
Pré-Publicações do Departamento de Matemática
Universidade de Coimbra
Preprint Number 08–47

PSWARM: A SOLVER FOR LINEARLY CONSTRAINED
GLOBAL DERIVATIVE-FREE OPTIMIZATION

A. I. F. VAZ AND L. N. VICENTE

Abstract: PSwarm was developed originally for the global optimization of func-
tions without derivatives and where the variables are within upper and lower bounds.
The underlying algorithm used is a pattern search method, more specifically a co-
ordinate search method, which guarantees convergence to stationary points from
arbitrary starting points. In the (optional) search step of coordinate search, the
algorithm incorporated a particle swarm scheme for dissemination and thus it can
globally explore the possible nonconvexity of the objective function. Our extensive
numerical experiments showed that the resulting algorithm is highly competitive
with other global optimization methods also based on function values.

PSwarm is extended is this paper to handle general linear constraints. The poll
step incorporates now positive generators for the tangent cone of the approximated
active constraints, including a provision for the degenerate case. The search step
has also been adapted accordingly. In particular, the initial population for parti-
cle swarm used in the search step is computed by first inscribing an ellipsoid of
maximum volume to the feasible set. We have again compared PSwarm to other
solvers (including some designed for global optimization) and the results confirm its
competitiveness in terms of efficiency and robustness.

Keywords: Direct search, linear constraints, bound constraints, pattern search,
coordinate search, particle swarm, derivative-free optimization, global optimization.
AMS Subject Classification (2000): 90C26, 90C30, 90C56.

1. Introduction
A significant number of applied optimization problems involve functions

whose derivatives are unknown. In some practical instances those deriva-
tives can be computed but then either the cost of the calculation is prohibi-
tive or the functions are noisy and the derivatives meaningless. Computing
stationary points of optimization problems without using the derivatives of
the problem defining functions is a challenging task, in particular when the
functions evaluations are expensive. However, there are state-of-the-art de-
rivative methods and software which can handle problems with many dozen

Date: September 26, 2008.
Support for this work was provided by FCT under grants POCI/MAT/59442/2004,

POCI/MAT/58957/2004, and PTDC/MAT/64838/2006.

1

2 A. I. F. VAZ AND L. N. VICENTE

(or even more than one hundred) optimization variables, in serial computa-
tion, using a reasonable number of functions evaluations. A comprehensive
review on derivative-free optimization is given in the upcoming book [10].

In many of the abovementioned problems the objective functions are non-
convex, a situation which typically occurs when one tries to fit or adjust
observable data by regression using nonlinear models (see, for instance, the
recent study [13] on the estimation of stellar parameters from observable
measurements). When the goal is to find a global optimizer, the overall com-
putation is significantly more complicated. The contribution of the mathe-
matical programming community to the solution of these problems has been
limited and mostly directed to the application of heuristic techniques. In our
view, not enough testing and benchmarking have been reported to help us
finding the most efficient and robust techniques.

The authors developed in [34] an algorithm for the minimization of a func-
tion without using its derivatives but specifically for the case where the vari-
ables are restricted to upper and lower bounds. The underlying method is
based on coordinate search which is known to be one of the simplest (direc-
tional) direct search methods. Such a choice is particularly well suited for
problems with simple bounds since the coordinate directions conform natu-
rally to the local geometry of the constraints. We made use of the possibility
of organizing each iteration of these methods around a search step and a poll
step. The poll step is where the coordinate search was applied. The search
step was used to incorporate a dissemination scheme in an attempt to equip
the overall method with the capability of finding a global minimizer. We se-
lected particle swarm for this purpose because it is a simple population-based
scheme of straightforward parallelization. We took advantage of having used
a population in the search step to then poll at the best particle, which im-
proved the overall robustness of the algorithm. In the vicinity of a global
minimizer, the application of the poll step allows the use of a reduced num-
ber of particles which is trivially achieved by dropping particles once they
become too close to each other. This procedure improves the efficiency of
the overall scheme. One is able to prove (see [34]) that the algorithm is glob-
ally convergent to first-order stationary points and, under some additional
conditions, that it can eventually meet the stopping criterion used in both
search and poll steps. Our extensive numerical experiments reported in [34]
showed that the resulting algorithm (PSwarm) is highly competitive with
other global optimization methods also based on function values.

A SOLVER FOR LINEARLY CONSTRAINED GLOBAL DERIVATIVE-FREE OPTIMIZATION 3

In this paper we extend PSwarm to solve optimization problems defined
by general linear constraints (without using the derivatives of the objec-
tive function, which might be nonsmooth and/or noisy). We treat only the
case of inequality constraints. (Equality constraints might be converted into
inequalities although it is known that such a technique can introduce degen-
eracy.) The poll step incorporates now positive generators for the tangent
cone of the approximated active constraints, including a provision for the
degenerate case. The search step has also been adapted for general linear
constraints. In particular, the initial population for particle swarm (needed
for the search step) is computed by first inscribing an ellipsoid of maximum
volume to the feasible set. Feasibility is maintained during the search step
by judiciously controlling the displacement of the particles. We have again
compared PSwarm to other global solvers and the results confirm its com-
petitiveness in terms of efficiency and robustness.

The paper is organized as follows. We start by reviewing in Section 2 the
material related to the PSwarm algorithm for bound constraints. In Section 3
we provide a description of the changes introduced to the PSwarm algorithm
to deal with general linear constraints. Numerical results for a wide test set
of problems are presented in Section 4 (where we also introduce a new type
of profiles for benchmarking of derivative-free methods). We conclude the
paper in Section 5 with some conclusions and prospects of future work.

In this paper, we address linearly constrained problems written in the form

min
z∈Ω

f(z) (1)

s.t. Az ≤ b (2)

where

Ω = {z ∈ Rn : ` ≤ z ≤ u} ,

A ∈ Rm×n, and b ∈ Rm. The inequalities ` ≤ z ≤ u are posed componentwise
and ` ∈ (−∞, R)n, u ∈ (R, +∞)n, ` < u. We explicitly separate the simple
bound constraints from the remaining linear ones since we are interested in
exploiting such distinction whenever possible.

2. PSwarm for bound constraints
The particle swarm algorithm simulates the behavior of a population of

particles, in an attempt to widely (and in some sense optimally) explore some
given problem space or feasible region. It is a stochastic algorithm in the sense

4 A. I. F. VAZ AND L. N. VICENTE

that it relies on parameters drawn from random variables, and thus different
runs for the same starting swarm may produce different outputs. It was
firstly proposed in [12, 19] and recently used for global optimization [32, 8].
Particle swarm is based on a population (swarm) of s particles, where s is
known as the population size. Each particle is associated with a velocity
which indicates where the particle is moving to. Let t be a time instant (an
iteration in the optimization context). The new position xi(t + 1) of the i-th
particle at time t+1 is computed by adding to the old position xi(t) at time
t a velocity vector vi(t + 1):

xi(t + 1) = xi(t) + vi(t + 1), i = 1, . . . , s. (3)

The velocity vector for a given particle at a given time is a linear stochastic
combination of the velocity in the previous time instant, of the direction to
the particle’s best position, and of the direction to the best swarm position
(for all particles). In fact, the velocity vector associated with each particle i
is updated by

vi
j(t + 1) = ι(t)vi

j(t) + µω1j(t)
(
yi

j(t)− xi
j(t)

)
+ νω2j(t)

(
ŷj(t)− xi

j(t)
)
, (4)

for j = 1, . . . , n, where ι(t) is the weighting ‘inertia’ factor, µ > 0 is the
‘cognition’ parameter, and ν > 0 is the ‘social’ parameter. The numbers
ω1j(t) and ω2j(t), j = 1, . . . , n, are randomly drawn from the uniform (0, 1)
distribution. In our notation, yi(t) is the position of the i-th particle with
the best objective function value so far calculated, and ŷ(t) is the particle
position with the best (among all particles) objective function value found
so far. Thus, the update (4) adds to the previous velocity vector a stochastic
combination of the directions to the best position of the i-th particle and to
the best (among all) particles position.

The bound constraints in the variables can be trivially enforced by (or-
thogonally) projecting onto Ω the new particles positions computed by equa-
tion (3).

Direct search methods attempt to minimize a function by comparing its
value in a finite number of trial points at each iteration. This class of meth-
ods does not use or try to approximate any type of derivative information
(see [10]). Direct search of directional type is based on the concept of positive
spanning and relies on the fact that a positive spanning set for Rn contains
at least one direction of descent at a nonstationary point where the objective
function is continuously differentiable. A simple positive spanning set is the

A SOLVER FOR LINEARLY CONSTRAINED GLOBAL DERIVATIVE-FREE OPTIMIZATION 5

maximal positive basis formed by the coordinate vectors and the negative
coordinate vectors:

D⊕ = {e1, . . . , en,−e1, . . . ,−en}.

The elementary directional direct search method based on D⊕ is known as
coordinate search. Under the presence of constraints, it is also necessary to
include in the set D of search directions those that guarantee the presence
of a feasible descent direction at nonstationary points. However, when the
constraints are of the simple bounds type, the set D = D⊕ includes all such
feasible descent directions (see [10, 20]).

When directional direct search is applied to constrained problems where
the derivatives of the constraints are available (which is clearly the case of
the problems studied in this paper), the iterates are typically kept feasible.
This requires an initial feasible starting point and the maintenance of fea-
sibility throughout the iterations. In the simple bounds case both can be
enforced easily. In general, one way of rejecting infeasible trial points can
be accomplished by using the extreme barrier function which, in the case of
simple bounds, assigns f(z) to a point z ∈ Ω and +∞ otherwise.

To follow the notation of the particle swarm framework, we will use ŷ(t) to
denote the current iterate. Given a positive spanning set D and the current
iterate ŷ(t), one defines the mesh Mt and the poll set Pt. The mesh Mt is
given by

Mt =
{

ŷ(t) + α(t)Dz, z ∈ Z|D|
+

}
, (5)

where α(t) > 0 is the mesh or step size parameter, Z+ is the set of nonnega-
tive integers, and |D| is the cardinality of the set D (which is view as a matrix
in (5)). The definition of the mesh (in other words the choices of D and α(t))
has to meet some integrality requirements for the method to achieve global
convergence to stationary points, in other words, convergence to stationary
points from arbitrary starting points. For unconstrained problems or prob-
lems with simple bounds these requirements can be trivially satisfied for the
choice D = D⊕.

The search step of these methods conducts a finite search in the mesh Mt.
Their poll step is executed only if the search step fails to find a feasible point
for which f is lower than f(ŷ(t)). The poll step evaluates the extreme barrier
function at the points in the poll set

Pt = {ŷ(t) + α(t)d, d ∈ D} ⊂ Mt,

6 A. I. F. VAZ AND L. N. VICENTE

trying to find a feasible point where f is lower than f(ŷ(t)). If the poll step
fails then the mesh size parameter must be reduced. Otherwise the mesh size
parameter is kept constant or increased. The search step is optional and it
is the poll step that essentially guarantees the global convergence properties
of the directional direct search methods to stationary points. The subclass
of these methods where D is kept finite across all iterations (like coordinate
search) is known as (generalized) pattern search.

The hybrid method implemented in the PSwarm solver for simple bounds
constrained optimization is a pattern search method that incorporates a par-
ticle swarm search in the search step. The idea is to start with an initial
population and to apply one step of particle swarm at each search step.
Consecutive iterations where the search steps succeed reduce to consecu-
tive iterations of particle swarm, in an attempt to identify a neighborhood
of a global minimizer. Whenever the search step fails, the poll step is ap-
plied to the best position over all particles, performing a local search in the
poll set centered at this point. The points calculated in the search step by
the particle swarm scheme must belong to the mesh Mt. This task can be
done in several ways and, in particular, one can compute their ‘projection’
onto Mt. The stopping criterion of PSwarm is the conjunction of the stop-
ping criteria for particle swarm and pattern search and can be proved to
be eventually achieved under appropriate conditions. PSwarm is based on
coordinate search, which guarantees global convergence to stationary points
in the simple bounds case.

3. PSwarm for general linear constraints
The extension of PSwarm to general linear constraints of the form (2) must

take into account both the search step (particle swarm) and the poll step.
We point out first that our goal is to design an algorithm which maintains
feasibility since in many practical applications linear constraints are typically
unrelaxable (meaning that the objective function can only be evaluated when
the constraints are satisfied [10]). Also, when dealing with extremely costly
function evaluations, a feasible algorithm always provides a feasible estimate
once stopped prematurely.

We describe below the main structure of the PSwarm algorithm for linearly
constrained problems of the form (1)–(2) indicating in bold the differences
from the pure simple bounds version (minimize f(z) s.t. z ∈ Ω). In the poll
step no mechanism is explicitly used to control the displacement along the

A SOLVER FOR LINEARLY CONSTRAINED GLOBAL DERIVATIVE-FREE OPTIMIZATION 7

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

x
1

x 2

Feasible region

Figure 1. Feasible region for problem hs024. An example of
an initial randomly generated population in Ω.

polling directions in terms of feasibility. Rather, it is directly applied the
extreme barrier function

f̂(z) =

{
f(z) if z ∈ Ω and Az ≤ b,

+∞ otherwise.

The search step, as we will later see, incorporates explicit procedures to
enforce feasibility before the objective function is evaluated and, therefore,
there is no need here to make use of the extreme barrier function.

Algorithm 3.1.

(1) Choose the stopping tolerances αtol > 0 and vtol > 0. Choose the
initial population size s. Set I = {1, . . . , s}.

(2) Calculate (randomly) the initial feasible swarm positions x1(0), . . . , xs(0)
(when general linear constraints (2) are present use, e.g., the
technique of the maximum volume inscribed ellipsoid). Cal-
culate (randomly) the initial swarm velocities v1(0), . . . , vs(0).

(3) Set yi(0) = xi(0), i = 1, . . . , s, and ŷ(0) ∈ arg minz∈{y1(0),...,ys(0)} f(z).
Choose α(0) > 0. Let t = 0.

(4) [Search Step]

Set ŷ(t + 1) = ŷ(t).
For all i ∈ I (for all particles) do:
• If f(xi(t)) < f(yi(t)) then

– Set yi(t + 1) = xi(t) (update the particle i best position).

8 A. I. F. VAZ AND L. N. VICENTE

– If f(yi(t + 1)) < f(ŷ(t + 1)) then
∗ Set ŷ(t + 1) = yi(t + 1) (update the particles best posi-

tion; search step and iteration successful).
∗ Set α(t + 1) = φ(t)α(t) (optionally expand the mesh

size parameter).
• Otherwise set yi(t + 1) = yi(t).

(5) [Poll Step]

Skip the poll step if the search step was successful. Compute a set
of polling directions D (either use D⊕ or compute a set positive
generators for the tangent cone of the approximated active
constraints when general linear constraints (2) are present).

• If there exists d(t) ∈ D such that f̂(ŷ(t) + α(t)d(t)) < f̂(ŷ(t))
then

– Set ŷ(t + 1) = ŷ(t) + α(t)d(t) (update the leader particle
position; poll step and iteration successful).

– Set α(t + 1) = φ(t)α(t) (optionally expand the mesh size
parameter).

• Otherwise, f̂(ŷ(t) + α(t)d(t)) ≥ f̂(ŷ(t)) for all d(t) ∈ D, and
– Set ŷ(t+1) = ŷ(t) (no change in the leader particle position;

poll step and iteration unsuccessful).
– Set α(t + 1) = θ(t)α(t) (contract the mesh size parameter).

(6) Compute vi(t + 1), i ∈ I, using (4). Compute xi(t + 1), i ∈ I, using
equation (7) below.

(7) If α(t + 1) < αtol and ‖vi(t + 1)‖ < vtol, for all i ∈ I, then stop.
Otherwise, increment t by one, drop particles in the search step if too
close to each other and update I accordingly, and go to Step 4.

In our implementations we typically choose φ(t) = 1 or φ(t) = 2 after
two consecutive poll successes along the same direction and θ(t) = 1/2. A
particle xi(t) is dropped when there exists another one, say xj(t), such that
‖xi(t) − xj(t)‖ ≤ α(t) and f(xj(t)) ≤ f(xi(t)). Note also that we omit the
projection of xi(t) onto the mesh Mt.

3.1. Generating an initial feasible population. The first issue that
arises is how to generate an initial feasible population for the search step.
When only simple bounds are present, an initial feasible population can be
trivially calculated in Ω following an uniform distribution. Thus, one pos-
sibility would be to ignore first the linear constraints different from simple

A SOLVER FOR LINEARLY CONSTRAINED GLOBAL DERIVATIVE-FREE OPTIMIZATION 9

0 1 2 3 4 5 6
−2

−1

0

1

2

3

4

x
1

x 2

Maximum volume ellipsoidUser provided initial guess

Initial feasible population

Figure 2. The maximum volume ellipsoid inscribed into the
feasible region of problem hs024.

bounds and then randomly generate points in Ω. However, such a strategy
may not generate a sufficiently diverse feasible population for global optimiza-
tion purposes (or even fail in the sense that no feasible point is generated).
See, for example, Figure 1 where an initial randomly generated population
using only the simple bounds led to a population with only three feasible
particles.

There are techniques to randomly generate points in a polytope (see [30]
and the references therein) but require the calculation of extreme points
which seemed to us too expensive and hard to code. We wanted to use some-
thing simple and efficient. The idea we explored consisted of first computing
the maximum volume ellipsoid inscribed in the feasible region and then using
this ellipsoid to randomly generate the points (see Figure 2). Our motiva-
tion resulted partially from the fact that there exists good state-of-the-art
optimization software to calculate this type of ellipsoids [35].

Let us write the maximum volume inscribed ellipsoid using a center c and
a nonsingular scaling matrix E:

E(c, E) = {w ∈ Rn : w = c + Es, ‖s‖ ≤ 1} .

The initial population can be then easily generated using

xi(0) = c + %1/nEς, i = 1, . . . , s,

where % is a scalar drawn from the uniform distribution in (0, 1) and ς is
an n dimensional vector drawn from the uniform distribution in (−1, 1)n

10 A. I. F. VAZ AND L. N. VICENTE

(normalized afterwards using the `2-norm). User provided feasible initial
guesses (see Figure 2) can be easily included in the population.

The well-posedness of the problem of inscribing an ellipsoid of maximum
volume into the feasible region is only guaranteed if the feasible region is
bounded and, in addition, if A is full rank and there exists a point z such
that Az < b.

In an attempt to regularize this ellipsoid calculation, one adds to the prob-
lem formulation fictitious bounds whenever the feasible region is unbounded
(which is detected by first trying to inscribe an ellipsoid of maximum vol-
ume). Such fictitious bounds are used in the algorithm only for this purpose.
In our implementation we made the following choices:

−zi ≤ −min(−100, (ui − 3|ui|)), if `i = −∞ and ui 6= +∞,

zi ≤ max(100, (`i + 3|`i|)), if `i 6= −∞ and ui = +∞,

min

(
−100,−10 min

j=1,...,n, `j 6=−∞
`j

)
≤ zi ≤ max

(
100, 10 max

j=1,...,n, uj 6=+∞
uj

)
if `i = −∞ and ui = +∞.

(6)

The computation of the ellipsoid with maximum volume inscribed into
the resulting polytope is carried out in PSwarm by the interior point code1

developed by Zhang and Gao [35].

3.2. Imposing feasibility in the search step. To maintain feasibility of
the new generated particles in the search step we damp the displacement
in (3) introducing step size parameters αi

j,max > 0 which depend on each
component of each particle:

xi
j(t + 1) = xi

j(t) + αi
j,maxv

i
j(t + 1), j = 1, . . . , n, i ∈ I, (7)

where I ⊆ {1, . . . , n} is the set of particles still in action.
The computation of αi

j,max = αi
maxα

i
j,Ω is done in two phases taking into

account the structure of the constraints. The step size αi
j,Ω is the maximum

1The code in [35] is originally implemented in MATLAB. We rewrote it in C using the BLAS [9]
and LAPACK [7] linear algebra packages, for our own usage in the C version of PSwarm.

A SOLVER FOR LINEARLY CONSTRAINED GLOBAL DERIVATIVE-FREE OPTIMIZATION 11

step length allowed by the bound constraints:

αi
j,Ω =

min
(
1,

`j−xi
j(t)

vi
j(t+1)

)
if vi

j(t + 1) < 0,

min
(
1,

uj−xi
j(t)

vi
j(t+1)

)
if vi

j(t + 1) > 0,

1 if vi
j(t + 1) = 0.

(8)

To simplify the notation we now write v̄i
j(t + 1) = αi

j,Ωvi
j(t + 1).

Let Ki be the set of indices corresponding to constraints which can lead to
infeasibility by following the search direction v̄i(t + 1):

Ki =
{
k ∈ {1, . . . ,m} : akv̄

i(t + 1) > 0
}

,

where ak is the k-th row of the matrix A. The maximum step length along
the velocity v̄i(t + 1) is given by

αi
max = min

k∈Ki

(
1,

bk − akx
i(t)

akv̄i(t + 1)

)
. (9)

This step length calculation allows larger steps and therefore a greater flexi-
bility in the search phase.

Finally, we point out that the generation of an initial feasible population for
the search step and the imposition of feasibility during this step automatically
guarantee an initial feasible polling point ŷ(0).

3.3. Calculating the positive generators for the poll step. As we said
before, in the presence of general linear constraints, the set D⊕ of polling di-
rections does not guarantee global convergence for generalized pattern search
algorithms. The set D of directions used in the poll step must now contain
positive generators for the tangent cone of the constraints which are ε-active
(ε > 0) at the current point (meaning the constraints for which the residual
at the current point is no larger than ε in absolute value). This can be done
in a number of ways (see [10, 20]). One possibility is to ask D to include all
positive generators for all the tangent cones for all ε ∈ [0, ε∗], where ε∗ > 0 is
independent of the iteration counter (see Lewis and Torczon [22]). Other al-
ternatives only ask D to include the positive generators of the tangent cones
of the ε-active constraints for the current value of ε, but require further pro-
visions like the acceptability of new iterates based on a sufficient decrease
condition. The approach by Lucidi, Sciandrone, and Tseng [23] requires the

12 A. I. F. VAZ AND L. N. VICENTE

parameter ε to be reduced at unsuccessful iterations and a projection onto
the feasible set during polling. Kolda, Lewis, and Torczon [21] adjust the
parameter ε so that ε = ε(t) = O(α(t)). Our choice in PSwarm follows
ε = ε(t) = O(α(t)) to avoid calculating all positive generators but ignores
the sufficient decrease requirement to avoid rejecting points which yield a
(simple) decrease in the function.

The set D is thus computed each time a poll step is executed by identifying
first the ε-active constraints. At poll steps where no ε-active constraints are
identified we set D = D⊕ as in [34]. When the matrix Ā, associated with
the ε-active constraints, is rank defficient, it is not possible to calculate the
positive generators of the tangent cone from an unique matrix factorization
of Ā. Following some of the ideas in Abramson et al. [6], the algorithm given
below (used in PSwarm) tries to dynamically decrease the parameter ε in
order to obtain a set of ε-active constraints corresponding to a full row rank
matrix Ā.

When no small enough ε is found for which Ā is full row rank, the algorithm
reverts to the simple mode D = D⊕. One could think that such a procedure
is inappropriate and not aligned to the basic requirements needed for global
convergence of the overall algorithm. However, our numerical experience has
shown us that this is a robust and efficient way of handling degeneracy. In
part this is due to the randomness features of the search step. We summarize
below the algorithm used to compute the polling directions.

Algorithm 3.2.

(1) Let ε = min(εinit, 10α(t)) and εlimit = min(0.1, ε2).
(2) While ε > εlimit do

(a) Let Ā be a matrix formed by:
• the rows of the matrix A such that akz − bk ≥ −ε, k =

1, . . . ,m,
• the rows of the matrix I such that zj ≥ uj − ε, j = 1, . . . , n.
• the rows of the matrix −I such that zj ≤ `j+ε, j = 1, . . . , n.

(b) If 0 < dim(Ā) < n and rank(Ā) = dim(Ā) then:
• Compute a QR factorization of the matrix Ā>.
• Let B = QR−>, N = I − BĀ, and stop with D = [B −

B N −N].
(c) If dim(Ā) = 0 then stop and consider D = D⊕, else ε = ε/2.

A SOLVER FOR LINEARLY CONSTRAINED GLOBAL DERIVATIVE-FREE OPTIMIZATION 13

(3) If no D has been computed (the condition of the while loop has become
false) consider also D = D⊕.

In our tests we set εinit = 0.1.

4. Numerical results
We have numerically compared PSwarm to other existing solvers for the

derivative-free optimization of functions subject to linear constraints, having
in ming the goal of global optimization.

4.1. Test problems. To obtain a sufficiently large set of test problems
we searched all known databases of nonlinear programming problems. We
were able to gather 110 linearly constrained problems from a total of 1564
problems, collected from the following sources: Vanderbei [33] (given in
AMPL, which includes the CUTE [15] collection), GLOBALlib [2] (available
in AMPL format at [27]), one problem from [31], three problems from [17],
one from [24], and four from [25].

The 110 problems collected were all written in AMPL [14]. They include
23 problems with a linear objective function, 55 with a quadratic objective
function, and 32 with a non-quadratic objective function.

Ten additional highly nonconvex problems were obtained by random gen-
eration of the linear constraints, following the scheme reported in [28]. For
these additional problems, the objective function (see Pinter [29]) is given by

r × n×
n∑

i=1

(xi − x∗i)
2 + (sin (g1 × P1(x)))2 + (sin (g2 × P2(x)))2 ,

where

P1(x) =
n∑

i=1

(xi − x∗i)
2 +

n∑
i=1

(xi − x∗i)
2 ,

P2(x) =
n∑

i=1

(xi − x∗i) ,

r = 0.025, g1 = 1, and g2 = 1. These problems have simple bound constraints
on all variables (x ∈ [−10, 10]n) and the linear constraints are randomly
generated using the following procedure (ma is the number of active linear
constraints at the global minimizer):

Algorithm 4.1.

14 A. I. F. VAZ AND L. N. VICENTE

n 3 10 15 20 25 30 35 40 45 50
m 2 5 10 15 20 25 30 35 40 45
ma 1 2 5 7 10 12 15 17 20 22

Table 1. Dimensions of the 10 highly nonconvex problems.

(1) Randomly generate the solution x∗ from an uniform distribution (in
the simple bound domain Ω).

(2) Randomly generate the elements of the matriz A from the uniform
distribution in (−10, 10). Denote the rows of A by ak, k = 1, . . . ,m.

(3) Let bk = akx
∗, k = 1, . . . ,ma.

(4) Let bk = akx
∗+u, where u is a random number drawn from an uniform

distribution in (1, 10) and k = ma + 1, . . . ,m.

The 10 problems selected resulted from the combination of the parameters
n, m, and ma, reported in Table 1.

4.2. Solvers tested. The set of solvers used in our numerical comparisons
were ASA, NOMADm, and DIRECT.

ASA [16] stands for Adaptative Simulated Annealing and is written in C.
We used the ASA-AMPL interface previous developed for [34]. Note that
ASA uses the extreme barrier function to reject infeasible trial points.

NOMADm [4] is a MATLAB [3] version of the Nonlinear Optimization for
Mixed vAriables and Derivatives solver [5]. We were not able to use the par-
ticle swarm option that NOMADm incorporates in the search step because
it is only available for problems with simple bounds. We have selected a
maximal positive basis as in PSwarm. Note that PSwarm follows a simpli-
fied version of the way in which NOMADm handles the computation of the
positive generators of the ε-active constraints.

DIRECT (DIviding RECTangles) is a MATLAB implementation [1] of the
method described in [18]. DIRECT uses a penalty strategy to deal with
constraints. The penalty parameters are fixed for each constraint and kept
constant during all the iterations. In our testing we used 106 for all con-
straints. We did some additional testing to see if the numerical results could
be improved by perturbing the values of the penalty parameters but no sig-
nificant differences were observed.

A SOLVER FOR LINEARLY CONSTRAINED GLOBAL DERIVATIVE-FREE OPTIMIZATION 15

To test PSwarm, NOMADm, and DIRECT, we considered the problems
directly coded in AMPL and used the AMPL-MATLAB interface developed
for this purpose.

A critical issue that relates all the solvers is the choice of the initial guess.
PSwarm allows the user to specify an initial guess (in fact the user can
provide an initial population) which is included in the initial population if
shown to be feasible. For NOMADm it is mandatory to provide an initial
guess. When the provided guess is not feasible, NOMADm tries to project
the provided point onto the feasible region. ASA is also expecting an initial
guess but it does not force this initial guess to be feasible and tries to proceed
to a better feasible point (as infeasible points are automatically rejected). No
initial guesses can be given to DIRECT. We also point out that some of the
problems coded by us in AMPL do not include an initial guess. Thus, in
order to be as fair as possible to all solvers, no initial guess is considered
and, when requested, it is randomly generated within the bound constraints
following an uniform distribution. We used the fictitious bounds (6) for this
purpose. While PSwarm, NOMADm, and ASA use these bounds solely for
the calculation of an initial guess or population, DIRECT uses them during
the optimization phase.

4.3. Numerical results (performance profiles). Figures 3–5 depict per-
formance profiles obtained by using the procedure described in [34] (a mod-
ification of the performance profiles from [11]) for the 4 solvers and the 110
test problems (imposing a maximum of 2000 total function evaluations). The
stochastic solvers (ASA and PSwarm) were run 10 times for each of the prob-
lems. Then, from the 10 runs, we computed the final minimum, maximum,
and average objective function values.

For the 10 highly nonconvex problems we imposed a maximum of 10000
total function evaluations. The performance profiles are shown in Figures 6–
8. Since NOMADm is not designed for global optimization we ran it 10 times
for different randomly generated initial guesses, a procedure we only applied
for these test problems. Note that NOMADm does not appear in Figure 8
since it fails for at least one run for all problems (and therefore the worst
performace is always a failure).

Since the 110 test problems considered include linear, quadratic, and non-
quadratic objective functions, we also looked at the performance profiles for
each type of problems. To shorten the presentation, we present here only the

16 A. I. F. VAZ AND L. N. VICENTE

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

ν

ρ

PSwarm
ASA
DIRECT
NOMADm

5 10 15

0.5

0.6

0.7

0.8

0.9

1

ν

ρ

Figure 3. Performance profiles for the 110 problems (minimum
objective function value for 10 runs with maxf = 2000).

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

ν

ρ

PSwarm
ASA
DIRECT
NOMADm

5 10 15
0.4

0.5

0.6

0.7

0.8

0.9

1

ν

ρ
Figure 4. Performance profiles for the 110 problems (average
objective function value for 10 runs with maxf = 2000).

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

ν

ρ

PSwarm
ASA
DIRECT
NOMADm

5 10 15

0.5

0.6

0.7

0.8

0.9

1

ν

ρ

Figure 5. Performance profiles for the 110 problems (maximum
objective function value for 10 runs with maxf = 2000).

A SOLVER FOR LINEARLY CONSTRAINED GLOBAL DERIVATIVE-FREE OPTIMIZATION 17

2 4 6 8 10 12 14 16
0

0.2

0.4

0.6

0.8

1

ν

ρ

PSwarm
ASA
DIRECT
NOMADm

350 355

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν

ρ

Figure 6. Performance profiles for the 10 highly nonconvex
problems (minimum objective function value for 10 runs with
maxf = 10000).

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

ν

ρ

PSwarm
ASA
DIRECT
NOMADm

230 235 240

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ν

ρ

Figure 7. Performance profiles for the 10 highly nonconvex
problems (average objective function value for 10 runs with
maxf = 10000).

performance profiles for the non-quadratic objective functions using average
objective function values (see Figure 9). The remaining performance profiles
can be seen at the PSwarm web page http://www.norg.uminho.pt/aivaz/

pswarm. For the linear objective function problems, PSwarm was the most
effective and robust solver. In the quadratic objectives case, we observed a
small advantage of DIRECT, and for the non-quadratic objective function
problems PSwarm was again the most effective and robust solver.

4.4. Numerical results (function profiles). The performance profiles
presented before measure the efficiency and robustness of the solvers when a

18 A. I. F. VAZ AND L. N. VICENTE

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

ν

ρ

PSwarm
ASA
DIRECT
NOMADm

30 35 40
0

0.2

0.4

0.6

0.8

1

ν

ρ

Figure 8. Performance profiles for the 10 highly nonconvex
problems (maximum objective function value for 10 runs with
maxf = 10000).

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

ν

ρ

PSwarm
ASA
DIRECT
NOMADm

2 4 6 8
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

ν

ρ
Figure 9. Performance profiles for the subset of 110 problems
with non-quadratic objective functions (average objective func-
tion value for 10 runs with maxf = 2000).

maximum number of function evaluations is imposed in terms of the quality
of the final value of the objective function. These profiles do not show how
effective and robust each solver is in terms of the number of objective func-
tion evaluations necessary to compute a global minima (or to achieve some
reduction in the objective function value).

Our first attempt to measure performance differently was to use the re-
cently proposed data profiles [26] for derivative-free optimization. These pro-
files measure how well a solver does when asked to achieve a certain level
of accuracy within some computational budget (CPU time or total number
of function evaluations). However, these data profiles are not so practical

A SOLVER FOR LINEARLY CONSTRAINED GLOBAL DERIVATIVE-FREE OPTIMIZATION 19

in our case because some solvers are stochastic, and more importantly, do
not necessarily produce a monotone decreasing sequence of best found so
far objective function values. Further, since the goal of this paper is global
optimization, the information contained in data profiles for smaller values of
the budget is not so relevant.

In this paper we propose what we call function profiles to measure the
efficiency and robustness of global derivative-free solvers in terms of function
evaluations required to achieve some level of global optimality. To explain
how our profiles are calculated, let P be a set of test problems and S a set of
solvers. Define rp,s as the number of objective function evaluations taken by
solver s to solve problem p, for p ∈ P and s ∈ S. rp,s is set to +∞ whenever
a failure occurs, i.e., when solver s is unable to provide a feasible point for
problem p. A failure is also declared when solver s is unable to produce a
feasible point for problem p within a specified relative error τ , i.e., rp,s is
set to +∞ when (fp,s − fp,L)/|fp,L| > τ , where fp,s is the objective function
value obtained by the solver s on problem p and fp,L is the best objective
function obtained by all the solvers for problem p. We define the function
profile ρs(ν) of a solver s ∈ S as the fraction of problems where the number
of objective function evaluations is lower than ν

ρs(ν) =
1

|P|
size{p ∈ P : rp,s < ν}.

The values of ρs(ν) are calculated setting a limit for the number of function
evaluations and letting the solvers stop when their stopping criteria are met.
In the case of this paper we used 2000 for the 110 problems test set and
10000 for the 10 highly nonconvex problems.

Figures 10 and 11 depict the function profiles for, respectively, the 110 test
set and the set of 10 highly nonlinear test problems. Due to the stochasticity
of some of the solvers, the quantity rp,s represents now the average number
of function evaluations (for the 10 runs), and fp,s and fp,L are the average
function values. We report results for τ = 0.1 but no major differences were
observed with different values.

By looking at function profiles, one can obtain useful information on the
solvers performance in term of function evaluations needed for global opti-
mization. For example from Figure 10, we observe that NOMADm solved
about 40% of the problems using less than 1000 function evaluations, while
PSwarm solved about 20%. Considering ν = 2000, we infer that PSwarm is

20 A. I. F. VAZ AND L. N. VICENTE

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

ν

ρ

PSwarm
ASA
DIRECT
NOMADm

Figure 10. Function profiles for the 110 problems (average ob-
jective function value for 10 runs).

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

ν

ρ

PSwarm
ASA
DIRECT
NOMADm

Figure 11. Function profiles for the 10 highly nonconvex prob-
lems (average objective function value for 10 runs).

able to solve about 70% of the problems, and thus that it is the most robust
among all.

DIRECT never uses less than the provided budget defined in terms of the
total number of function evaluations (and for some problems it significantly
exceeds the imposed budget). Figure 11 does not include DIRECT because
this code was unable to solve any of the problems up to the requested accu-
racy (τ = 0.1).

5. Conclusions and future work
The main goal of this paper was to extend PSwarm [34] to general linear

constraints. We were mainly motivated from the fact that PSwarm yielded
encouraging results for problems with simple bounds. In some applications

A SOLVER FOR LINEARLY CONSTRAINED GLOBAL DERIVATIVE-FREE OPTIMIZATION 21

the constraints assume a more general linear form which prohibits the appli-
cation of this older version of PSwarm, in particular when such constraints
are unrelaxable. We studied various possibilities to extend PSwarm to lin-
ear constraints and the presentation of this paper is the result of intensive
testing.

This paper also contributes to the field of global derivative-free optimiza-
tion by reporting a comprehensive numerical comparison of different solvers.
For this purpose we collected a vast collection of linearly constrained op-
timization problems, a number of them nonconvex, which can be used by
others researchers to perform their testing. Finally, we introduced new func-
tion profiles (different from the data profiles [26]) for the assessment of the
efficiency and robustness of solvers in terms of the number of function eval-
uations needed to achieve a certain level of global optimality.

The natural next step is to try to handle nonlinear constraints. It is not
clear to us how to proceed toward this goal. We plan to have a beta ver-
sion soon which embeds PSwarm for linear constraints into some penalty or
augmented Lagrangian scheme, but this might not be the way to go. Our ex-
perience has shown us that global derivative-free optimization is an extremely
difficult field where decently good performance is the result of intensive re-
search — and thus the definite extension of PSwarm to nonlinear constraints
is expected to take a significant effort.

References
[1] DIRECT — A Global Optimization Algorithm. http://www4.ncsu.edu/~ctk/Finkel_

Direct.
[2] GLOBAL Library. http://www.gamsworld.org/global/globallib.htm.
[3] MATLAB, The MathWorks Inc. http://www.mathworks.com.
[4] NOMADm Optimization Software. http://www.gerad.ca/NOMAD/nomadm.html.
[5] The NOMAD Project. http://www.gerad.ca/NOMAD.
[6] M. A. Abramson, O. A. Brezhneva, J. E. Dennis, and R. L. Pingel. Pattern search in the

presence of degenerate linear constraints. Optim. Methods Softw., 23:297–319, 2008.
[7] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Green-

baum, S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide. SIAM,
Philadelphia, third edition, 1999.

[8] F. van den Bergh and A. P. Engelbrecht. A study of particle swarm optimization particle
trajectories. Inform. Sci., 176:937–971, 2006.

[9] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux,
L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley. An updated
set of basic linear algebra subprograms (BLAS). ACM Trans. Math. Software, 28:135–151,
2002.

22 A. I. F. VAZ AND L. N. VICENTE

[10] A. R. Conn, K. Scheinberg, and L. N. Vicente. Introduction to Derivative-Free Optimization.
MPS-SIAM Series on Optimization. SIAM, Philadelphia, 2008.

[11] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance profiles.
Math. Program., 91:201–213, 2002.

[12] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory. In Proceedings
of the Sixth International Symposium on Micro Machine and Human Science, pages 39–43,
Nagoya, Japan, 1995. IEEE Service Center, Piscataway, NJ.

[13] J. M. Fernandes, A. I. F. Vaz, and L. N. Vicente. Modelling nearby FGK population I stars.
In preparation.

[14] R. Fourer, D. M. Gay, and B. W. Kernighan. A modeling language for mathematical program-
ming. Management Sci., 36:519–554, 1990.

[15] N. I. N. Gould, D. Orban, and Ph. L. Toint. CUTEr, a Constrained and Unconstrained Test
Environment, revisited. http://cuter.rl.ac.uk/cuter-www.

[16] L. Ingber. Adaptative simulated annealing (ASA): Lessons learned. Control Cybernet., 25:33–
54, 1996.

[17] Y. Ji, K.-C. Zhang, and S.-J. Qu. A deterministic global optimization algorithm. Appl. Math.
Comput., 185:382–387, 2007.

[18] D. R. Jones, C. D. Perttunen, and B. E. Stuckman. Lipschitzian optimization without the
Lipschitz constant. J. Optim. Theory Appl., 79:157–181, 1993.

[19] J. Kennedy and R. Eberhart. Particle swarm optimization. In Proceedings of the 1995 IEEE
International Conference on Neural Networks, pages 1942–1948, Perth, Australia. IEEE Ser-
vice Center, Piscataway, NJ.

[20] T. G. Kolda, R. M. Lewis, and V. Torczon. Optimization by direct search: New perspectives
on some classical and modern methods. SIAM Rev., 45:385–482, 2003.

[21] T. G. Kolda, R. M. Lewis, and V. Torczon. Stationarity results for generating set search for
linearly constrained optimization. SIAM J. Optim., 17:943–968, 2006.

[22] R. M. Lewis and V. Torczon. Pattern search methods for linearly constrained minimization.
SIAM J. Optim., 10:917–941, 2000.

[23] S. Lucidi, M. Sciandrone, and P. Tseng. Objective-derivative-free methods for constrained
optimization. Math. Program., 92:37–59, 2002.

[24] Z. Michalewicz. Evolutionary computation techniques for nonlinear programming problems.
International Transactions in Operational Research, 1:223–240, 1994.

[25] Z. Michalewicz. Genetic Algorithms+ Data Structures= Evolution Programs. Springer, Berlin,
third edition, 1996.

[26] J. J. Moré and S. M. Wild. Benchmarking derivative-free optimization algorithms. Technical
Report ANL/MCS-P1471-1207, Argonne National Laboratory, Mathematics and Computer
Science Division, April 2008.

[27] A. Neumaier. The COCONUT benchmark. http://www.mat.univie.ac.at/~neum/glopt/
coconut/Benchmark/Benchmark.htm%l.

[28] P. Parpas, B. Rustem, and E. N. Pistikopoulos. Linearly constrained global optimization and
stochastic differential equations. J. Global Optim., 36:191–217, 2006.

[29] J. Pintér. Global Optimization: Software, Test Problems and Applications, volume 62 of Non-
convex Optimization and Applications, chapter 15, pages 515–569. Kluwer Academic Publish-
ers, Dordrecht, 2002.

[30] P. A. Rubin. Generating random points in a polytope. Comm. Statist. Simulation Comput.,
13:375–396, 1984.

[31] T. P. Runarsson and X. Yao. Stochastic ranking for constrained evolutionary optimization.
IEEE Transactions on Evolutionary Computation, 4:284–294, 2000.

A SOLVER FOR LINEARLY CONSTRAINED GLOBAL DERIVATIVE-FREE OPTIMIZATION 23

[32] J. F. Schutte and A. A. Groenwold. A study of global optimization using particle swarms. J.
Global Optim., 31:93–108, 2005.

[33] R. J. Vanderbei. Benchmarks for Nonlinear Optimization. http://www.princeton.edu/
~rvdb/bench.html.

[34] A. I. F. Vaz and L. N. Vicente. A particle swarm pattern search method for bound constrained
global optimization. J. Global Optim., 39:197–219, 2007.

[35] Y. Zhang and L. Gao. On numerical solution of the maximum volume ellipsoid problem. SIAM
J. Optim., 14:53–76, 2003.

A. I. F. Vaz
Department of Systems and Production, Algoritmi Research Center, University of Minho,
Campus de Gualtar, 4710-057, Portugal (aivaz@dps.uminho.pt).

L. N. Vicente
CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
(lnv@mat.uc.pt).

