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Abstract: We study the Dirichlet problem − div(|∇u|p(x)−2∇u) = 0 in Ω, with
u = f on ∂Ω and p(x) = ∞ in D, a subdomain of the reference domain Ω. The main
issue is to give a proper sense to what a solution is. To this end, we consider the limit
as n → ∞ of the solutions un to the corresponding problem when pn(x) = p(x)∧n,
in particular, with p = n in D. Under suitable assumptions on the data, we find
that such a limit exists and that it can be characterized as the unique solution of a
variational minimization problem. Moreover, we examine this limit in the viscosity
sense and find an equation it satisfies.
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1. Introduction

The goal of this paper is to study the elliptic problem
{

−∆p(x)u(x) = 0, x ∈ Ω ⊂ R
N ,

u(x) = f(x), x ∈ ∂Ω,
(1.1)

where ∆p(x)u(x) := div
(

|∇u(x)|p(x)−2∇u(x)
)

is the p(x)-Laplacian operator
and the variable exponent p(x) verifies

p(x) = +∞, x ∈ D, (1.2)

for some subdomain D ⊂ Ω. We assume that Ω and D are convex domains
with smooth boundaries, at least of class C1. On the complementary domain
Ω\D we assume that p(x) is a continuously differentiable bounded function.

On the variable exponent, apart from (1.2), we also require that

p− := inf
x∈Ω

p(x) > N, (1.3)
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so that we will always be dealing with continuous solutions for (1.1); to fix
notation, we define

p+ := sup
x∈Ω\D

p(x).

The boundary data f is taken to be Lipschitz continuous; this hypothesis
simplifies the analysis but it could be relaxed.

Our strategy to solve (1.1) is to replace p(x) by a sequence of bounded
functions pn(x) such that pn(x) is increasing and converging to p(x). For
definiteness, we consider, for n > N ,

pn(x) := min{p(x), n}.

We will use the notation (1.1)n to refer to problem (1.1) for the variable
exponents pn(x).

Since p(x) is bounded in Ω\D, we have, for large n, specifically for n > p+,

pn(x) =

{

p(x), x ∈ Ω \D,

n, x ∈ D.

Moreover, still for large n, the boundary of the set {p(x) > n} coincides with
the boundary of D and thus does not depend on n. This fact is important
when passing to the limit.

Using a variational method, we solve (1.1)n obtaining solutions un; if the
limit

lim
n→∞

un (1.4)

exists, we call it u∞. It is a natural candidate to be a solution to (1.1) with
the original variable exponent p(x). A crucial role in this process will be
played by the set

S =
{

u ∈ W 1,p−(Ω) : u|Ω\D ∈ W 1,p(x)(Ω \D),

‖∇u‖L∞(D) ≤ 1 and u|∂Ω = f
}

and by the infinity Laplacian

∆∞u :=
(

D2u∇u
)

· ∇u =
N

∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xixj
.

Our main results are condensed in the following theorem.
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Theorem. There exists a unique solution un to (1.1)n. Moreover, if S 6= ∅
then the uniform limit

u∞ := lim
n→∞

un

exists and is characterized as the unique solution of the variational problem

min
u∈S

∫

Ω\D

|∇u|p(x)

p(x)
dx.

In addition, u∞ is a viscosity solution of






















−∆p(x)u(x) = 0, x ∈ Ω \D,

−∆∞u(x) = 0, x ∈ D,

sgn(|∇u|(x)− 1) sgn
(

∂u
∂ν

(x)
)

= 0, x ∈ ∂D ∩ Ω,

u(x) = f(x), x ∈ ∂Ω,

where ν is the exterior unit normal vector to ∂D in Ω.

Finally, if S = ∅ then

lim
n→∞

(
∫

D

|∇un|n

n
dx

)1/n

= λ > 1,

where λ is the best Lipschitz constant in D of any possible extension to D of

f |∂Ω∩D.

We remark that the value of λ that appears in the last statement of the
theorem is related to the problem of finding the best absolutely minimizing
Lispchitz extension (the so-called AMLE) of f |∂Ω∩D to D. This problem has
been extensively studied in the literature, see [2], [11], the survey [3], and
the recent approach using tug-of-war games, [6], [13], [14]. In the rest of the
paper we will use the notation “v is the AMLE of f in D” to denote this
best absolutely minimizing Lipschitz extension problem (v is the solution)
and refer to [3] for further details.

Partial differential equations involving variable exponents became popular
a few years ago in relation to applications to elasticity and electrorheologi-
cal fluids. Meanwhile, the underlying functional analytical tools have been
extensively developed and new applications, e.g. to image processing, have
kept the subject as the focus of an intensive research activity. For general
references on the p(x)-Laplacian we refer to [8], that includes a thorough
bibliography, and [12], a seminal paper where many of the basic properties
of variable exponent spaces were established.
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In the literature, the variable exponent p(x) is always assumed to be
bounded, a necessary condition to define a proper norm in the correspond-
ing Lebesgue spaces. To the best of our knowledge, this paper is the first
attempt at analyzing a problem where the exponent p(·) becomes infinity
in some part of the domain. For constant exponents, limits as p → ∞ in
p−Laplacian type problems have been widely studied, see for example [5],
and are related to optimal transport problems (cf. [1]).

Organization of the paper. The rest of the paper is organized as
follows: in Section 2 we show existence and uniqueness of solutions with
p(x) = pn(x) = p ∧ n using a variational argument; moreover we find the
equation that they verify in the viscosity sense and prove some useful esti-
mates independent of n; in Section 3 we pass to the limit in the variational
formulation of the problem and we deal with the limit in the viscosity sense.
Finally, in Section 4 we present a detailed analysis of the one-dimensional
case.

2. Weak and viscosity approximate solutions

To start with, let us establish the existence and uniqueness of the approx-
imations un in the weak sense.

Lemma 2.1. There exists a unique weak solution un to (1.1)n, which is the

unique minimizer of the functional

Fn(u) =

∫

Ω

|∇u|pn(x)

pn(x)
dx =

∫

D

|∇u|n

n
dx+

∫

Ω\D

|∇u|p(x)

p(x)
dx (2.1)

in

Sn =
{

u ∈ W 1,pn(·)(Ω) : u|∂Ω = f
}

. (2.2)

Proof : Although the exponent pn(·) might be discontinuous, functions in
the variable exponent Sobolev space W 1,pn(·)(Ω) are continuous thanks to
assumption (1.3). Indeed, for n sufficiently large, we have pn(·) ≥ (pn)− ≥
p− > N and the continuous embedding in

W 1,pn(·)(Ω) →֒W 1,p−(Ω) ⊂ C
(

Ω
)

(2.3)

follows from [12, Theorem 2.8 and (3.2)]. That the boundedness away from
the dimension is not superfluous when the exponent is not continuous is
shown by a counter-example in [9, Example 3.3].
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We can then take the boundary condition u|∂Ω = f in the classical sense
(recall that f is assumed to be Lipschitz) and the results of [10] apply since
the jump condition (cf. [10, (4.1)-(4.2)]) is trivially satisfied by the variable
exponent because pn(·) ≥ N . This is a sufficient condition for a pn(·)-Poincaré

inequality to hold in W
1,pn(·)
0 (Ω) which, in turn, is instrumental in obtaining

the coercivity of the functional. The lower semicontinuity is standard as is
the strict convexity, that also gives the uniqueness.

It is also standard that the minimizer of Fn in Sn is the unique weak solution
of (1.1)n, i.e., un = f on ∂Ω and it satisfies the weak form of the equation,
namely,

∫

Ω

|∇un|
pn(x)−2∇un · ∇ϕdx = 0, ∀ ϕ ∈ C∞

0 (Ω). (2.4)

Lemma 2.2. Problem (1.1)n can be rewritten as


























−∆p(x)un(x) = 0, x ∈ Ω \D,

−∆nun(x) = 0, x ∈ D,

|∇un(x)|
n−2∂un

∂ν
(x) = |∇un(x)|

p(x)−2∂un

∂ν
(x), x ∈ ∂D ∩ Ω,

un(x) = f(x), x ∈ ∂Ω,

(2.5)

where ν is the exterior unit normal to ∂D in Ω.

Proof : Just notice that the weak form of this problem is exactly the same as
the one that holds for (1.1)n. This follows since after multiplying by a test
function and integrating by parts one arrives at (2.4) for both problems.

Next, we investigate the problem satisfied by un from the point of view of
viscosity solutions.

Let us recall the definition of viscosity solution (see [7] and [4]) for a prob-
lem like (2.5), which involves a transmission condition across the boundary
∂D ∩ Ω. Assume we are given a family of continuous functions

Fi : Ω × R
N × S

N×N → R.

The associated equations

Fi(x,∇u,D
2u) = 0

are called (degenerate) elliptic if

Fi(x, ξ,X) ≤ Fi(x, ξ, Y ) whenever X ≥ Y.
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Definition 2.3. Consider the problem

F1(x,∇u,D2u) = 0, in Ω \D,

F2(x,∇u,D
2u) = 0, in D,

(2.6)

with a transmission condition

B(x, u,∇u) = 0, on ∂D ∩ Ω, (2.7)

and a boundary condition

u = f, on ∂Ω. (2.8)

A lower semi-continuous function u is a viscosity supersolution of (2.6)–(2.8)
if u ≥ f on ∂Ω and for every φ ∈ C2(Ω) such that u−φ has a strict minimum

at the point x0 ∈ Ω, with u(x0) = φ(x0), we have

F1(x0,∇φ(x0), D
2φ(x0)) ≥ 0 if x0 ∈ Ω \D,

F2(x0,∇φ(x0), D
2φ(x0)) ≥ 0 if x0 ∈ D,

max











F1

(

x0,∇φ(x0), D
2φ(x0)

)

F2(x0,∇φ(x0), D
2φ(x0))

B(x0, φ(x0),∇φ(x0))











≥ 0 if x0 ∈ ∂D ∩ Ω.

An upper semi-continuous function u is a viscosity subsolution of (2.6)–(2.8)
if u ≤ f on ∂Ω and for every ψ ∈ C2(Ω) such that u−ψ has a strict maximum

at the point x0 ∈ Ω, with u(x0) = ψ(x0), we have

F1(x0,∇ψ(x0), D
2ψ(x0)) ≤ 0 if x0 ∈ Ω \D,

F2(x0,∇ψ(x0), D
2ψ(x0)) ≤ 0 if x0 ∈ D,

min











F1

(

x0,∇ψ(x0), D
2ψ(x0)

)

F2(x0,∇ψ(x0), D
2ψ(x0))

B(x0, ψ(x0),∇ψ(x0))











≤ 0 if x0 ∈ ∂D ∩ Ω.

Finally, u is a viscosity solution if it is both a viscosity supersolution and a

viscosity subsolution.

In the sequel, we will use the notation as in the definition: φ will always
stand for a test function touching the graph of u from below and ψ for a test
function touching the graph of u from above.
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Proposition 2.4. Let un be a continuous weak solution of (1.1)n. Then un

is a viscosity solution of (2.5) in the sense of Definition 2.3.

Proof : To simplify, we omit in the proof the subscript n. Let x0 ∈ Ω \ D
and a let φ be a test function such that u(x0) = φ(x0) and u− φ has a strict
minimum at x0. We want to show that

−∆p(x0)φ(x0) = −|∇φ(x0)|
p(x0)−2∆φ(x0)

−(p(x0) − 2)|∇φ(x0)|
p(x0)−4∆∞φ(x0)

−|∇φ(x0)|
p(x0)−2 ln(|∇φ|)(x0) 〈∇φ(x0),∇p(x0)〉

≥ 0.

Assume, ad contrarium, that this is not the case; then there exists a radius
r > 0 such that B(x0, r) ⊂ Ω \D and

−∆p(x)φ(x) = −|∇φ(x)|p(x)−2∆φ(x) − (p(x) − 2)|∇φ(x)|p(x)−4∆∞φ(x)

−|∇φ(x)|p(x)−2 ln(|∇φ|)(x)〈∇φ(x),∇p(x)〉

< 0,

for every x ∈ B(x0, r). Set m = inf |x−x0|=r(u− φ)(x) and let Φ(x) = φ(x) +
m/2. This function Φ verifies Φ(x0) > u(x0) and

−∆p(x)Φ = −div(|∇Φ|p(x)−2∇Φ) < 0 in B(x0, r). (2.9)

Multiplying (2.9) by (Φ − u)+, which vanishes on the boundary of B(x0, r),
we get

∫

B(x0,r)∩{Φ>u}

|∇Φ|p(x)−2∇Φ · ∇(Φ − u) dx < 0.

On the other hand, taking (Φ − u)+, extended by zero outside B(x0, r), as
test function in the weak formulation of (1.1)n, we obtain

∫

B(x0,r)∩{Φ>u}

|∇u|p(x)−2∇u · ∇(Φ − u) dx = 0,

since pn(x) = p(x) in Ω \ D. Upon subtraction and using a well know
inequality, we conclude

0 >

∫

B(x0,r)∩{Φ>u}

(

|∇Φ|p(x)−2∇Φ − |∇u|p(x)−2∇u
)

· ∇(Φ − u) dx

≥ c

∫

B(x0,r)∩{Φ>u}

|∇Φ −∇u|p(x) dx,
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a contradiction. Here c is a constant that depends on N , p− and sup
x∈B(x0,r)

p(x).

If x0 ∈ D the proof is entirely analogous, albeit simpler due to the absence
of the logarithmic term, and we obtain

−∆nφ(x0) = −|∇φ(x0)|
n−2∆φ(x0) − (n− 2)|∇φ(x0)|

n−4∆∞φ(x0) ≥ 0.

The constant c in this case depends on N and n.
If x0 ∈ ∂D ∩ Ω we want to prove that

max











−∆p(x0)φ(x0)

−∆nφ(x0)

|∇φ(x0)|n−2 ∂φ
∂ν (x0) − |∇φ(x0)|p(x0)−2 ∂φ

∂ν (x0)











≥ 0.

If this is not the case, there exists a radius r > 0 such that

−∆p(x)φ(x) < 0 and − ∆nφ(x) < 0,

for every x ∈ B(x0, r). Set m = inf |x−x0|=r(u− φ)(x) and let Φ(x) = φ(x) +
m/2. This function Φ verifies Φ(x0) > u(x0),

−∆p(x)Φ < 0 in B(x0, r) ∩ (Ω \D) (2.10)

and

−∆nΦ < 0 in B(x0, r) ∩D. (2.11)

Moreover, we can assume (taking r smaller if necessary) that

|∇Φ(x)|n−2∂Φ

∂ν
(x) − |∇Φ(x)|p(x)−2∂Φ

∂ν
(x) < 0 in B(x0, r) ∩ ∂D. (2.12)

Multiplying both (2.10) and (2.11) by (Φ − u)+, integrating by parts and
adding, we obtain
∫

B(x0,r)∩Ω\D

|∇Φ|p(x)−2∇Φ·∇(Φ−u)+ dx+

∫

B(x0,r)∩D

|∇Φ|n−2∇Φ·∇(Φ−u)+ dx

<

∫

B(x0,r)∩∂D

(

|∇Φ|n−2∂Φ

∂ν
− |∇Φ|p(x)−2∂Φ

∂ν

)

(Φ − u)+ dS,

taking also into account that the test function vanishes on the boundary of
B(x0, r). Using (2.12), we finally get

∫

B(x0,r)∩(Ω\D)∩{Φ>u}

|∇Φ|p(x)−2∇Φ · ∇(Φ − u) dx
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+

∫

B(x0,r)∩D∩{Φ>u}

|∇Φ|n−2∇Φ · ∇(Φ − u) dx < 0.

On the other hand, taking (Φ − u)+, extended by zero outside B(x0, r), as
test function in the weak formulation of (1.1)n, we reach a contradiction as
in the previous cases. This proves that u is a viscosity supersolution.

The proof that u is a viscosity subsolution runs as above and we omit the
details.

We next obtain uniform estimates (independent of n) for the sequence of
approximations (un)n.

Proposition 2.5. Assume the set

S =
{

u ∈ W 1,p−(Ω) : u|Ω\D ∈ W 1,p(x)(Ω \D),

‖∇u‖L∞(D) ≤ 1 and u|∂Ω = f
}

is nonempty. Then un, the minimizer of Fn in Sn, satisfies

Fn(un) =

∫

Ω

|∇un|
pn(x)

pn(x)
dx ≤

∫

D

|∇v|n

n
dx+

∫

Ω\D

|∇v|p(x)

p(x)
dx,

for every v ∈ S. Hence, the sequence (Fn(un))n is uniformly bounded and the

sequence (un)n is uniformly bounded in W 1,p−(Ω) and equicontinuous.

Proof : Recalling (2.2), the definition of Sn, observe that S ⊂ Sn, for every
n. Since un is a minimizer, we have

Fn(un) ≤ Fn(v), ∀ v ∈ S.

Hence, picking an element v ∈ S 6= ∅,

Fn(un) =

∫

Ω

|∇un|pn(x)

pn(x)
dx ≤

∫

Ω

|∇v|pn(x)

pn(x)
dx

=

∫

D

|∇v|n

n
dx+

∫

Ω\D

|∇v|p(x)

p(x)
dx

≤ |D| +

∫

Ω\D

|∇v|p(x)

p(x)
dx ≡ C∗.
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In order to estimate the Sobolev norm, we first use Poincaré inequality and
the boundary data, to obtain

‖un‖W 1,p
−(Ω) ≤ ‖un − f‖

W
1,p

−

0 (Ω)
+ ‖f‖W 1,p

−(Ω)

≤ C ‖∇(un − f)‖Lp
−(Ω) + ‖f‖W 1,∞(Ω)

≤ C ‖∇un‖Lp
−(Ω) + (C + 1)‖f‖W 1,∞(Ω).

We proceed, using Hölder inequality and elementary computations, to get

‖∇un‖Lp
−(Ω) =

(
∫

Ω

|∇un|
p− dx

)1/p−

≤

(
∫

D

|∇un|
p− dx

)1/p−

+

(
∫

Ω\D

|∇un|
p− dx

)1/p−

≤ |D|
1

p
−

− 1
n

(
∫

D

|∇un|
n

)1/n

+ |Ω| +

(
∫

Ω\D

|∇un|
p(x) dx

)1/p−

.

Since we have the bounds
(

∫

D

|∇un|
n

)1/n

= n1/n

(
∫

D

|∇un|
n

n
dx

)1/n

≤ n1/n (Fn(un))
1/n ≤ 2C∗

and
∫

Ω\D

|∇un|
p(x) dx ≤ p+

∫

Ω\D

|∇un|p(x)

p(x)
dx ≤ p+Fn(un) ≤ p+C∗,

we conclude that the sequence (un)n is uniformly bounded in W 1,p−(Ω) and,
recalling the embedding in (2.3), that it is equicontinuous.

3. Variational and viscosity limit

We first analyze the case S = ∅.

Theorem 3.1. Assume S = ∅, i.e., that the Lipschitz constant in D of the

AMLE of f |∂Ω∩D to D, call it λ, is greater than one. Then

(Fn(un))
1/n → λ.

Hence, Fn(un) → ∞ and the natural energy associated to un is unbounded.

Remark 3.2. Note that if ∂Ω ∩ D = ∅ then λ = 0, since any constant can

play the role of a best Lipschitz extension. However, when ∂Ω ∩ D 6= ∅ the

condition is meaningful and it can happen that λ > 1. As a trivial example
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consider a function f with f |∂Ω∩D having a Lipschitz constant greater than

one.

Proof : Let v be the AMLE of f in D. Since un is a minimizer, we have

lim sup
n→∞

(Fn(un))
1/n ≤ lim sup

n→∞

(
∫

D

|∇v|n

n
dx+

∫

Ω\D

|∇v|p(x)

p(x)
dx

)1/n

= λ > 1.

Now suppose that

lim inf
n→∞

(Fn(un))
1/n = β < λ

and consequently that

lim inf
n→∞

(
∫

D

|∇un|n

n
dx

)1/n

≤ β.

Fix m ≥ p− and take n > m. By Hölder’s inequality,
(

∫

D

|∇un|
m

)1/m

≤ |D|
1
m
− 1

n

(
∫

D

|∇un|
n

)1/n

≤ |D|
1
m
− 1

nn1/n

(
∫

D

|∇un|
n

n
dx

)1/n

.

Taking the limit in n, we conclude
(

∫

D

|∇un|
m

)1/m

≤ |D|
1
mβ,

so, for a subsequence, there exists a weak limit in W 1,m(D), that we denote
by u∞. This weak limit has to verify the inequality

(
∫

D

|∇u∞|m
)1/m

≤ |D|
1
mβ

for every m. Thus, taking the limit m → ∞, we get that u∞ ∈ W 1,∞(D)
and, moreover,

|∇u∞| ≤ β, a.e. x ∈ D.

But this is a contradiction since λ is the best possible Lipschitz constant of
any extension of f to D. We conclude that

lim inf
n→∞

(Fn(un))
1/n = λ,

and the result follows.



12 J. J. MANFREDI, J. D. ROSSI AND J.M. URBANO

We now focus on the main case S 6= ∅. Recall that solutions to (1.1)n are
minima of the functional

Fn(u) =

∫

Ω

|∇u|pn(x)

pn(x)
dx

in

Sn =
{

u ∈ W 1,pn(x) : u|∂Ω = f
}

.

The limit of these variational problems is given by minimizing

F (u) =

∫

Ω\D

|∇u|p(x)

p(x)
dx (3.1)

in

S =
{

u ∈ W 1,p−(Ω) : u|Ω\D ∈ W 1,p(x)(Ω \D),

‖∇u‖L∞(D) ≤ 1 and u|∂Ω = f
}

.

Theorem 3.3. Assume that S 6= ∅ and let un be minimizers of Fn in

Sn. Then, along subsequences, (un)n converges uniformly in Ω, weakly in

W 1,m(D), for every m ≥ p−, and weakly in W 1,p(x)(Ω \ D) to u∞, a mini-

mizer of F in S. Moreover, the limit u∞ is ∞-harmonic in D, i.e.,

−∆∞u∞ = 0 in D,

in the viscosity sense.

Proof : We use the estimates obtained in the previous section.
Since the sequence (un)n is equicontinuous and uniformly bounded, by

Arzelà-Ascoli theorem it converges (along subsequences) uniformly in Ω; the
weak convergence in the space W 1,m(D), for every m ≥ p−, was obtained
in the proof of Proposition 3.1 and the weak convergence in W 1,p(x)(Ω \ D)
follows from the estimates in Proposition 2.5.

Also as before, we get that u∞ ∈ W 1,∞(D), with |∇u∞| ≤ 1, a.e. x ∈ D,
thus concluding that u∞ ∈ S. On the other hand, also from Proposition 2.5,
we get

∫

Ω\D

|∇un|p(x)

p(x)
dx ≤ Fn(un) ≤ Fn(v) −→

∫

Ω\D

|∇v|p(x)

p(x)
dx
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and we conclude that

F (u∞) =

∫

Ω\D

|∇u∞|p(x)

p(x)
dx ≤

∫

Ω\D

|∇v|p(x)

p(x)
dx = F (v), ∀ v ∈ S

so that u∞ is a minimizer for F in S.
That a uniform limit of n-harmonic functions is ∞-harmonic is a well

known fact (cf., for example, [5] or [11]).

Remark 3.4. We stress that the minimization of the functional F in S gives

a variational meaning to being a solution of (1.1).

The next result gives the uniqueness of the limit u∞ and therefore we may
conclude that the whole sequence un converges uniformly in Ω.

Proposition 3.5. There exists a unique minimizer of F in S that verifies

−∆∞u∞ = 0 in D. (3.2)

Proof : Suppose we have two minimizers in S, u1 and u2. Then, considering

v =
u1 + u2

2
∈ S,

we obtain that they coincide in Ω \D. Using the uniqueness of solutions of
the Dirichlet problem for the ∞-Laplacian in D (note that u1 coincides with
u2 on the whole of ∂D), we conclude that u1 = u2 also in D.

Our next task is to pass to the limit in (2.5), the problem satisfied by un

in the viscosity sense, to identify the equation solved by u∞. We are under
the assumption S 6= ∅ and we recall that

un → u∞

uniformly in Ω.

Theorem 3.6. Every uniform limit of a sequence {un} of solutions of (1.1)n
is a viscosity solution of



























−∆p(x)u(x) = 0, x ∈ Ω \D,

−∆∞u(x) = 0, x ∈ D,

sgn (|∇u|(x) − 1) sgn

(

∂u

∂ν
(x)

)

= 0, x ∈ ∂D ∩ Ω,

u(x) = f(x), x ∈ ∂Ω,

(3.3)



14 J. J. MANFREDI, J. D. ROSSI AND J.M. URBANO

Proof : Since un(x) = f(x), for x ∈ ∂Ω, it is clear that u(x) = f(x), for
x ∈ ∂Ω.

Let u∞ be a uniform limit of {un} and let φ be a test function such that
u∞(x0) = φ(x0) and u∞ − φ has a strict minimum at x0 ∈ Ω. Depending on
the location of the point x0 we have different situations.

If x0 ∈ D, we encounter the standard fact the the uniform limit of n-
harmonic functions is ∞-harmonic.

If x0 ∈ Ω \ D, consider a sequence of points xn such that xn → x0 and
un − φ has a minimum at xn, with xn ∈ Ω \ D for n large. Using the fact
that un is a viscosity solution of (2.5), we obtain

−∆pn(xn)φ(xn) ≥ 0.

Now we observe that pn(x) = p(x) is a neighborhood of x0 and hence, taking
the limit as n→ ∞, we get

−∆p(x0)φ(x0) ≥ 0.

That is, u∞ is a viscosity supersolution of −∆p(x)u∞ = 0 in Ω \D.
If x0 ∈ ∂D ∩ Ω, we have to show that

max















−∆p(x0)φ(x0)

−∆∞φ(x0)

sgn(|∇φ|(x0) − 1) sgn
(

∂φ
∂ν

(x0)
)















≥ 0.

Again, since un converges to u uniformly, there exists a sequence of points
xn converging to x0 such that un − φ has a minimum at xn. We distinguish
several cases.
Case 1. There exists infinitely many n such that xn ∈ D.
Then we have, by Lemma 2.4,

−∆nφ(xn) = −|∇φ(xn)|
n−2∆φ(xn) − (n− 2)|∇φ(xn)|

n−4∆∞φ(xn) ≥ 0.

If ∇φ(x0) = 0, we get −∆∞φ(x0) = 0. If this is not the case, we have that
∇φ(xn) 6= 0, for large n, and then

−∆∞φ(xn) ≥
1

n− 2
|∇φ(xn)|

2∆φ(xn) → 0, as n→ ∞.

We conclude that

−∆∞φ(x0) ≥ 0.

Case 2. There exists infinitely many n such that xn ∈ Ω \D.
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Then we have, by Lemma 2.4,

−∆pn(xn)φ(xn) ≥ 0.

Proceeding as before, we get

−∆p(x0)φ(x0) ≥ 0.

Case 3. There exists infinitely many n such that xn ∈ ∂D ∩ Ω.
In this case, we have

|∇φ(xn)|
n−2∂φ

∂ν
(xn) − |∇φ(xn)|

p(xn)−2∂φ

∂ν
(xn) ≥ 0.

Hence, we get
∂φ

∂ν
(xn) ≤ |∇φ(xn)|

n−p(xn)∂φ

∂ν
(xn).

Taking n→ ∞, we deduce that

|∇φ|(x0) > 1 ⇒
∂φ

∂ν
(x0) ≥ 0,

and

|∇φ|(x0) < 1 ⇒
∂φ

∂ν
(x0) ≤ 0.

That is

sgn(|∇φ|(x0) − 1) sgn

(

∂φ

∂ν
(x0)

)

≥ 0.

This concludes the proof that u∞ is a viscosity supersolution.
The proof that u is a viscosity subsolution runs as above and we omit the

details.

4. The one-dimensional case

In this section, we analyze with some detail the one-dimensional case, which
is easier since the equation reduces to an ODE.

Let Ω = (0, 1) and assume p(x) ≡ ∞ for x ∈ (0, ξ). Then the problem at
level n reads















(|u′n|
pn(x)−2u′n)

′(x) = 0,

un(0) = f(0),

un(1) = f(1).

To simplify, we assume that f(0) = 0 and f(1) > 0. Then, integrating the
equation, we get

|u′n|
pn(x)−2u′n(x) = C1.
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Assuming that u′n ≥ 0, we get

u′n(x) = (C1)
1

pn(x)−1 .

Thus

un(x) =

∫ x

0

(C1)
1

pn(s)−1 ds

and the constant C1 (that must be positive and depends on n) verifies

f(1) =

∫ 1

0

(C1)
1

pn(s)−1 ds.

Since f(1) is finite, we conclude that C1 must be bounded; if not,

lim
n→∞

un(x) = u∞(x) = +∞

in the whole interval (ξ, 1] and this contradicts un(1) = f(1). Therefore, we
can assume (taking a subsequence if necessary) that

lim
n→∞

C1(n) = C∞.

Case 1. When C∞ > 0, we conclude that the limit of un is given by

u∞(x) = lim
n→∞

un(x) =











x x ∈ [0, ξ],

ξ +

∫ x

ξ

(C∞)
1

p(s)−1 ds x ∈ [ξ, 1].

As un(1) = f(1), we realize that the constant C∞ is determined by

ξ +

∫ 1

ξ

(C∞)
1

p(s)−1 ds = f(1).

This case, C∞ > 0, actually happens when f(1) > ξ. Since C∞ is uniquely
determined, we obtain the convergence of the whole sequence un.

Note that in this case we can verify that u∞ is a minimizer of the functional
F given by (3.1). Indeed, since |u′∞|(x) ≤ 1, for x ∈ [0, ξ], we have that
u∞ ∈ S and since u∞ is a solution of

(|u′|p(x)−2u′)′(x) = 0, u(ξ) = ξ, u(1) = f(1),

we have that it minimizes the functional F , which in this case is given by

F (u∞) =

∫ 1

ξ

(C∞)
p(s)

p(s)−1

p(s)
ds,

among functions that verify u(ξ) = ξ and u(1) = f(1).
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Now, for any function w ∈ S, we have |w′|(x) ≤ 1, for x ∈ [0, ξ], and we
get w(ξ) ≤ ξ. Let z be the solution of

(|z′|p(x)−2z′)′(x) = 0, z(ξ) = w(ξ) ≤ ξ, z(1) = f(1).

Then we have

F (w) ≥ F (z) ≥ F (u∞).

To see that the last inequality is true just use the monotonicity of the function

C 7→

∫ 1

ξ

(C)
p(s)

p(s)−1

p(s)
ds

with respect to C.

Case 2. When C∞ = 0, we have that

lim
n→∞

un(x) =

{

Kx x ∈ [0, ξ],

Kξ x ∈ [ξ, 1].

Here K ≤ 1 is given by

K = lim
n→∞

(C1(n))1/n

(recall that we are taking pn(x) = p(x) ∧ n).
As un(1) = f(1) we get that the constant K is given by

Kξ = f(1).

This case actually happens when f(1) ≤ ξ. Since K is uniquely determined,
we obtain the convergence of the whole sequence un.

Note that in this case the limit u∞ is not differentiable, but it is Lipschitz.
Also note that it is easy to verify that u∞ is a minimizer of the functional F
given by (3.1). Indeed, F (u∞) = 0 and F (w) ≥ 0, for every w ∈ S.
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