop-

erties [7, 20, 45, 65].
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2.1.2. Biology. Tree structures have been intensely investigated for solving
and modeling biological problems. In particular, rooted trees often serve as
an important graph representation for many biological classification prob-
lems as well as for problems in evolutionary biology [60]. To summarize
some known approaches involving hierarchical graph structures, we state the
following listing:

• Reconstruction problems and so-called supertree methods in phyloge-
netics [32, 33, 69, 61, 60].

• Modeling and analyzing RNA structures [39, 63].
• Supervised and unsupervised graph classification problems in compu-

tational biology [30, 40].
• Clustering problems in computational biology [35, 49].

2.2. A Method for Determining the Entropy of Graphs. In this sec-
tion, we briefly repeat the method to measure the entropy of arbitrary undi-
rected and connected networks, see [23]. As mentioned, we will interpret and
define the structural information content as the entropy of the underlying
graph topology [23]. The method we want to use is mainly based on the
principle to assign a probability value to each vertex in a graph by using
a certain information functional for quantifying structural information in a
graph and, hence, for determining its entropy. The information functional
that has been used [23] is based on determining the so-called j-spheres of
a graph. Before outlining the main construction steps of this approach, we
want to mention that [9] also used so-called vertex distance degree sequences
(DDS) to develop the idea of a graph center for chemical structures. Inter-
estingly, the derived DDS-distributions correspond to vertex distributions by
using j-spheres. Similarly to the just described idea, one main idea of the
approach of [23] to determine the entropy of a graph was to use a connec-
tivity concept to express neighborhood relations of its vertices. Finally, it
turned out that a natural procedure for expressing such relations is to calcu-
late the number of the first neighboring vertices, the number of the second
neighboring vertices, etc. and, hence, this just corresponds to the definition
of the j-sphere. As an example, Figure (2) shows the process of determining
j-spheres visually.

In order to repeat the main construction step of the above mentioned graph
entropy method, we first express some mathematical preliminaries [3, 37, 23].
We define an undirected, finite and connected graph by G = (V, E), |V | < ∞,
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Figure 2. G represents an undirected and connected graph. For
example, we get |S1(vi, G)| = 5 and |S2(vi, G)| = 9.

E ⊆
(

V
2

)

. G is called connected if for arbitrary vertices vi and vj there exists
an undirected path from vi to vj. Otherwise, we call G unconnected. GUC

denotes the set of finite, undirected and connected graphs. The degree of
a vertex v ∈ V is denoted by δ(v) and equals the number of edges e ∈ E
which are incident with v. In order to measure distances between vertices in
a graph, we denote d(u, v) as distance between u ∈ V and v ∈ V expressed
as the minimum length of a path between u, v. We notice that d(u, v) is a
metric. We call the quantity σ(v) = maxu∈V d(u, v) the eccentricity of v ∈ V .
Further, ρ(G) = maxv∈V σ(v) is called the diameter of G. The j-sphere of a
vertex vi regarding G ∈ GUC is defined as the set,

Sj(vi, G) := {v ∈ V | d(vi, v) = j, j ≥ 1}. (5)

Now, we state the definition of a special information functional that has been
introduced in [23] to define the entropy of a graph. Here, the information
functional fV quantifies structural information of a graph G by using the
cardinalities of the corresponding j-spheres.

Definition 2.1. Let G ∈ GUC with arbitrary vertex labels. For the vertex
vi ∈ V , the information functional fV is defined as

fV (vi) := αc1|S1(vi,G)|+c2|S2(vi,G)|+···+cρ|Sρ(vi,G)|,

ck > 0, 1 ≤ k ≤ ρ, α > 0. (6)

fV (vi) captures structural information of G by using metrical properties of G.
The parameters α and ck are introduced to weight structural characteristics
or differences of G in each sphere, e.g., a vertex with a large degree.
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As a remark, we generally see that it always

|S1(v1, G)| + |S2(v1, G)| + · · · + |Sρ(v1, G)|, (7)

=|S1(v2, G)| + |S2(v2, G)| + · · · + |Sρ(v2, G)|, (8)

= · · · · · ·

=|S1(v|V |, G)| + |S2(v|V |, G)| + · · · + |Sρ(v|V |, G)|, (9)

holds [23]. Hence, the ck have to be chosen such that they are not equal, e.g,
c1 > c2 > · · · > cρ. Finally, we observe that the variation of ck and α aims
to study the local information spread in a network.

Definition 2.2. The vertex probabilities are defined by the quantities

pV (vi) :=
fV (vi)

∑|V |
j=1 fV (vj)

. (10)

Definition 2.3. Let G = (V, E) ∈ GUC. Then, we define the entropy of G
by

IfV (G) := −

|V |
∑

i=1

pV (vi) log(pV (vi)). (11)

As outlined in [23], we recall that the process of defining information func-
tionals and, hence, the entropy of a graph by using structural properties or
graph-theoretical quantities is not unique. Consequently, each information
functional captures structural information of a given graph differently. Fur-
ther, we pointed out [23] that the parameter α can always be determined via
an optimization procedure based on a given data set and, hence, is uniquely
defined for a given classification problem.

2.3. Bounds for the Entropies of Hierarchical Graphs. In this section,
we derive bounds for the entropies of hierarchical graphs. For this, we use
the entropy measure explained in Section (2.2). As mentioned, in this paper
we choose the class of rooted trees and so-called generalized trees [48]. We
notice that a generalized tree contains an ordinary rooted tree as a special
case [48]. Further, it turned out that generalized trees can be very useful for
solving current problems in applied discrete mathematics, computer science
and systems biology [48, 24, 31, 30]. To start with the problem of find-
ing entropy bounds, we first define the mentioned graph classes. Directed
generalized trees have already been defined in [48].
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Figure 3. An undirected tree T and its corresponding undi-
rected generalized tree H. It holds |L| = 4 and h = |L| − 1 = 3.

Definition 2.4. An undirected graph is called undirected tree if this graph
is connected and cycle free. An undirected rooted tree T = (V, E) is an
undirected graph which has exactly one vertex r ∈ V for which every edge is
directed away from the root r. Then, all vertices in T are uniquely accessible
from r. The level of a vertex v in a rooted tree T is simply the length of the
path from r to v. The path with the largest path length from the root to a leaf
is denoted as h.

Definition 2.5. As a special case of T = (V, E) we also define an ordinary
ϑ-tree denoted as Tϑ where ϑ is a natural number. For the root vertex r, it
holds δ(r) = ϑ and for all internal vertices v ∈ V holds δ(v) = ϑ + 1. Leaves
are vertices without successors. A ϑ-tree is fully occupied, denoted by T o

ϑ , if
all leaves possess the same height h.

Definition 2.6. Let T = (V, E1) be an undirected finite rooted tree. |L|
denotes the cardinality of the level set L := {l0, l1, · · · , lh}. The longest length
of a path in T is denoted as h. It holds h = |L| − 1. L : V −→ L is
a surjective mapping and it is called a multi level function if it assigns to
each vertex an element of the level set L. A graph H = (V, EGT ) is called
a finite, undirected generalized tree if its edge set can be represented by the
union EGT := E1 ∪ E2 ∪ E3, where

• E1 forms the edge set of the underlying undirected rooted tree T .
• E2 denotes the set of horizontal Across-edges. A horizontal Across-

edge does not change a level i.
• E3 denotes the set of edges which change at least one level.
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As an example, Figure (3) shows an undirected rooted tree T and its corre-
sponding undirected generalized tree H.

2.3.1. Entropy Bounds for Rooted Trees. Starting from the definition of the
information functional fV (see Equation (6)), we first express a technical as-
sertion proven in [22] that states a relationship between certain vertex prob-
abilities. Starting from the definition of fV , this assertion expresses that it is
always possible to infer inequalities between the corresponding vertex proba-
bilities. In order to achieve this, we also use simple estimations of parameters
which we introduce in Lemma (2.1). Finally, we will see that by applying
this lemma, we can easily derive entropy bounds for the graph classes under
consideration. Hence, the following lemma serves as a fundament for the
proofs of some theorems we want state in this section.

Lemma 2.1. Let T be a rooted tree with a certain height h and let fV be the
information functional represented by Equation (6). Further, we define the
quantities

ω(vik) := max
1≤j≤ρ

|Sj(vik, T )|, ω := max
0≤i≤h
1≤k≤σi

ω(vik), φ := max
1≤j≤ρ

cj,

and ϕ := min
1≤j≤ρ

cj. (12)

It holds

pV (vik) < αρ[φ·ω−ϕ] · pg(vik), ρ[φ · ω − ϕ] > 0 ∀α > 1, (13)

where

pg(vik) :=
g(vik)

g(v01) +
∑h

i=1

∑σi

k=1 g(vik)
, (14)

and g(vik) = αρ·φ·ω(vik). pV (vik) denotes the vertex probability of vik regarding
fV . Further, vik denotes the k-th vertex on the i-th level, 1 ≤ i ≤ h, 1 ≤ k ≤
σi. σi denotes the number of vertices on level i.

In the following, we derive entropy bounds for hierarchical networks by ap-
plying Lemma (2.1). Because Lemma (2.1) provides inequalities between
vertex probabilities for each vertex in a graph, the main idea for inferring
entropy bounds is to add up the obtained inequalities. As a result, we get
relations between graph entropy measures for hierarchical networks which
can be interpreted as entropy bounds. Also, the conclusion of Lemma (2.1)
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implies that by varying the Inequalities (13), special entropy bounds can be
obtained.

Theorem 2.2. Let T be a rooted tree. For the entropy of T , it holds the
inequality

IfV (T ) > αρ[φ·ω−ϕ]
[

Ig(T ) − log
(

αρ[φ·ω−ϕ]
)]

∀α > 1, (15)

where

Ig(T ) := −

[

g(v01) +

h
∑

i=1

σi
∑

k=1

g(vik) log(g(vik))

]

. (16)

Proof: To start the proof, we consider Inequality (13) in Lemma (2.1). If
we multiply this inequality by -1, we get

−pV (vik) > −αρ[φ·ω−ϕ] · pg(vik). (17)

Now, by using the assertion of Lemma (2.1) and the monotonicity property
of the logarithm function, we obtain

− pV (vik) log(pV (vik)) > −αρ[φ·ω−ϕ] · pg(vik) · log(pg(vik))

− αρ[φω−ϕ] · pg(vik) · log
(

αρ[φω−ϕ]
)

. (18)

If we perform this step for each vertex vik ∈ V and then add up the obtained
inequalities, we get

− pV (v01) log(pV (v01))− pV (v11) log(pV (v11)) − · · · − pV (vhσh
) log(pV (vhσh

))

> αρ[φ·ω−ϕ]
[

− pg(v01) log(pg(v01)) − pg(v11) log(pg(v11)) − · · ·

−pg(vhσh
) log(pg(vhσh

))
]

−αρ[φ·ω−ϕ] log
(

αρ[φ·ω−ϕ]
)

[

pg(v01) +
h

∑

i=1

σi
∑

k=1

pg(vik)

]

.

Because by definition it holds

pg(v01) +

h
∑

i=1

σi
∑

k=1

pg(vik) = 1,
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we obviously get

− pV (v01) log(pV (v01))− pV (v11) log(pV (v11)) − · · · − pV (vhσh
) log(pV (vhσh

))

> αρ[φ·ω−ϕ]
[

− pg(v01) log(pg(v01)) − pg(v11) log(pg(v11)) − · · ·

− pg(vhσh
) log(pg(vhσh

))
]

− αρ[φ·ω−ϕ] log
(

αρ[φ·ω−ϕ]
)

. (19)

Now, by using the definition of the graph entropy (see Definition (2.3)),
Inequality (19) finally becomes to

IfV (T ) > αρ[φ·ω−ϕ]
[

Ig(T ) − log
(

αρ[φ·ω−ϕ]
)]

.

This completes the proof of the theorem. �

By considering special classes of rooted trees, we obviously get special bounds
for the corresponding entropies.

Theorem 2.3. Let T o
ϑ be a fully occupied ϑ-tree. For the graph entropy of

T o
ϑ holds

IfV (T o
ϑ) > α2h[φ·ϑh−ϕ]

[

Ig(T
o
ϑ) − log

(

α2h[φ·ϑh−ϕ]
)]

, ∀α > 1. (20)

Proof: Let T o
ϑ be a fully occupied ϑ-tree. Therefore, it holds ρ = 2h. Starting

from the root vertex v01, all other vertices are reachable. Hence, we obtain
|Sh(v01, T

o
ϑ)| = ϑh. Then, we clearly get |Sj(vik, T

o
ϑ)| < ϑh, 1 ≤ j ≤ 2h.

Hence, we can set ω = ϑh. Now, the proof of the Theorem (2.3) can be
obtained by analogously applying the same technique and steps of the proof
of Theorem (2.2). �

Theorem 2.4. Let Tϑ be an ordinary ϑ-tree. For the graph entropy of Tϑ

holds

IfV (Tϑ) > αρ[φ·ϑh−ϕ]
[

Ig(Tϑ) − log
(

αρ[φ·ϑh−ϕ]
)]

, ∀α > 1. (21)

Proof: Let Tϑ be an ordinary ϑ-tree. Actually, it holds ω ≤ ϑh. From this,
and by applying Lemma (2.1), we yield

pV (vik) < αρ[φ·ϑh−ϕ] · pg(vik). (22)

Finally, we obtain the assertion of the theorem by applying the same tech-
nique and steps performed in the proof of Theorem (2.2). �

We emphasize that each information functional captures structural informa-
tion of a graph differently. Obviously, the resulting graph entropies are also
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different. If we now apply Theorem (2.2) and additionally assume an abstract
information functional f ∗, we find as a consequence of the previous theorems
that one can infer a statement that expresses a relationship between the re-
sulting graph entropies. These kind of inequalities can be used to study the
influence of an information functional on the final graph entropies.

Corollary 2.5. Let T be a rooted tree and let f ∗(vik) be an information
functional such that

pV (vik) < αρ[φ∗·ω∗−ϕ] · p∗(vik), ρ[φ∗ · ω∗ − ϕ] > 0, α > 1. (23)

pV (vik) and p∗(vik) denotes the vertex probability value (k-th vertex on the
i-th level) regarding fV and f ∗. Then, it holds

IfV (T ) > αρ[φ∗·ω∗−ϕ]
[

If∗(T ) − log
(

αρ[φ∗·ω∗−ϕ]
)]

. (24)

2.3.2. Entropy Bounds for Generalized Trees. In this section, we give a first
attempt to state entropy bounds for certain classes of generalized trees. By
only allowing generalized trees with specific edge sets, we get bounds for the
entropies of special classes of generalized trees. The assertion of the next
theorem means the following: The entropy of a specific generalized tree can
be characterized by the entropy of another generalized tree that is extremal
with respect to a certain structural property.

Theorem 2.6. Let H = (V, EGT ) be a generalized tree with EGT = E1 ∪ E2,
i.e., H possesses Across-edges only. Starting from H, we define H⋆ as the
generalized tree with the maximal number of Across-Edges on each level i, 1 ≤
i ≤ h.

• First, there exist positive real coefficients ck which satisfy the inequality
system

c1|S1(vik, H
⋆)| + c2|S2(vik, H

⋆)| + · · · + cρ|Sρ(vik, H
⋆)|

> c1|S1(vik, H)| + c2|S2(vik, H)| + · · · + cρ|Sρ(vik, H)|,

0 ≤ i ≤ h, 1 ≤ k ≤ σi, cj > 0, 1 ≤ j ≤ ρ. (25)

• Second, it holds

IfV (H) > αρ[φ⋆·ω⋆−ϕ]
[

IfV (H⋆) − log
(

αρ[φ⋆·ω⋆−ϕ]
)]

∀α > 1. (26)
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Proof: We assume H = (V, EGT) such that EGT = E1 ∪ E2. Besides edges
e ∈ E1, H possesses Across-edges e ∈ E2 only. Then, we first determine

|S1(vik, H)|, |S2(vik, H)|, . . . , |Sρ(vik, H)|.

Now, we consider H⋆ and find that the total number of Across-edges for each

level equals σi(σi−1)
2

, i ≥ 1. Except for the root vertex v01, we further see
that in particular |S1(vik, H

⋆)| ≥ |S1(vik, H)| holds. This corresponds to the
fact that H⋆ has normally more connections than H. Finally, the cardinal-
ities of the remaining j-spheres of H⋆ increase correspondingly. Therefore,
we conclude that we can find coefficients ck > 0 such that the Inequality
System (25) holds. But from this, we directly obtain

fV
H (vik) := αc1|S1(vik,H)|+c2|S2(vik,H)|+···+cρ|Sρ(vik,H)|

< αc1|S1(vik,H⋆)|+c2|S2(vik,H⋆)|+···+cρ|Sρ(vik,H⋆)|,

=: fV
H⋆(vik), (27)

if α > 1, 1 ≤ i ≤ h, 1 ≤ k ≤ σi. fV
H (vik) and fV

H⋆(vik) denotes the informa-
tion functional fV regarding H and H⋆, respectively. We want to emphasize
that it holds fV

H (v01) = fV
H⋆(v01). Similarly as in Lemma (2.1), by using the

quantities

ω⋆(vik) := max
1≤j≤ρ

Sj(vik, H
⋆), ω⋆ := max

0≤i≤h
1≤k≤σi

ω⋆(vik), φ⋆ := max
1≤j≤ρ

cj,

and ϕ := min
1≤j≤ρ

cj,

we yield

pV
H(vik) < pV

H⋆(vik) · α
ρ[φ⋆·ω⋆−ϕ]. (28)

Finally, Equation (26) can be obtained by applying the assertion of Theo-
rem (2.2). �

We want to remark that by using the main argument of Theorem (2.6), one
can easily express similar assertions for other specific generalized tree classes.
To finalize this section, we state a simple lemma concerning the maximum
entropy of a graph. Then, we apply this assertion to generalized trees.

Lemma 2.7. Let K|V |,|V | be the complete graph with |V | vertices. K|V |,|V |

maximizes the graph entropy with respect to the information functional fV ,
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i.e.,

IfV (K|V |,|V |) = −

|V |
∑

i=1

1

|V |
log

(

1

|V |

)

= − log

(

1

|V |

)

. (29)

Theorem 2.8. Let H = (V H , E) be an arbitrary generalized tree and let
H|V |,|V | be the complete generalized tree such that |V H | ≤ |V |. It holds

IfV (H) ≤ IfV (H|V |,|V |). (30)

Proof: The proof follows directly by using the monotonicity property of the
logarithm function and the assertion of Lemma (2.7).

Corollary 2.9. Let H⋆ = (V ⋆, E⋆) and it holds |V ⋆| ≤ |V |.

IfV (H⋆) ≤ IfV (H|V |,|V |). (31)

3. Discussion

3.1. Numerical Results for Hierarchical Graphs. This section aims to
demonstrate that our entropic measure is able to distinguish certain graph
classes of hierarchical graphs structurally by comparing the resulting cumula-
tive entropy distributions. As a result of our numerical analysis, we will find
that the calculated entropy distributions can be clearly distinguished and,
hence, also the graph classes under consideration. Thus, this proves that
the entropy measure captures significant structural information. To start,
we give a short overview on the key steps we performed to carry out our
numerical analysis:

• Generate the data classes CRT
α and CGT

α . For this, we randomly create
rooted trees with a fixed height h. Further, we use these trees to
generate generalized trees (see also below).

• Choose the parameters ck.
• Vary α to compute IfV for different classes CRT

α and CGT
α .

• Compute the mean of the entropies for each such class denoted by m̄
and the variances σ2.

• Compute and interpret the cumulative entropy distributions for CRT
α

and CGT
α .

We remark that the intuitive meaning of the entropy IfV (G) has been already
explained in [23]. Now, we start our numerical section with defining some
data classes. These data classes emerge from starting with fixed sets of
hierarchical graphs and by varying certain parameters.
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h = 7

CRT
1 CGT

1 CRT
2 CGT

2 CRT
3 CGT

3 CRT
4 CGT

4 CRT
5 CGT

5

m̄ 6.029 6.218 1.766 2.846 1.123 1.987 0.895 1.629 0.775 1.423
σ2 0.595 0.614 0.828 1.221 0.611 1.110 0.506 0.955 0.444 0.841

CRT
6 CGT

6 CRT
7 CGT

7 CRT
8 CGT

8 CRT
9 CGT

9 CRT
10 CGT

10

m̄ 0.701 1.287 0.649 1.188 0.610 1.113 0.580 1.054 0.556 1.005
σ2 0.402 0.758 0.373 0.696 0.351 0.648 0.333 0.611 0.320 0.580

h = 8

CRT
1 CGT

1 CRT
2 CGT

2 CRT
3 CGT

3 CRT
4 CGT

4 CRT
5 CGT

5

m̄ 6.713 6.767 2.087 3.434 1.287 2.389 1.009 1.959 0.867 1.720
σ2 0.546 0.672 1.027 1.571 0.711 1.792 0.581 1.686 0.511 1.559

CRT
6 CGT

6 CRT
7 CGT

7 CRT
8 CGT

8 CRT
9 CGT

9 CRT
10 CGT

10

m̄ 0.780 1.566 0.721 1.456 0.677 1.372 0.643 1.306 0.616 1.253
σ2 0.467 1.449 0.436 1.355 0.412 1.277 0.394 1.211 0.379 1.153

Table 1. m̄ represent the means of the entropies for each class
CRT

α and CGT
α . σ2 denotes the corresponding variance. It holds

|CRT
α | = |CGT

α | = 100. α varies in natural numbers from 1 to 10,
the step size is equal to 1.

Definition 3.1. The class CRT
α denotes a certain set of rooted trees whose

entropies have been computed by using the value α and the coefficient vector
(c1, c2, . . . , cρm

). We set

ρm := max(ρ(T1), ρ(T2), . . . , ρ(T|CRT
α |).

Correspondingly, CGT
α denotes a certain set of generalized trees whose en-

tropies have been computed by also using the value α and (c1, c2, . . . , cρm
).

In order to compute the graph entropies concretely, we choose the ck values
such that

c1 > c2 > c3 > c4 > c5 > c6,

holds, and set c1 := 6, c2 := 5, c3 := 4, c4 = 3, c5 = 2, c6 = 1. A class CRT
α

was generated by providing a fixed value h as the height of each tree T ∈
CRT

α . Further, each T ∈ CRT
α has an unique root vertex and the remaining

vertices and edges were created randomly. To generate a class CGT
α , we first
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Figure 4. Cumulative entropy distributions of the classes CRT
α

for h = 8. The x-axis corresponds to the entropy IfV (T ) and the
y-axis represents the cumulative entropy distribution for CRT

1 -
CRT

5 and CRT
10 .

compute an arbitrary random tree with height h as mentioned and, then,
a certain number of additional edges of a generalized tree randomly. The
numerical results of our study are summarized in Table (1). As we have
already mentioned, we computed the entropies of certain classes of rooted
and generalized trees with a fixed height h by varying the α-value. We
notice that by providing a fixed height h, the number of vertices of T or H
can be nevertheless extremely different. Now, from Table (1) we see that the
resulting entropies of generalized trees are in average larger than the entropies
of rooted trees, depending on α. This corresponds to our intuition that a
generalized tree can be generally considered as structurally more complex
than an ordinary rooted tree. To argue in this way, we apply a definition due
to [11] that states, the higher the information content (entropy) of a system
is, the more complex is the system. Further, one finds that the variances of
the generated tree and generalized tree classes can be clearly distinguished.
This can be also explained by the fact that a set of generalized trees is in
average more structurally complex and diverse than a set of rooted trees with
the same height h. Also, we observe that the larger the α-value of CRT

α and
CGT

α is, the smaller is the resulting mean and variance. Additionally, we also
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Figure 5. Cumulative entropy distributions of the classes CGT
α

for h = 8. The x-axis corresponds to the entropy IfV (H) and the
y-axis represents the cumulative entropy distribution for CGT

1 -
CGT

5 and CGT
10 .

find that the entropy of a graph decreases with an increasing α-value. In the
following, we interpret the cumulative entropy distributions (for h = 8) which
are shown in Figure (4) and Figure (5). Such a distribution expresses the
percentage rate of graphs (of the cardinality of CRT

α or CGT
α ) which possess an

entropy value less or equal IfV (T ) or IfV (H). As an important observation,
we find that for α ∈ {2, 3, 4, 5, 10} the cumulative entropy distributions of
CRT

α (see Figure (4)) are clearly different from the corresponding cumulative
distributions of CGT

α (see Figure (5)). Hence, we interpret this result such
that the entropy measure (by incorporating the information functional fV ) is
able to detect that we deal with different graph classes. The reason why the
distribution for CRT

1 and CGT
1 seems to be almost equal is related to the fact

that our entropy measure has always a maximum at α = 1. For this case,
the entropies of trees- and generalized trees are almost equal. We remark
that we have already been proven that the entropy functional (by using fV )
possesses for every graph a maximum at α = 1, see [23]. As the main result of
this section, we find that our entropy measure captures important structural
information meaningfully and, hence, detects that rooted and generalized
trees manifest structurally different graph classes.
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3.2. Summary and Conclusion. In this paper, we investigated the prob-
lem of finding entropy bounds for hierarchical graphs. Based on an entropic
measure to determine the entropy of graphs, we derived certain estimations
for the corresponding entropies. We now summarize the main contributions
and arguments of our paper as follows:

In Section (2.3), we defined two classes of hierarchical graphs, rooted trees
and generalized trees. A generalized tree is structurally more complex than
an ordinary rooted tree because it contains a rooted tree as a special case. As
a main result of Section (2.3), we proved entropy bounds for rooted trees as
well as for generalized trees. Also, assuming specific structural properties of
the graph classes under consideration led us to characteristic bounds. It is im-
portant to note that we presented only one method for finding those entropy
bounds, different bounds can be derived by using different entropy measures
and techniques. To classify these bounds, we call the derived bounds im-
plicit bounds because the entropy of a graph was estimated by a quantity
that contains another graph entropy expression. Generally, bounds to esti-
mate the entropy of graphs are very useful for practical applications because
the real entropy value is often difficult to obtain. Particularly, an interesting
result represents Corollary (2.5). From this assertion, we found that an in-
formation functional (e.g., fV or f ∗) has an influence on the resulting graph
entropy because each such functional quantifies structural information dif-
ferently. Hence, Corollary (2.5) can be used for describing relations of the
resulting entropies by using different information functional.

In Section (3.1), we performed a numerical study to demonstrate the prac-
tical ability of our graph entropy measure. Based on two generated graph
classes of rooted and generalized trees, we computed the entropies of each
such class by varying the free parameter α. Then, we calculated the cu-
mulative entropy distributions for these classes. From the obtained results
we could conclude that our entropy measure can distinguish between rooted
trees and generalized trees. This implied that the used entropy measure cap-
tures significant structural information because we know that rooted trees
and generalized trees are different graph classes.
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