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1. Introduction.
The condition number of a problem measures the effect on the solution

of small changes in the data and this quantity depends on the norms cho-
sen for measuring perturbations on data and solution. A commonly used
approach consists of measuring these perturbations in their globality using
classical norms (e.g ‖·‖p, p = 1, 2,∞ or ‖·‖F ) resulting in so-called normwise
condition numbers. But as mentioned in [20], using norms for measuring
matrix perturbations has several drawbacks. First, it does not give infor-
mation about how the perturbation is distributed among the data. Second,
as pointed out in [7, p. 31], errors can be overestimated by a normwise
sensitivity analysis when the problem is badly scaled.

In the componentwise analysis, perturbations are measured using metrics
that take into account the structure of the matrix like sparsity or scaling.
With such metrics, we could expect to minimize the amplification of pertur-
bations resulting in a minimal condition number. Componentwise metrics
are well suited for that because the perturbations on data are measured rela-
tively to a given tolerance for each component of the data. For instance, if E
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is the matrix whose nonnegative entries are the individual tolerance for er-
rors in components of A, then the componentwise relative error bound ω for
a perturbation ∆A will be such that |∆A| ≤ ωE (here partial ordering and
absolute values must be understood component by component). A common
choice for E is E = |A|.

Componentwise error analysis that provide us with exact expressions or
bounds for componentwise condition numbers can be found for example in [5,
8, 19, 25, 27, 28, 29] for linear systems and in [4, 6, 9, 19, 23] for linear least
squares. In particular, componentwise backward errors are commonly used
as stopping criteria in iterative refinement for solving linear systems (see
e.g [3]) or linear least squares (see e.g [10]).

For the full rank linear least squares problem (LLSP), generalizing [16], [2]
gives exact formulas for the conditioning of a linear transformation of the
LLSP solution when the perturbations of data and solution are measured
normwise. Our objective in this paper is to obtain similar quantities when
perturbations on data are, contrary to [2], measured componentwise and the
perturbations on the solution are measured either componentwise or norm-
wise resulting in respectively componentwise and mixed condition numbers.

In [17], a technique is presented to compute or estimate condition numbers
using adjoint formulas. The results are presented in Banach spaces, and make
use of the corresponding duality results in order to derive normwise condition
numbers. In our paper, we show that these dual techniques are easy and
helpful when presented in the framework of Euclidean spaces. In particular,
as also mentioned in [17], they enable us to derive condition numbers by
maximizing a linear functional over a space of smaller dimension than the
data space.

We show in this paper that dual techniques can be used to derive condition
numbers when perturbations on the data are measured componentwise and
we apply this method to LLSP. We propose exact formulas for the condi-
tioning of LTx, linear functional of the LLSP solution when perturbations
on data are measured componentwise and perturbations on the solution are
measured either componentwise or normwise. Studying the condition num-
ber of LTx is relevant for instance when there is a dispararity between the
conditioning of the solution components or when the computation of the least
squares solution involves auxiliary variables without physical significance.
The situations of common interest correspond to the cases where L is the
identity matrix (condition number of an LLSP solution), a canonical vector
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(condition number of one solution component), or a projector, when we are
interested in the sensitivity of a subset of the solution components. The con-
ditioning of a nonlinear function of an LLSP solution can also be obtained
by replacing in the condition number expression LT by the Jacobian matrix
at the solution. When L is the identity matrix and when perturbations on
the solution are measured using the infinity norm or a componentwise norm,
we obtain the exact formula given in [9]. By considering the special case
where we have a residual equal to zero, we obtain componentwise and mixed
condition numbers for LTx where x is the solution of a consistent linear sys-
tem. When L is the identity matrix, these quantities recover the expressions
known from [21, p. 123] and [18].

2. Deriving condition numbers using dual techniques.
2.1. Preliminary results on dual norms and adjoint operators. We
consider a linear mapping J : E → G where the Euclidean spaces E and
G are equipped respectively with any norms ‖.‖E, ‖.‖G and scalar products
< ., . >E and < ., . >G. Note that the norms ‖.‖E and ‖.‖G may not, and
will not in general be, the particular norms induced by the scalar products
< ., . >E and < ., . >G.

Definition 1. The adjoint operator of J , J∗ : G → E is defined by

< y, Jx >G=< J∗y, x >E,

where (x, y) ∈ E ×G.
We also define the dual norm ‖.‖E∗ of ‖.‖E by

‖x‖E∗ = max
u6=0

< x, u >E

‖u‖E
,

and define similarly the dual norm ‖.‖G∗.

For the common vector norms, the dual norms with respect to the canonical
scalar product in Rn are well-known, and are given by:

‖·‖1∗ = ‖·‖∞ and ‖·‖∞∗ = ‖·‖1 and ‖·‖2∗ = ‖·‖2.

For the matrix norms in Rm×n with respect to the scalar product < A, B >=
trace(ATB), we have ‖A‖2∗ = ‖σ(A)‖1 (Lemma 3.5 of [30, p. 78]), and since
trace(ATA) = ‖A‖2

F we also have that ‖A‖F∗ = ‖A‖F .
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For the linear applications mapping E to G, we denote by ‖.‖E,G the operator
norm induced by the norms ‖.‖E and ‖.‖G. Likewise, the norm ‖.‖G∗,E∗ is
the operator norm for linear applications mapping G to E and induced by
the dual norms ‖.‖G∗ and ‖.‖E∗. Then we have the following theorem.

Theorem 1.
‖J‖E,G = ‖J∗‖G∗,E∗

Proof :

‖J‖E,G = max
x∈E

‖Jx‖G

‖x‖E

= max
x∈E,u∈G

< Jx, u >G

‖u‖G∗‖x‖E
we use the “duality theorem” [22, p. 287]

= max
u∈G

1
‖u‖G∗

max
x∈E

< x, J∗u >E

‖x‖E

= max
u∈G

‖J∗u‖E∗
‖u‖G∗

= ‖J∗‖G∗,E∗.

As mentioned in [17], it may be interesting to compute ‖J∗‖G∗,E∗ (instead
of ‖J‖E,G) when G∗ is an Euclidean space of lower dimension than E because
it implies a maximization over a space of smaller dimension.
We now consider a product space E = E1 × · · · × Ep where each Euclidean
space Ei is equipped with the norm ‖.‖Ei

and the scalar product < ., . >Ei
.

In E, we consider the following scalar product

< (u1, . . . , up), (v1, . . . , vp) >=< u1, v1 >E1 + · · ·+ < up, vp >Ep
,

and the product norm

‖(u1, . . . , up)‖ν = ν(‖u1‖E1, . . . , ‖up‖Ep
),

where ν is an absolute norm on Rp (i.e such that ν(|x|) = ν(x) ∀x ∈ Rp, [24,
p. 367]). We denote by ν∗ the dual of ν with respect to the canonical inner-
product of Rp and we are interested in determining the dual ‖.‖ν∗ of the
product norm ‖.‖ν with respect to the scalar product of E. Then we have
the following result.
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Theorem 2. The dual of the product norm can be expressed as

‖(u1, . . . , up)‖ν∗ = ν∗(‖u1‖E1∗, . . . , ‖up‖Ep∗).

Proof : From ‖ui‖Ei∗ = maxvi 6=0
<ui,vi>Ei

‖vi‖Ei
, we have ∀vi ∈ Ei < ui, vi >Ei

≤
‖ui‖Ei∗‖vi‖Ei

and then

‖(u1, . . . , up)‖ν∗ = max
‖(v1,...,vp)‖ν=1

p∑
i=1

< ui, vi >Ei

≤ max
‖(v1,...,vp)‖ν=1

p∑
i=1

‖ui‖Ei∗‖vi‖Ei

= max
ν(‖v1‖E1 ,...,‖vp‖Ep)=1



‖u1‖E1∗

...
‖up‖Ep∗




T 

‖v1‖E1

...
‖vp‖Ep




= ν∗(‖u1‖E1∗, . . . , ‖up‖Ep∗).

So, we have shown that ν∗(‖u1‖E1∗, . . . , ‖up‖Ep∗) is an upper-bound for the
dual of the product norm.
Now let w1, . . . , wp be nonzero vectors such that ∀i, < ui, wi >Ei

= ‖ui‖Ei∗‖wi‖Ei

(i.e choose wi that attains the maximum in the definition of the dual norm
‖ui‖Ei∗). Then

ν∗(‖u1‖E1∗, . . . , ‖up‖Ep∗) = max
ν(α1‖w1‖E1 ,...,αp‖wp‖Ep)=1



‖u1‖E1∗

...
‖up‖Ep∗




T 


α1‖w1‖E1
...

αp‖wp‖Ep




is attained for a particular (α′1, . . . , α
′
p) such that

ν∗(‖u1‖E1∗, . . . , ‖up‖Ep∗) =
p∑

i=1

α′i < ui, wi >Ei
,

with ν(α′1‖w1‖E1, . . . , α
′
p‖wp‖Ep

) = 1. Using the fact that ν is an absolute
norm, we get

‖(α′1w1, . . . , α
′
pwp)‖ν = ν(‖α′1w1‖E1, . . . , ‖α′pwp‖Ep

)

= ν(|α′1|‖w1‖E1, . . . , |α′p|‖wp‖Ep
)

= ν(α′1‖w1‖E1, . . . , α
′
p‖wp‖Ep

)

= 1.
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Thus

‖(u1, . . . , up)‖ν∗ = max
‖(v1,...,vp)‖ν=1

p∑
i=1

< ui, vi >Ei

≥
p∑

i=1

< ui, α
′
iwi >Ei

= ν∗(‖u1‖E1∗, . . . , ‖up‖Ep∗),

which concludes the proof.

2.2. Application to condition numbers. We represent here a given prob-
lem as a mapping g defined by x = g(y) where x ∈ G is the solution of the
problem corresponding to the data y ∈ E. The data space E and the so-
lution space G are Euclidean spaces equipped respectively with the norms
‖·‖E and ‖·‖G. Then the condition number of the problem is a measure of
the sensitivity of the mapping g to perturbations.
Following [26], if g is Fréchet-differentiable in a neighborhood of y, the ab-
solute condition number of g at the point y ∈ E is the quantity K(y)
defined by

K(y) = ‖g′(y)‖E,G,

where ‖·‖E,G is the operator norm induced by the norms ‖ · ‖E and ‖ · ‖G.
Then we also have

K(y) = max
‖z‖E=1

‖g′(y).z‖G. (1)

If g(y) is nonzero, we can define the relative condition number of g at
y ∈ E as

K(rel)(y) = K(y)‖y‖E/‖g(y)‖G. (2)

The expression of K(y) corresponds to the operator norm of the linear oper-
ator g′(y). Then using Theorem 1 and with the same notations as Section 2.1,
K(y) can be expressed as

K(y) = max
‖∆y‖E=1

‖g′(y).∆y‖G = max
‖x‖G∗=1

‖g′(y)∗.x‖E∗. (3)

We can summarize the method for deriving condition numbers using dual
techniques as follows:

(1) determine the derivative g′(y) of the mapping that represents our prob-
lem,
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(2) choose the norms ‖·‖E and ‖·‖G respectively on the solution and the
data spaces and determine their dual norms,

(3) determine the adjoint operator g′(y)∗ of the linear operator g′(y),

(4) compute K(y) = max‖x‖G∗=1 ‖g′(y)∗.x‖E∗.
Let us now consider the case where we use a componentwise metric on a
data space E = Rn. For a given y ∈ Rn, we denote by EY the subset of all
elements ∆y ∈ Rn with ∆yi = 0 whenever yi = 0. Then in a componentwise
perturbation analysis, we measure the perturbation ∆y ∈ EY of y using the
norm

‖∆y‖c = min {ω, |∆yi| ≤ ω|yi|, i = 1, . . . , n} . (4)

‖·‖c is called the componentwise relative norm with respect to y.
As mentioned in [12], we can extend the definition in Equation (4) to the
case where ∆yi 6= 0 while yi = 0 by having the convention ‖∆y‖c = ∞ for
those ∆y.

Let us determine the dual norm of the componentwise norm. First we observe
that, for any ∆y ∈ EY , we have

‖∆y‖c = max

{|∆yi|
|yi| , yi 6= 0

}
=

∥∥∥∥
(|∆y1|
|y1| , yi 6= 0

)∥∥∥∥
∞

.

Then we can apply Theorem 2 by considering the product space E = Rn,
with each Ei = R, ν = ‖·‖∞ and ‖∆yi‖Ei

= |∆yi|
|yi| , if yi 6= 0. We have

‖∆yi‖Ei∗ = max
z 6=0

|∆yi.z|
‖z‖Ei

= max
z 6=0

|∆yi.z|/(|z|/|yi|) = |∆yi||yi|,

and also ‖·‖∞∗ = ‖·‖1. Then we get

‖∆y‖c∗ = ‖(|∆y1||y1|, . . . , |∆yn||yn|)‖1. (5)

If there are zero components in y, we observe that, due to the condition
‖∆y‖E = 1 in Equation (1), the definition of K(y) is the same whether ∆y is
in EY or not. Indeed, if ∆y /∈ EY , then with the convention given previously
we have ‖∆y‖c = ∞ and the perturbation ∆y is not taken into account in
the computation of K(y). As a result, the zero components of y should not
be explicitely excluded as data.
Using Equation (3), K(y) will be obtained with

K(y) = max
‖x‖G∗=1

‖g′(y)∗.x‖c∗. (6)
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where ‖·‖c∗ is expressed by Equation (5).
Note that the norm on the solution space G has not been chosen yet. Follow-
ing the terminology given in [13] and also used in [9], K(y) is referred to as
componentwise (resp. mixed) condition number when ‖·‖G is componentwise
(resp. normwise). In Section 3, we consider different norms for the solution
space but the norm on the data space is always componentwise.

3. Componentwise and mixed condition numbers for a
linear functional of an LLSP solution.

3.1. Least squares conditioning. We consider the linear least squares
problem minx∈Rn ‖Ax − b‖2, where b ∈ Rm and A ∈ Rm×n is a matrix
of full column rank n. Then the unique solution x is expressed by x =
(ATA)−1AT b = A†b, where A† denotes the pseudo-inverse of A. In the re-
mainder, the matrix I is the identity matrix and ei may denote the ith
canonical vector of Rm or Rn.
We study here the sensitivity of a linear functional of the LLSP solution to
perturbations in the data A an b, which corresponds to the function

g(A, b) = LT (ATA)−1AT b = LTA†b,

where L is an n× k matrix, with k ≤ n. In the most common case, L is the
identity matrix (conditioning of the solution) but L can also be for instance
a canonical vector of Rn if we are interested in the conditioning of one com-
ponent of x. In the sequel, we suppose that L is not numerically perturbed.
Since A has full rank n, g is continuously F-differentiable in a neighborhood
of (A, b) and we denote by J = g′(A, b) its derivative.
Let B ∈ Rm×n and c ∈ Rm. Using the chain rules of composition of deriva-
tives, we get

g′(A, b).(B, c) =

LT (ATA)−1BT (b− A(ATA)−1AT b)− LT (ATA)−1ATB(ATA)−1AT b + LTA†c

i.e

J(B, c) = g′(A, b).(B, c) = LT (ATA)−1BTr − LTA†Bx + LTA†c,

where r = b− Ax is the residual vector.
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Remark 1. If we define x(A, b) = A†b, the case where g(A, b) = h(x(A, b)),
with h being a differentiable nonlinear function mapping Rn to Rk is also
covered because we have

g′(A, b).(B, c) = h′(A†b).(x′(A, b).(B, c)),

and LT would correspond to the Jacobian matrix h′(A†b).

We can find in [2] closed formulas, bounds and statistical estimates for
the conditioning of g(A, b) when perturbations on the data are measured
normwise using the weighted norm

(
α2‖A‖2

F or 2 + β2 ‖b‖2
2

) 1
2
, α, β > 0.

Here we are interested in the case where perturbations of A and b are mea-
sured componentwise.

3.2. Choice of norms. We consider the following norms and scalar prod-
ucts:

• for any vector u, ‖·‖1, ‖·‖2 and ‖·‖∞ are the vector norm corresponding

to the classical definitions ‖·‖1 =
∑

i |ui|, ‖·‖2 =
(∑

i u
2
i

) 1
2 and ‖·‖∞ =

maxi |ui|.
• on the solution space Rk, we use the scalar product < x, y >= xTy,

where the norm ‖·‖ can be ‖·‖2, ‖·‖∞ or a componentwise norm with
respect to the solution LTx, and its dual norm is denoted by ‖·‖∗.

• on the data space Rm×n × Rm, we use the scalar product

< (A, b), (B, c) >= trace(ATB) + bT c,

and the componentwise relative norm (as given e.g in [21, p. 122]):
‖(∆A, ∆b)‖c = min {ω, |∆A| ≤ ω|A|, |∆b| ≤ ω|b|} where absolute val-
ues and inequalities between matrices or vectors are understood to
hold componentwise.

3.3. Determination of the adjoint operator. The following proposition
gives us the expression of the adjoint operator of J .
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Proposition 1. The adjoint of J, Fréchet derivative of a linear functional
of the full rank least squares solution,

J : Rm×n × Rm −→ Rk

(B, c) 7−→ LT (ATA)−1BTr − LTA†Bx + LTA†c
= J1B + J2c

(7)

is
J∗ : Rk −→ Rm×n × Rm

u 7−→ (ruTLT (ATA)−1 − A†TLuxT , A†TLu)
. (8)

Proof : Using (7), we obtain for the first part of the adjoint of the derivative
J,
∀u ∈ Rk, we have,

< u, J1B > = uT (LT (ATA)−1BTr − LTA†Bx)

= trace(LT (ATA)−1BTruT )− trace(LTA†BxuT )

= trace(ruTLT (ATA)−1BT )− trace(xuTLTA†B)

= trace((ruTLT (ATA)−1)TB)− trace(xuTLTA†B)

= trace(((ruT (ATA)−1)T − xuTLTA†)B)

= < ruTLT (ATA)−1 − A†TLuxT , B >

= < J1
∗u,B > .

For the second part of the adjoint of the derivative J, we have

∀u ∈ Rk < u, J2c > = uTLTA†c
= < A†TLu, c >

= < J2
∗u, c > .

As already mentioned in Section 2.1, the advantage of working with the ad-
joint J∗ here is that the operator norm computation, involved in the condition
number definition, implies a maximization over a vector space of dimension
k, instead of a maximization over a vector space of dimension mn + m for J .
Indeed, using Equation (6), the condition number of LTx is given by

K(L,A, b) = max
‖(∆A,∆b)‖c=1

‖J(∆A, ∆b)‖ = max
‖u‖∗=1

‖J∗(u)‖c∗.
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3.4. Expression of the condition number. The following theorem pro-
vides us with an explicit formula for K(L,A, b) thanks to the use of J∗.
In the remainder, vec is the operator that stacks the columns of a matrix
into a long vector, ⊗ denotes the Kronecker product of two matrices [15],
and for any m-by-n matrix Y = (yij), DY denotes the diagonal matrix
diag(vec(Y )) = diag(y11, . . . , ym1, . . . , y1n, . . . , ymn).

Theorem 3. The condition number of LTx, linear functional of the full rank
least squares solution, is expressed by

K(L,A, b) = ‖ [V DA,WDb]
T‖∗,1, where

V = (LT (ATA)−1)⊗ rT − xT ⊗ (LTA†), W = LTA†,

and ‖·‖∗,1 is the matrix norm subordinate to the vector norms ‖·‖∗ and ‖·‖1
defined in Section 3.2.

Proof : If (∆aij) and (∆bi) are the entries of ∆A and ∆b then, using Equa-
tion (5), we have

‖(∆A, ∆b)‖c∗ =
∑
i,j

|∆aij||aij|+
∑

i

|∆bi||bi|.

Then, using Proposition 1, we get

‖J∗(u)‖c∗ =
n∑

j=1

m∑
i=1

|aij||(ruTLT (ATA)−1 − A†TLuxT )ij|+
m∑

i=1

|bi||(A†TLu)i|

=
n∑

j=1

m∑

i=1

|aij||(riej
T (ATA)−1 − xjei

TA†T )Lu|+
m∑

i=1

|bi||ei
TA†TLu|

=
n∑

j=1

m∑
i=1

|vT
ijaiju|+

m∑
i=1

|wT
i biu|,

where vij =
(
riL

T (ATA)−1ej − xjL
TA†ei

)
=

(
LT (ATA)−1ejr

T − xjL
TA†) ei

and wi = LTA†ei.
Note that, in the column vectors vij and wi, the vectors ej and ei are canonical
vectors from different spaces (respectively Rn and Rm).
The quantities vT

ijaiju and wT
i biu are scalars and ‖J∗(u)‖c∗ can be interpreted
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as the 1-norm of a vector as

‖J∗(u)‖c∗ =
∥∥∥(v11a11, . . . , vm1am1, . . . , v1na1n, . . . , vmnamn, w1b1, . . . , wmbm)T u

∥∥∥
1

=
∥∥∥[V DA,WDb]

T u
∥∥∥

1
,

where V is the k-by-mn matrix whose columns are the vij ordered in j first
and W is the k-by-m matrix whose columns are the wi.
V can be expressed as

V =
(
LT (ATA)−1e1r

T − x1L
TA†, . . . , LT (ATA)−1enr

T − xnL
TA†)

=
(
(LT (ATA)−1)⊗ rT − xT ⊗ (LTA†)

)
,

and we also have W =
(
LTA†e1, . . . , L

TA†em

)
= LTA†.

Finally we get

‖J∗(u)‖c∗ =
∥∥∥[V DA,WDb]

T u
∥∥∥

1
,

and

K(L,A, b) = max
‖u‖∗=1

∥∥∥ [V DA,WDb]
T u

∥∥∥
1

= ‖ [V DA,WDb]
T‖∗,1.

Depending on the norm chosen for the solution space Rk, we can have
different expressions for K(L,A, b). In the following section, we apply The-
orem 3 to obtain expressions of K(L,A, b) for some commonly used norms.
Using the terminology given in Section 2.2, K(L,A, b) will be referred to as
mixed (resp. componentwise) condition number if the perturbations of the
solution are measured normwise (resp. componentwise).

3.5. Condition number expressions for some norms on the solution
space.

3.5.1. Use of the infinity norm on the solution space. If ‖·‖ = ‖·‖∞, then
‖·‖∗ = ‖·‖1 and we have

K∞(L,A, b) =
∥∥∥[V DA,WDb]

T
∥∥∥

1
= ‖[V DA,WDb]‖∞ .
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Then, with the notations used in the proof of Theorem 3, we get

K∞(L,A, b) = ‖(v11a11, . . . , vm1am1, . . . , v1na1n, . . . , vmnamn, w1b1, . . . , wmbm)‖∞
= ‖|v11a11|+ · · ·+ |vm1am1|+ · · ·+ |v1na1n|+ · · ·+

+|vmnamn|+ |w1b1|+ · · ·+ |wmbm|‖∞
= ‖|V |vec(|A|) + |W ||b|‖∞ ,

and thus

K∞(L,A, b) =
∥∥∣∣(LT (ATA)−1)⊗ rT − xT ⊗ (LTA†)

∣∣ vec(|A|) + |LTA†||b|
∥∥
∞ .
(9)

Remark 2. For small problems, Matlab has a routine kron that enables us
to compute K∞(L,A, b) using the syntax:
Kinf=
norm(abs(kron(C,r’)-kron(x’,L’*Ap))*vec(abs(A))+abs(L’*pinv(A))*abs(b),inf),
with vec=inline(’A(:)’,’A’).
We also observe that K∞(L,A, b) can also be written

K∞(L,A, b) =

∥∥∥∥∥
n∑

j=1

[|v1j|, . . . , |vmj|]|A(:, j)|+ |LTA†||b|
∥∥∥∥∥
∞

,

and since vij = LT (ATA)−1(ejr
T − xjA

T )ei, we get

[|v1j|, . . . , |vmj|] = |LT (ATA)−1[ejr
T − xjA

T ]|.
Then we have

K∞(L,A, b) =

∥∥∥∥∥
n∑

j=1

|LT (ATA)−1(ejr
T − xjA

T )||A(:, j)|+ |LTA†||b|
∥∥∥∥∥
∞

. (10)

Equation (10) has the advantage to avoid forming the Kronecker products
and then it requires less memory. Moreover, if the LLSP is solved using a
direct method, the R factor of the QR decomposition of A (or equivalently in
exact arithmetic, the Cholesky factor of ATA) might be available and we have
(ATA)−1 = R−1R−T . Then the computation of (ATA)−1(ejr

T −xjA
T ) can be

performed by solving successively 2 triangular systems with multiple right-
hand sides and Equation (10) can be easily implemented using LAPACK [1]
and Level 3 BLAS [11] routines.
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When L is the identity matrix, the expression given in Equation (9) is the
same as the one established in [9] (using the norm ‖·‖ = ‖·‖∞

‖x‖∞ on the solution
space). Note that bounds of K∞(I, A, b) are also given in [7, p. 34] and
in [21, p. 384].

When m = n (case of a linear system Ax = b), we obtain, using the for-
mulas |A⊗B| = |A| ⊗ |B| and vec(AY B) = (BT ⊗ A)vec(Y ):

K∞(L,A, b) =
∥∥|xT ⊗ (LTA−1)|vec(|A|+ |LTA−1||b|

∥∥
∞

=
∥∥vec(|LTA−1||A||x|) + |LTA−1||b|

∥∥
∞ .

But |LTA−1||A||x| is a vector and is then equal to its vec operator and then
we obtain

K∞(L,A, b) =
∥∥|LTA−1|(|A||x|+ |b|)

∥∥
∞ , (11)

which generalizes the condition number given in [21, p. 123] to the case where
L is not the identity (using the norm ‖·‖ = ‖·‖∞

‖x‖∞ on the solution space).

3.5.2. Use of the 2-norm on the solution space. If ‖·‖ = ‖·‖2 then ‖·‖∗ = ‖·‖2
and, using Theorem 3, the mixed condition number of LTx is

K2(L,A, b) = ‖[V DA,WDb]
T‖2,1,

where ‖·‖2,1 is the matrix norm subordinate to the vector norms ‖·‖2 and
‖·‖1.
As mentioned in [14, p. 56], we have for any matrix B,

‖B‖2,1 = max
‖u‖2=1

‖Bu‖1 = ‖Bu‖1

for some u ∈ Rk having unit 2-norm. Since ‖u‖1 ≤
√

k ‖u‖2, we get

‖B‖2,1 = ‖Bu‖1 ≤ ‖u‖1 ‖B‖1 ≤
√

k ‖B‖1 .

Applying this inequality to B = [V DA,WDb]
T , we obtain,

K2(L,A, b) ≤
√

k
∥∥∥[V DA,WDb]

T
∥∥∥

1
,

and then we have the following upper bound for the mixed condition number
of LTx

K2(L,A, b) ≤
√

k K∞(L,A, b), (12)

and this upper bound can be computed using Equations (9) or (10).
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3.5.3. Use of a componentwise norm on the solution space. We consider here
a componentwise norm on the solution space defined by

‖u‖ = min
{
ω, |ui| ≤ ω|(LTx)i|, i = 1, . . . , k

}
.

Then, following Equation (5), the dual norm is expressed by

‖u‖∗ =
∥∥(|(LTx)1||u1|, . . . , |(LTx)k||uk|)

∥∥
1 .

With the convention mentioned in Section 2.2, we consider perturbations u
in the solution space such that ui = 0 whenever (LTx)i = 0. Let DLT x =
diag(α1, . . . , αk) be the k-by-k diagonal matrix such that αi = (LTx)i if
(LTx)i 6= 0 and αi = 1 otherwise. Then if we apply Theorem 3 and if we
perform the change of variable u′ = DLT xu, the componentwise condition
number of LTx is

Kc(L,A, b) = max
‖u′‖1=1

∥∥∥[V DA,WDb]
T D−1

LT xu
′
∥∥∥

1

=
∥∥D−1

LT x [V DA,WDb]
∥∥
∞ ,

that can be computed using the following variant of (10):

Kc(L,A, b) =

∥∥∥∥∥
n∑

j=1

|D−1
LT xL

T (ATA)−1(ejr
T − xjA

T )||A(:, j)|+ |D−1
LT xL

TA†||b|
∥∥∥∥∥
∞

.

Using a demonstration similar to that of (9), this expression simplifies to

Kc(L,A, b) =
∥∥|D−1

LT x|(|V |vec(|A|) + |W ||b|)
∥∥
∞ , (13)

and when m = n (case of a linear system Ax = b), we obtain

Kc(L,A, b) =
∥∥|D−1

LT x||LTA−1|(|A||x|+ |b|)
∥∥
∞ , (14)

which is the condition number given in [18] when L = I.

4. Conclusion.
We proved that working on the dual space enables us to derive condition

numbers and we applied this to the case where perturbations on data are
measured componentwise. By using this method, we obtained formulas for
the conditioning of a linear functional of the linear least squares solution for
which we provided an exact expression when the perturbations of the solution
are measured using the infinity or a componentwise norm and an upper bound
when using the Euclidean norm. We also gave the corresponding expressions
for the special case of consistent linear systems.
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