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Abstract: In this paper we prove global convergence for first and second-order sta-
tionarity points of a class of derivative-free trust-region methods for unconstrained
optimization. These methods are based on the sequential minimization of linear or
quadratic models built from evaluating the objective function at sample sets. The
derivative-free models are required to satisfy Taylor-type bounds but, apart from
that, the analysis is independent of the sampling techniques.

A number of new issues are addressed, including global convergence when accep-
tance of iterates is based on simple decrease of the objective function, trust-region
radius maintenance at the criticality step, and global convergence for second-order
critical points.
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1. Introduction
Interior-point methods for nonlinear programming have received recently

much attention [13, 15]. A number of papers have been published study-
ing the global convergence properties of interior-point methods for nonlinear
programming [1, 2, 4, 8, 17, 20, 23]. Various codes for large-scale nonlin-
ear programming are based on interior-point algorithms [3, 19, 20]. Filter
methods, in turn, are now well understood and used for several classes of op-
timization problems and within different solvers [9, 10, 11, 12]. In this paper
we continue the development of our primal-dual interior-point filter approach
proposed in [18]. Our motivation is both theoretical and practical. We in-
troduce new optimality filter entries better suited for minimization purposes
and analyze its impact on the global convergence theory. We show how to
use our approach to handle approximations to the Hessian of the Lagrangian.
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We are encouraged by the numerical results obtained so far for dense and
sparse nonlinear programs of different types and scales.

The method in [18] belongs to the class of the so-called Newton primal-
dual interior-point algorithms. It incorporates a filter technique and a line
search for the purposes of globalization. It relies on a novel decomposition
of the primal-dual step, obtained from the perturbed first-order necessary
conditions, into a normal component and a tangential component. The nor-
mal component can be seen as a step towards the quasi-central path, i.e.,
the set of central strictly feasible points, whereas the tangential component
aims at reducing duality, i.e., the size of the gradient of the Lagrangian,
and complementarity. The line search acts on both components. All new
iterates generated by the method must be acceptable to the filter and lie
in a neighborhood of the quasi-central path, which is used frequently in in-
feasible primal-dual methods for linear and quadratic programming. Each
entry in the filter is a pair of coordinates: one resulting from feasibility
and centrality and associated with the normal step; the other resulting from
optimality, i.e., complementarity and duality, and related to the tangential
step. It has been proved that the method is globally convergent to first-
order critical points. The method incorporates the possibility of entering a
restoration phase, where the goal is the computation of a point in the central
neighborhood that is acceptable to the filter and that is not too infeasible.
This interior-point methodology is based on a dynamic update of the barrier
parameter.

In this paper we explore the proposed framework further, introducing new
optimality filter entries better tailored to the purposes of minimization. In
fact, the optimality filter entry in [18] mentioned above is based on first-order
principles and thus might have weaknesses in distinguishing well between
minimization and maximization. The new optimality filter entries are ob-
tained by adding to the objective function or the Lagrangian function a con-
stant multiple of complementarity. These optimality filter entries are closer
to the ones used in SLP/SQP filter methods where the optimality filter entry
is given by the objective function. We show in this paper that the method
retains its global convergence properties when using the new optimality filter
entries, under a uniform condition on the positive semi-definiteness of the
Hessian of the Lagrangian on the appropriate null space of the constraints.

Another aspect in [18] that we improve here is the dependence of the algo-
rithm and convergence theory on the use of exact Hessians of the Lagrangian.
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We study how the framework in [18] can be adapted to the absence of second-
order derivatives. The only component of the algorithm, when using the new
optimality filter entries, which becomes critical without using exact Hessians
of the Lagrangian is the need to keep the iterates in the central neighborhood.
We have thus explored this fact to our advantage and formulate practical in-
exact conditions, to use when second-order derivatives are unavailable, based
on the action of the inexact Hessian along an appropriate vector.

Finally, in this paper we also report numerical results of ipfilter, the For-
tran 90 implementation of our primal-dual interior-point filter approach. We
tested ipfilter on a set of constrained nonlinear programs from CUTEr [14],
including large instances. The results are compared against those obtained
by ipopt, the barrier interior-point filter code developed by Wächter and
Biegler [21]. The results show that the current initial version of ipfilter
is already competitive in terms of robustness and number of primal-dual it-
erations. The ipfilter solver is freely available for academic and research
purposes and has been selected as one of the solvers of a recent European
Space Agency project which aims to produce a general purpose robust NLP
solver especially tailored for space trajectory optimization. The ipfilter

web site is located at:

http://www.mat.uc.pt/ipfilter (1)

The paper begins with a description of the interior-point filter framework
in Section 2 where we also introduce the new optimality filter entries and
address the use of second-order derivatives. We prove in Section 2, under
appropriate assumptions, that the primal-dual step is a descent direction for
these new filter entries for points in the central neighborhood which are not
too infeasible. We also prove in this section that the adjustments in the
definition of the central neighborhood required to handle approximations to
second-order derivatives still allow large enough step lengths. The (modi-
fied) method is then described in detail in Section 3. The analysis of global
convergence for the primal-dual interior-point method, modified to handle
the new optimality filter entries and the relaxation of the Hessian require-
ment, is given in Section 4. The last two sections of the paper concern the
development and testing of the ipfilter solver.
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2. Interior-point framework
For the purpose of describing our algorithm and deriving the corresponding

analysis of global convergence, we write a general nonlinear programming
problem in the form

min f(x) s.t. h(x) = 0, x ≥ 0, (2)

where f : Rn −→ R and h : Rn −→ Rm are twice continuously differentiable
functions on an open set Ω ⊂ Rn. The implementation of our algorithm in
the ipfilter code converts first any nonlinear programming problem where
the feasible region involves inequalities not of the simple bound type in a
problem with equalities and simple bounds (of the form l ≤ x ≤ u) by means
of slack variables. For simplicity, in the presentation of the algorithm and
of the analysis of global convergence we deal only with simple bounds of the
form x ≥ 0.

2.1. Step computation. Primal-dual interior-point methods are derived
by applying Newton’s method to an appropriate perturbation of the first-
order Karush-Kuhn-Tucker or KKT conditions (which under appropriate
constraint qualifications are known to be necessary for local minimizers).
Let us write the KKT conditions of problem (2) in the form

∇x`(x, y, z) = 0, (3)

h(x) = 0, (4)

Xz = 0, (5)

x ≥ 0, z ≥ 0, (6)

where X = diag(x), y ∈ Rm and z ∈ Rn are the Lagrange multipliers, and `
denotes the Lagrangian function

`(x, y, z) = f(x) + h(x)Ty − xTz.

The above mentioned perturbation is made in the complementarity condi-
tions (block (5) of the KKT system (3)-(5)):

Fσµ(x, y, z)
def
=

 ∇x`(x, y, z)
h(x)

Xz − σµe

 = 0,
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where, as in [18], σ ∈ (0, 1) plays the role of a centering parameter and µ is
a measure of complementarity

µ =
xTz

n
. (7)

We also use the notation

w = (x, y, z) and ∆w = (∆x,∆y,∆z).

In this paper the primal-dual step ∆w is computed by solving an approxi-
mated linearized perturbed KKT system, of the form H ∇h(x) −I

∇h(x)T 0 0
Z 0 X

  ∆x
∆y
∆z

 = −

 ∇x`(x, y, z)
h(x)

Xz − σµe

 ,

where H is an approximation to ∇2
xx`(x, y, z) which will be required to sat-

isfy certain conditions. We denote the matrix of this system by KKT(w).
When H = ∇2

xx`(w), we have that KKT(w) = F ′
σµ(w). As discussed in [18],

the choice of complementarity measure µ according to (7) ensures that the
primal-dual step ∆w is a descent direction for xTz/n, allowing a dynamic
reduction of µ (see also [8]).

The approach introduced in [18] to adapt the methodology of a filter to the
interior-point context specified two quantities for the filter entries, the first
component corresponding to quasi-centrality (feasibility and centrality) and
the second corresponding to optimality (complementarity and criticality).
This choice of filter components was then associated with a decomposition of
the trial step into a normal step and a tangential step that yielded a decrease
on the respective filter components. In fact, the perturbed KKT-conditions
can be rewritten as

Fσµ(x, y, z) =

 0
h(x)

Xz − µe

 +

 ∇x`(x, y, z)
0

(1− σ)µe

 = 0. (8)

This splitting motivated the step decomposition ∆w = sn + st, where the
normal step sn = (∆xn,∆yn,∆zn) is the solution of

KKT(w)sn = −

 0
h(x)

Xz − µe

 , (9)
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and the tangential step st = (∆xt,∆yt,∆zt) is given by

KKT(w)st = −

 ∇x`(w)
0

(1− σ)µe

 . (10)

2.2. New filter entries. The first term in the middle expression of (8)
measures the proximity to the quasi-central path [8] and led to the choice of
the following filter component

θ(w) = ‖h(x)‖+ ‖Xz − (xTz)/ne‖.

The second term in the middle expression of (8) measures complementarity
and criticality. Thus, we chose in [18], for the second filter component, the
optimality measure

xTz/n+ ‖∇x`(w)‖2. (11)

The choice (11) arose naturally given the decomposition of the step into its
normal and tangential components. However, since it is based on first-order
principles, it might not distinguish sufficiently well between local minimiza-
tion and local maximization. One alternative we analyze in this paper is
given by

θg(w) = f(x) + h(x)Ty + cµ = `(x, y, z) + (c+ n)µ, (12)

where c > 0 is a given constant to be specified later. Another alternative is
simply

θg(w) = f(x) + cµ. (13)

These alternatives are closer to the original choice of θg(w) = f(x) used in
SLP/SQP filter methods. In fact, note that when µ is small in (13) (or
when µ and ‖h(x)‖ are small in (12) and the size of y is moderate), then
θg(w) ' f(x).

2.3. Step length. The flexibility of the step splitting was used in [18] to
introduce different step sizes for sn and st in the trial step computation. Let
∆ be the positive scalar that controls the length of the step taken along ∆w,
forcing the damped components αn(∆)sn and αt(∆)st, to satisfy

‖αn(∆)sn‖ ≤ ∆, ‖αt(∆)st‖ ≤ ∆.
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Having these bounds in mind, and requiring explicitly αt(∆) ≤ αn(∆), the
step sizes taken along the normal and tangential directions respectively are
defined as

αn(∆) = min

{
1,

∆

‖sn‖

}
, (14)

αt(∆) = min

{
αn(∆),

∆

‖st‖

}
= min

{
1,

∆

‖sn‖
,

∆

‖st‖

}
. (15)

Here, we use for ∆ > 0 the natural definition αn(∆) = 1 for ‖sn‖ = 0,
by using the convention min{1,∞} = 1. We also say that αt(∆) = αn(∆)
if ‖st‖ = 0, although our algorithm cannot generate tangential steps for
which ‖st‖ = 0 since the right-hand-side in (10) will never be zero if the
iterates x and z are kept positive throughout. The requirement αt(∆) ≤
αn(∆) is mainly necessary to enforce the iterates to stay in the neighborhood
N (γ,M, p) defined in (19) below, see Lemma 2.7.

Let also

w(∆) = (x(∆), y(∆), z(∆)) = w + αn(∆)sn + αt(∆)st, (16)

s(∆) =
(
sx(∆), sy(∆), sz(∆)

)
= w(∆)− w = αn(∆)sn + αt(∆)st. (17)

Thus, ‖s(∆)‖ ≤ 2∆ (and one can see that ∆ plays a role comparable to a
trust-region radius).

The scalars αn(∆) and αt(∆) will be such that positivity and some measure
of centrality of the new iterate w(∆) are maintained. However, both αn(∆)
and αt(∆) depend on ∆, that in turn will be adjusted, not only to meet the
purpose of positivity and centrality, but also to enforce global convergence.

We introduce the notation

θh(w) = ‖h(x)‖, θc(w) =

∥∥∥∥Xz − xTz

n
e

∥∥∥∥ , θ`(w) = ‖∇x`(w)‖,

which allows us to write the first filter component as

θ(w) = θc(w) + θh(w),

Note that a point w satisfying θ(w) = θ`(w) = 0, µ = 0, and (x, z) ≥ 0, is a
KKT point.

With the purpose of achieving a reduction on the function θg, we introduce,
at a given point w, the linear model

m(w(∆)) = θg(w) +∇θg(w)T (w(∆)− w).
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To simplify the notation we also define

µ(∆) =
x(∆)Tz(∆)

n
.

2.4. Central neighborhood. One possibility to prevent (x(∆), z(∆)) from
approaching the boundary of the positive orthant too rapidly is to keep the
iterates in some form of central neighborhood. In [18], we have used the
neighborhood

N (γ,M) =

{
w : (x, z) > 0, Xz ≥ γ

xTz

n
, θh(w) + θ`(w) ≤M

xTz

n

}
, (18)

with fixed γ ∈ (0, 1) and M > 0 (see also the references [8, 22]). To keep
the iterates in this neighborhood we need the primal-dual step to yield some
form of sufficient decrease on θ`. In particular, we were able to prove in [18]
for steps using exact second-order derivatives that

θ`(w(∆)) ≤ (1− αt(∆))θ`(w) +M`∆
2,

for some constant M` depending on the Lipschitz constants of the second-
order derivatives of the functions defining the problem.

In this paper we will consider a more general scenario which will allow
us to work with different types of approximations H to the Hessian of the
Lagrangian. For this purpose, we consider a family of neighborhoods param-
eterized by p ∈ [1, 2]:

N (γ,M, p) =

{
w : (x, z) > 0, Xz ≥ γ

xTz

n
, θh(w) + θ`(w)p ≤M

xTz

n

}
.

(19)
When p = 1 we recover (18), i.e., we have that N (γ,M, 1) = N (γ,M).

We then ask H to satisfy a sufficient decrease condition on θp
` of the fol-

lowing type

θ`(w(∆))p ≤ (1− pαt(∆))θ`(w)p +M` max{∆q,∆2}, (20)

where q ∈ (1, 2]. When p = 1 and q = 2, we recover the case treated in [18].
Similarly to what has been showed in [18] for the neighborhood (18), we will

see in the next subsection that w ∈ N (γ,M, p) implies w(∆) ∈ N (γ,M, p)
whenever ∆ > 0 is sufficiently small.
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2.5. Use of second-order derivatives. It was proved in [18, Lemma 1]
that (20) is true for all ∆ > 0 when p = 1, q = 2, and H = ∇2

xx`(w). The
constant M` in (20) depends on the Lipschitz constant of the Hessian of the
Lagrangian. It is easy to see that (20) is also true, when p = 1, for all values
of ∆ > 0 such that

‖H −∇2
xx`(w)‖ ≤ N∆q−1, (21)

where N is any fixed positive constant and q ∈ (1, 2]. In this case, M` also
depends on N .

Moreover, (20) is also true, when p = 2, for all values of ∆ > 0 such that

‖[H −∇2
xx`(w)]∇x`(w)‖ ≤ N‖∇x`(w)‖∆q−1, (22)

where N is any fixed positive constant and q ∈ (1, 2]. More generally, we
have the following result.

Lemma 2.1. Let p, q ∈ [1, 2] and let H satisfy (22). Then the following
results hold.

i) There exists a constant M` > 0, that only depends on N , on bounds
for θ` and ‖∇2

xw`‖, and on a Lipschitz constant for ∇2
xw`, such that

θp
` (w(∆)) ≤ (1− pαt(∆))θp

` (w) +M` max{∆p,∆q,∆2}. (23)

ii) If in addition θ`(w) ≥ ε > 0 then there exists a constant M ′
`,p > 0 that

only depends on p and ε, on N , on bounds for θ` and ‖∇2
xw`‖, and on

a Lipschitz constant for ∇2
xw`, such that

θp
` (w(∆)) ≤ (1− pαt(∆))θp

` (w) +M ′
`,p max{∆q,∆2}. (24)

For the proof we need the following auxiliary result.

Lemma 2.2. Let p ∈ [1, 2] and g(x) = ‖x‖p. Then g is infinitely differen-
tiable on Rn \ {0} with

∇g(x) = p‖x‖p−2x, ∇2g(x) = p‖x‖p−2I + p(p− 2)‖x‖p−4xxT . (25)

If p > 1 then g is also continuously differentiable at x = 0 with ∇g(0) = 0,
and if p = 2, g is infinitely differentiable at x = 0 with ∇2g(0) = 2I.

Now let x, y be given (x, y 6= 0 if p = 1). Then

‖∇g(y)−∇g(x)‖ ≤ 23−pp‖y − x‖p−1. (26)

Furthermore, if ρ
def
= min0≤t≤1 ‖(1− t)x+ ty‖ > 0, there also holds

‖∇g(y)−∇g(x)‖ ≤ pρp−2‖y − x‖. (27)



10 R. SILVA, M. ULBRICH, S. ULBRICH AND L. N. VICENTE

The proof of this auxiliary lemma is given in the appendix.

Proof : (of Lemma 2.1) Let B` and B`′ be bounds for θ` and ‖∇2
xw`‖, re-

spectively. Then B`′ is also a Lipschitz constant for ∇x`. Denote by C`′ a
Lipschitz constant for ∇2

xw`.
We prove the result first for p > 1. Limit transition p ↓ 1 yields then the

case p = 1. We will apply Lemma 2.2 with g(x) = ‖x‖p.
We first prove the estimate

∇g(∇x`(w))T∇2
xw`(w)s(∆) ≤ −pαt(∆)θp

` (w) +R1(∆)

with R1(∆) = 2pNθp−1
` (w)∆q ≤ 2pNBp−1

` ∆q.
(28)

Consider first the case ∇x`(w) = 0. Then (28) holds true, since the left-hand
side is zero and the right-hand side reduces to R1(∆), which is zero, too.

In the case ∇x`(w) 6= 0 there holds

∇g(∇x`(w))T∇2
xw`(w)s(∆) = p‖∇x`(w)‖p−2∇x`(w)T∇2

xw`(w)s(∆)

≤ p‖∇x`(w)‖p−2∇x`(w)T (−αt(∆)∇x`(w)) + pN‖∇x`(w)‖p−1∆q−1‖s(∆)‖.

From this (28) follows immediately.
Next, we use (28) to derive the estimate

θp
` (w(∆)) = θp

` (w) +

∫ 1

0
∇g(∇x`(w + ts(∆)))T∇2

xw`(w + ts(∆))s(∆) dt

= θp
` (w) +∇g(∇x`(w))T∇2

xw`(w)s(∆) +R2(∆)

≤ (1− pαt(∆))θp
` (w) +R1(∆) +R2(∆),

where

|R2(∆)| ≤
∫ 1

0
|[∇g(∇x`(w + ts(∆)))T∇2

xw`(w + ts(∆))

−∇g(∇x`(w))T∇2
xw`(w)]s(∆)| dt

≤
∫ 1

0
|[∇g(∇x`(w + ts(∆)))−∇g(∇x`(w))]T∇2

xw`(w + ts(∆))s(∆)| dt

+

∫ 1

0
|∇g(∇x`(w)))T (∇2

xw`(w + ts(∆))−∇2
xw`(w))s(∆)| dt

def
= R3(∆) +R4(∆).
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Now with (26) and (25)

R3(∆) ≤ 1

p
B`′2

3−ppBp−1
`′ ‖s(∆)‖p−1‖s(∆)‖ ≤ 8Bp

`′∆
p,

R4(∆) ≤ 1

2
p‖∇x`(w)‖p−1C`′‖s(∆)‖2 ≤ 2pBp−1

` C`′∆
2.

This shows the first assertion.
2. To prove the second assertion we estimate, for all t ∈ [0, 1],

‖∇x`(w + ts(∆))−∇x`(w)‖ ≤
∫ t

0
‖∇2

xw`(w + τs(∆))s(∆)‖ dτ ≤ 2tB`′∆.

Hence, if we choose ∆ ≤ ∆`
def
= ε/(4B`′), we have

‖∇x`(w + ts(∆))−∇x`(w)‖ ≤ ε/2 ∀ t ∈ [0, 1].

Therefore, for all τ, t ∈ [0, 1],

‖(1− τ)∇x`(w) + τ∇x`(w + ts(∆))‖
≥ ‖∇x`(w)‖ − τ‖∇x`(w + ts(∆))−∇x`(w)‖ ≥ ε− τε/2 ≥ ε/2.

By using (27), we then obtain, for all ∆ ≤ ∆`,

R3(∆) ≤ 1

2
B`′p

( ε
2

)p−2
B`′‖s(∆)‖2 ≤ 2B2

`′p
( ε

2

)p−2
∆2.

This concludes the proof of the second assertion.

Let us now discuss the context of condition (22). The use of exact Hessians
H = ∇2

xx`(w) or of Hessian approximations H such that (21) holds are
certainly two ways to satisfy (22). However, this condition can be imposed
without requiring the Hessian of the Lagrangian or an entire approximation
thereof. In fact, we can first calculate the matrix-vector product

r(w) = ∇2
xx`(w)∇x`(w)

using finite difference approximations with an error of the order of ∆q−1:

‖r̃(w)− r(w)‖ = O(∆q−1).

Then, we require H to satisfy

Hr̃(w) = ∇x`(w), (29)

and there are several ways to achieve this last goal. For instance, one can
compute H from a quasi-Newton update where this condition is additionally
imposed. The numerical experiments reported in this paper were performed
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on the CUTEr collection test where second-order derivatives are available. A
numerical study on the imposition of (22) without second-order derivatives
is out of the scope of this paper. Condition (22) seems to be the strongest
relaxation of our algorithmic framework to the case where only first-order
derivatives are available for which one can prove global convergence to first-
order stationary points.

2.6. Step estimates. We start by recalling the result in [18, Lemma 13]
which estimates the variation on the complementarity measure µ along the
primal-dual step.

Lemma 2.3. For all ∆ > 0 it holds

X(∆)z(∆) ≤
(
γ + (1− γ)αn(∆)− αt(∆)(1− σ)

)
µe+ 4∆2e,

X(∆)z(∆) ≥
(
γ + (1− γ)αn(∆)− αt(∆)(1− σ)

)
µe− 4∆2e,

µ(∆) ≤
(
1− αt(∆)(1− σ)

)
µ+ 4∆2,

µ(∆) ≥
(
1− αt(∆)(1− σ)

)
µ− 4∆2. (30)

The following lemma estimates the variation in θh and θc along the primal-
dual step — the proofs are exactly as the corresponding ones in [18, Lemma 1].

Lemma 2.4. There exist positive constants Mh (depending on the Lipschitz
constant of ∇h) and Mc such that, for all ∆ > 0,

θh(w(∆)) ≤ (1− αn(∆))θh(w) +Mh∆
2, (31)

θc(w(∆)) ≤ (1− αn(∆))θc(w) +Mc∆
2. (32)

The next lemma is crucial in the analysis of global convergence of our
primal-dual interior-point filter method when using the new optimality filter
entries (12) and (13) since it analysis the behavior of these quantities along
the primal-dual step. It gives an upper bound for these two filter entries θg

at the new point w(∆), in terms of ∆ and of the corresponding values at the
previous point w. It also provides a lower bound for the decrease produced
on the linear model m by the step w(∆)− w.

Lemma 2.5. Let KKT(w) be invertible and assume that Xz ≥ γµe. Let also
H + 1

2X
−1Z be positive semidefinite on the null space of ∇h(x)T . Then, for

∆ > 0, it holds

θg(w(∆))− θg(w) ≤ −Mµα
t(∆)µ+Mθθ(w) +Mg∆

2, (33)
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for some positive constants Mµ, Mθ, and Mg and for all

c ≥ 3n2

1− σ

(
max

{
1,

1− σ

γ

})2

. (34)

For any ∆ > 0, we also have

m(w)−m(w(∆)) ≥Mµα
t(∆)µ−Mθθ(w). (35)

The constant Mθ depends on upper bounds for ‖KKT(w)−1‖ and ‖H‖.

Proof : We prove the result for the measure θg(w) given by (12). The proof
for (13) is essentially the same and differs only on the contribution of the
terms to Mθθ(w).

To prove (33) we start by applying a Taylor expansion

θg(w)− θg(w(∆)) = −∇θg(w)T (w(∆)− w)−O(∆2). (36)

Using the first block of equations of the system (10) and summing and sub-
tracting an appropriate term at the end, we have

−∇θg(w)T (w(∆)− w)

= −sx(∆)T∇x`(w)− sy(∆)T∇y`(w)− sz(∆)T∇z`(w)

− c+ n

n
(sx(∆)Tz + sz(∆)Tx)

= sx(∆)TH∆xt + sx(∆)T∇h(x)∆yt − sx(∆)T∆zt

− sy(∆)Th(x) + sz(∆)Tx− c+ n

n
(sx(∆)Tz + sz(∆)Tx)

= sx(∆)TH∆xt + sx(∆)T∇h(x)∆yt − sx(∆)T∆zt

− sx(∆)Tz − c

n
sx(∆)Tz − sy(∆)Th(x)− c

n
sz(∆)Tx

+
1

2
αt(∆)(∆xt)T (X−1Z)∆xt − 1

2
αt(∆)(∆xt)T (X−1Z)∆xt. (37)

We can decompose the term involving the Hessian of the Lagrangian in (37)
using (17) as follows

sx(∆)TH∆xt = αn(∆)(∆xn)TH∆xt + αt(∆)(∆xt)TH∆xt.

From the definition of the normal component of the step, we have

αn(∆)(∆xn)TH∆xt ≥ −‖∆xt‖ ‖H‖ ‖∆xn‖ ≥ −C1θ(w), (38)
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where C1 > 0 is an upper bound for ‖KKT(w)−1‖‖H‖‖∆xt‖. Thus, from
the assumption of the lemma,

sx(∆)TH∆xt +
αt(∆)

2
(∆xt)T (X−1Z)∆xt ≥ −C1θ(w). (39)

Using the second block equations in (9) and (10) we have, for the second and
sixth term of the last expression in (37) that

sx(∆)T∇h(x)∆yt = −αn(∆)h(x)T∆yt ≥ −C2‖h(x)‖ ≥ −C2θ(w), (40)

−sy(∆)Th(x) ≥ −C3‖h(x)‖ ≥ −C3θ(w), (41)

with C2 and C3 positive constants representing upper bounds for the norms
of ∆yt and sy(∆), respectively.

By the third block of equations in (9) and (10) we have

− c

n
sx(∆)Tz − c

n
sz(∆)Tx =

= − c
n
αn(∆)(∆xn)Tz − c

n
αt(∆)(∆xt)Tz

− c

n
αn(∆)(∆zn)Tx− c

n
αt(∆)(∆zt)Tx

= − c
n
αn(∆)

(
(∆xn)Tz + (∆zn)Tx

)
− c

n
αt(∆)

(
(∆xt)Tz + (∆zt)Tx

)
= − c

n
αn(∆)

(
(∆xn)Tz + (∆zn)Tx

)
− c

n
αt(∆)(−n(1− σ)µ)

≥ −C4θ(w) + [c (1− σ)]αt(∆)µ, (42)

where C4 > 0 depends on c and on upper bounds for the norms of KKT(w)−1,
x, and z.
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Using again the third block of equations in (10), we obtain

− sx(∆)T (∆zt + z)− 1

2
αt(∆)(∆xt)T (X−1Z)∆xt =

= −(αn(∆)∆xn + αt(∆)∆xt)T (∆zt + z)− 1

2
αt(∆)(∆xt)T (X−1Z)∆xt

= −αn(∆)(∆xn)T (∆zt + z)− αt(∆)(∆xt)T (∆zt + z)

− 1

2
αt(∆)(∆xt)T (X−1Z)∆xt

≥ −C5θ(w)− αt(∆)(∆xt)T (−X−1Z∆xt − (1− σ)X−1µe+ z)

− 1

2
αt(∆)(∆xt)T (X−1Z)∆xt

= −C5θ(w) +
1

2
αt(∆)(∆xt)TX−1Z∆xt − αt(∆)(∆xt)T (z − (1− σ)X−1µe)

= −C5θ(w) +
1

2
αt(∆)(Z∆xt)T (X−1Z−1)(Z∆xt)

− αt(∆)(Z∆xt)T (e−X−1Z−1(1− σ)µe)

≥ −C5θ(w) +
1

2
αt(∆)

1

‖XZ‖
‖Z∆xt‖2

− αt(∆)‖Z∆xt‖‖e−X−1Z−1(1− σ)µe‖

≥ −C5θ(w) + αt(∆)
1

2nµ
‖Z∆xt‖2 − αt(∆)‖Z∆xt‖‖e−X−1Z−1(1− σ)µe‖

= −C5θ(w) +
1

µ
αt(∆)‖Z∆xt‖

(
1

2n
‖Z∆xt‖ − µ‖e−X−1Z−1(1− σ)µe‖

)
,

(43)

with C5 > 0 an upper bound for ‖KKT(w)−1‖‖z + ∆zt‖.
Now, we consider two cases.
Case 1:

1

2n
‖Z∆xt‖ ≥ µ‖e−X−1Z−1(1− σ)µe‖.

Then, from (43), we have

−sx(∆)T (∆zt + z)− 1

2
αt(∆)(∆xt)T (X−1Z)∆xt ≥ −C5θ(w). (44)

Case 2:
1

2n
‖Z∆xt‖ < µ‖e−X−1Z−1(1− σ)µe‖. (45)
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Then, from Xz ≥ γµe, we get

1

xizi
≤ 1

γµ
, i = 1, . . . , n,

and, using (45),

− αt(∆)‖Z∆xt‖‖e−X−1Z−1(1− σ)µe‖
≥ −αt(∆)2nµ‖e−X−1Z−1(1− σ)µe‖2

≥ −αt(∆)2nµ

(√
nmax

{
1,

1− σ

γ

})2

= −αt(∆)2n2µ

(
max

{
1,

1− σ

γ

})2

.

Thus, from (43),

−sx(∆)T (∆zt + z)− 1

2
αt(∆)(∆xt)T (X−1Z)∆xt (46)

≥ −C5θ(w)− αt(∆)‖Z∆xt‖‖e−X−1Z−1(1− σ)µe‖

≥ −C5θ(w)− 2n2
(

max

{
1,

1− σ

γ

})2

αt(∆)µ. (47)

Now, from (34), (36), (37), (38), (39), (40), (41), (42), (44), and (47), and
by defining Mg > 0 (depending on a bound for the second derivatives of
θg(w)) and Mθ = C1 + C2 + C3 + C4 + C5 > 0, we obtain

θg(w)− θg(w(∆)) ≥Mµα
t(∆)µ−Mg∆

2 −Mθθ(w),

where

Mµ = n2
(

max

{
1,

1− σ

γ

})2

.

We have thus proved (33).
We can now easily show (35). In fact, fromm(w(∆)) = m(w)+θg(w)Ts(∆),

we have that

m(w)−m(w(∆)) ≥Mµα
t(∆)µ−Mθθ(w).

We show next that for any ε > 0 and all p ∈ [1, 2], q ∈ (1, 2] there exists a
∆min(ε) > 0 such that for any point w ∈ N (γ,M, p) with θ`(w) + µ ≥ ε we
have also w(∆) ∈ N (γ,M, p) for all 0 < ∆ ≤ ∆min(ε).
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We need the following auxiliary result, which will be used several times in
the convergence theory.

Lemma 2.6. If w ∈ N (γ,M, p) and θ`(w) + µ ≥ ε for some ε > 0 then

µ ≥ min

{
ε

2
,
(ε/2)p

M

}
def
= a(ε).

Proof : Since θ`(w) + µ ≥ ε, we have either µ ≥ ε/2 or θ`(w) ≥ ε/2. In the
second case, using the fact that w ∈ N (γ,M, p), we obtain, from θh(w) +
θ`(w)p ≤Mµ, that

µ ≥ θ`(w)p

M
≥ (ε/2)p

M
.

So, combining both cases, we have

µ ≥ min

{
ε

2
,
(ε/2)p

M

}
.

Lemma 2.7. Let γ ∈ (0, 1), M > 0, p, q ∈ (1, 2] and let (22) hold. Moreover,
assume that w ∈ N (γ,M, p), KKT(w) is invertible, and θ`(w)+µ ≥ ε. Then
there exists a constant ∆min(ε) dependent on an upper bound on ‖KKT(w)−1‖
such that, if 0 < ∆ ≤ ∆min(ε), then w(∆) ∈ N (γ,M, p).
Remark 2.1.

(1) If the exact Hessian H = ∇2
xx`(w) is used then Lemma 2.7 holds

with some ∆min > 0 not dependent on ε when p = 1 (see [18]). This
behavior indicates that the neighborhood does not prevent fast local
convergence.

(2) By using Lemma 2.1.ii) it is possible to extend Lemma 2.7 to the case

p = 1 if the condition θh(w) + θ`(w)p ≤ M xT z
n in the definition of

the neighborhood N (γ,M, p) is replaced by θh(w) ≤ M xT z
n , θ`(w)p ≤

M xT z
n . This modification in the definition of the central neighborhood

would still retain the main global convergence properties.

Proof : By Lemma 2.6 we have

µ ≥ min

{
ε

2
,
(ε/2)p

M

}
def
= a(ε).
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The result will be proved for

∆min(ε) = min

{
1,

√
σ(1− γ)a(ε)

4(1 + γ)
,

σ(1− γ)

4(1 + γ)C(M + n)
,

(
σMa(ε)

Mh +M` + 4M

) 1
min{p,q}

,

(
σMb(ε)

Mh +M` + 4M

) 1
min{p,q}−1

}
,

(48)

where C is an upper bound for ‖KKT(w)−1‖ and

b(ε)
def
=

1

C(max{M,M
1
pa(ε)

1
p−1}+ n)

.

1. We first show that X(∆)z(∆) ≥ γµ(∆)e holds for all 0 < ∆ ≤ ∆min(ε)
with ∆min(ε) given in (48).

Following exactly the same steps as in the first part of the proof of [18,
Lemma 2], we can claim that X(∆)z(∆) ≥ γµ(∆)e holds provided

∆ ≤ min

{√
σ(1− γ)µ

4(1 + γ)
,

σ(1− γ)

4(1 + γ)C(M + n)

}
. (49)

The bound (49) holds since µ ≥ a(ε) and ∆ ≤ ∆min(ε). This part of the
proof is exactly the same as in [18, Lemma 2], since it involves blocks of the
primal-dual system unaffected by the possibility of having H 6= ∇2

xx`(w).
2. We prove now that also the condition

θh(w(∆)) + θ`(w(∆))p ≤Mµ(∆) for all 0 < ∆ ≤ ∆min(ε) (50)

holds with ∆min(ε) defined in (48).
We first note that ‖sn‖ ≤ C(M + n)µ as in [18], but the upper bound on

the norm of st is now — due to the changes in the definition of the central
neighborhood — of the form

‖st‖ ≤ C((Mµ)
1
p + (1− σ)n

1
2µ) ≤ C(Mµ)

1
p + nµ.

We obtain

δ
def
= max{‖sn‖, ‖st‖} ≤ C(max{Mµ, (Mµ)

1
p}+ nµ). (51)
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From (23), (31), and αt(∆) ≤ αn(∆), we know that

θ`(w(∆))p ≤ (1− αt(∆))θ`(w)p +M` max{∆p,∆q,∆2},
θh(w(∆)) ≤ (1− αt(∆))θh(w) +Mh∆

2.

Using θh(w) + θ`(w)p ≤Mµ we get

θh(w(∆)) + θ`(w(∆))p ≤ (1− αt(∆))Mµ+ (Mh +M`) max{∆2,∆q,∆p}.
On the other hand, by (30),

Mµ(∆) ≥ (1− αt(∆))Mµ+ σαt(∆)Mµ− 4M∆2.

Therefore, (50) holds whenever

(Mh +M` + 4M) max{∆2,∆q,∆p} ≤ σαt(∆)Mµ.

Now we have ∆min(ε) ≤ 1 and thus, from p, q ∈ (1, 2], (50) is true when

(Mh +M` + 4M)∆min{p,q} ≤ σαt(∆)Mµ,

which by (15) is implied by

∆ ≤ min

{(
σMµ

Mh +M` + 4M

) 1
min{p,q}

,

(
σMµ

(Mh +M` + 4M)δ

) 1
min{p,q}−1

}
.

(52)
By using (51) we have

µ

δ
≥ 1

C(max{M,M
1
pµ

1
p−1}+ n)

≥ 1

C(max{M,M
1
pa(ε)

1
p−1}+ n)

def
= b(ε).

Therefore, (52) is implied by ∆ ≤ ∆min(ε) with ∆min(ε) defined in (48).
3. The proof that X(∆)z(∆) > 0 holds for all ∆ such that (48) is satisfied

is exactly as in [18, Lemma 2].

3. The interior-point filter method
The filter entries in [18] were designed to meet the goal of reducing feasi-

bility and centrality, combined by θ(w) = θc(w) + θh(w), and simultaneously
complementarity and criticality, measured by µ + θ`(w). This approach dif-
fered from the traditional choices of the filter entries in filter methods in two
respects: by adding centrality to feasibility in the first filter entry, and by
replacing the objective function in the second filter entry by the optimal-
ity measure µ + θ`(w). In this paper, we use a similar approach, choosing
θ(w) and θg(w) to form each filter entry, but where now θg(w) is given either
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by (12) or by (13). The difference thus consists in the second filter entry
which now has a direct contribution of the objective function. The other
important modification to the algorithm introduced in [18] is the possibility
of using approximations H to the Hessian of the Lagrangian, provided they
satisfy (22), and the appropriate adjustment in the definition of the central
neighborhood in (19).

Before we describe the algorithm in detail we need to discuss and motivate a
number of its components. We state first the definitions of dominance and fil-
ter used by the algorithm. A point w, or the corresponding pair (θ(w), θg(w)),
is said to dominate a point w′, or the corresponding pair (θ(w′), θg(w

′)), if

θ(w) ≤ θ(w′) and θg(w) ≤ θg(w
′),

or, equivalently, if the following inequality is violated:

max{θ(w)− θ(w′), θg(w)− θg(w
′)} > 0.

A filter is a finite subset F ⊂ R2 consisting of pairs (θf , θf
g ), with θf def

= θf
h+θf

c ,
such that no pair dominates any of the others.

As it is well known in filter methods, the requirement that a new iterate is
not dominated by any of the filter entries is not enough, and some form of
sufficient acceptance is necessary. We choose to work with an envelope type
filter. Let γF ∈ (0, 1/2) be fixed. The point w is acceptable to the filter F
if, for all (θf , θf

g ) ∈ F , it holds

max{θf − θ(w), θf
g − θg(w)} > γFθ

f .

The procedure to add entries to the filter is summarized below. Note that
if w is added to the filter, all previous entries that are dominated by the
new entry are removed. By adding w to the filter F we mean the following
operation:

F 7→ F ={(θ(w), θg(w))}∪{
(θf , θf

g ) ∈ F : min{θf − θ(w), θf
g − θg(w)} < 0

}
.

Our primal-dual interior-point filter method generates iterates wk+1 =
wk(∆k) 6= wk acceptable to the filter. Not all new iterates wk+1 are, however,
added to the filter.

In general, the primal-dual interior-point filter method imposes a sufficient
reduction criterion relating the actual reduction in θg with the reduction
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predicted by its model mk, of the form ρk ≥ η where

ρk
def
=

θg(wk)− θg(wk(∆k))

mk(wk)−mk(wk(∆k))

and η ∈ (0, 1) is a preset constant. However, the test of this condition is
skipped if

mk(wk)−mk(wk(∆k)) < κθ(wk)
2,

where κ ∈ (0, 1) is a preset constant. In other words, the sufficient reduction
criterion ρk ≥ η is only imposed when the reduction in the model mk is
sufficiently good compared with θ(wk)

2. In the situation where ρk < η and
mk(wk)−mk(wk(∆k)) < κθ(wk)

2, the new iterate wk+1 = wk(∆k) is accepted
and the previous point wk is added to the filter (guaranteeing that this new
filter entry satisfies θ(wk) > 0). This criterion for adding points wk to the
filter prevents us from building up a filter for which the computation of
acceptable points would require too small trust-region radii.

If ρk ≥ η and mk(wk)−mk(wk(∆k)) ≥ κθ(wk)
2, the iterate wk is not added

to the filter. This situation is the only one where a new iterate wk+1 = wk(∆k)
is computed and the previous one, wk, is not added to the filter.

If θ(wk) is too large compared to ∆k (or an appropriate power of ∆k), the
algorithm enters a restoration phase with the purpose of reducing θ. More
precisely, a restoration algorithm is called if

θ(wk) > ∆k min{γ1, γ2∆
β
k},

where γ1, γ2, and β are preset positive constants. The restoration algorithm
must produce a new iterate wk+1 that is not only acceptable to the filter but
also satisfies θ(wk+1) ≤ ∆k min{γ1, γ2∆

β
k}. In this situation, the previous

iterate wk is added to the filter (guaranteeing also that this new filter entry
also satisfies θ(wk) > 0).

The new primal-dual interior-point filter method satisfying the above fea-
tures can now be presented (see Algorithm 3.1 and Figure 1). Note that
step 5 guarantees that the potentially new iterate wk(∆k) is always accept-
able to the filter. In the following algorithm, the current iterate in iteration k
is denoted by wk and the normal and tangential trial steps are denoted by
st
k and sn

k , respectively. Further, the step sizes αn
k(∆) and αt

k(∆) are defined
according to (14) and (15), respectively, with sn = sn

k and st = st
k. Similarly,

wk(∆) and sk(∆) are defined by (16) and (17), respectively, with w = wk,

sn/t = s
n/t
k , and αn/t(∆) = α

n/t
k (∆).
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Algorithm 3.1 (Primal-dual interior-point filter method).

0. Choose σ ∈ (0, 1), ν ∈ (0, 1) γ1, γ2 > 0, 0 < β, η, κ < 1, γF ∈ (0, 1/2),
and p ∈ [1, 2]. Set F := ∅. Choose (x0, z0) > 0 and y0, and determine
γ ∈ (0, 1) such that X0z0 ≥ γµ0 with µ0 = xT

0 z0/n. Further, choose
M > 0 such that θh(w0) + θ`(w0)

p ≤ Mµ0. Choose ∆in
0 > 0 and set

k := 0.
1. Set µk := xT

k zk/n and compute sn
k and st

k by solving the linear systems
(9) and (10), respectively, with (w, µ) = (wk, µk).

2. Compute ∆′
k ∈ [0,∆in

k ] such that

xk(∆) > 0, zk(∆) > 0, Xk(∆)zk(∆) ≥ γµk(∆)e for all ∆ ∈ [0,∆′
k]

and such that ∆′
k is not smaller than the largest νr∆in

k , r = 0, 1, . . .,
having this property.

3. Compute the largest ∆′′
k = νj∆′

k, j = 0, 1, . . ., such that

θh(wk(∆
′′
k)) + θ`(wk(∆

′′
k))

p ≤Mµk(∆
′′
k).

Set ∆k := ∆′′
k.

4. If θ(wk) ≤ ∆k min{γ1, γ2∆
β
k} then continue in step 5. Otherwise add

wk to the filter and use a restoration algorithm to produce a point
wk+1 such that:

wk+1 ∈ N (γ,M, p) with µk+1 = xT
k+1zk+1/n;

wk+1 is acceptable to the filter;
θ(wk+1) ≤ ∆in

k+1 min{γ1, γ2(∆
in
k+1)

β} with ∆in
k+1 = ∆k.

Set ∆in
k+1 := ∆k, k := k + 1, and go to step 1.

5. If wk(∆k) is not acceptable to the filter (with wk considered in the
filter if mk(wk)−mk(wk(∆k)) < κθ(wk)

2), then go to step 11.
6. If mk(wk)−mk(wk(∆k)) = 0, then set ρk := 0. Otherwise, compute

ρk =
θg(wk)− θg(wk(∆k))

mk(wk)−mk(wk(∆k))
.

7. If ρk < η and mk(wk)−mk(wk(∆k)) ≥ κθ(wk)
2 then go to step 11.

8. If mk(wk)−mk(wk(∆k)) < κθ(wk)
2 then add wk to the filter.

9. Choose ∆in
k+1 ≥ ∆k.

10. Set wk+1 := wk(∆k), k := k + 1, and go to step 1.
11. Set wk+1 := wk, s

n
k+1 := sn

k , s
t
k+1 := st

k, ∆′
k+1 := ∆k/2, and ∆in

k+1 :=
∆′

k+1. Set k := k + 1 and go to step 3.



IPFILTER: NEW FILTER OPTIMALITY MEASURES AND COMPUTATIONAL RESULTS 23

In practice, step 2 would be implemented as ∆′
k = τk∆̂

′
k, where ∆̂′

k is the
largest value of ∆ such that (xk(∆), zk(∆)) ≥ 0 and Xk(∆)zk(∆) ≥ γµk(∆)e
and τk is a parameter in (ν, 1) to enforce (xk(∆), zk(∆)) > 0. The adjustment
of τk would be important to achieve a rapid rate of local convergence. We
point out that the calculation of ∆k is split in steps 2 and 3 for good reasons.
In fact, in step 2 it is possible to determine explicitly ∆′

k (more precisely

∆̂′
k). However, because of the nonlinearity of θh and θ`, that is not the

case in step 3, where we know from Lemma 2.7 that although there exists
a sufficiently small ∆′′

k satisfying θh(wk(∆
′′
k)) + θ`(wk(∆

′′
k))

p ≤ Mµk(∆
′′
k), it

cannot be determined explicitly.
In practice, step 1 of the algorithm would start by checking the satisfaction

of a stopping criterion of the form θ(wk) + θ`(wk) + µk ≤ ε, for small ε > 0.
To be able to analyze the asymptotic global convergence properties of the
algorithm we did not include any stopping criterion.

4. Global convergence to first-order critical points
We will assume that the functions f and h defining problem (2) and the

sequence of iterates {wk} generated by the primal-dual interior-point filter
method (Algorithm 3.1) satisfy the following set of assumptions.

Assumption 4.1.

(A1) The sequence {(xk, yk, zk)} is bounded.
(A2) The derivatives ∇h and ∇2

xw` exist and are Lipschitz continuous in an
open set containing all the iterates (xk, yk, zk) and the line segments
[wk, wk + sk(∆k)].

(A3) The sequence {Hk} is bounded. The choice of the Hessian Hk must
allow the satisfaction of the sufficient decrease condition (23), e.g.,
should satisfy the condition (22).

(A4) The matrix Hk + 1
2X

−1
k Zk is positive semidefinite on the null space of

∇h(xk)
T for all k.

(A5) There exists C > 0 such that for all k it holds ‖KKT(wk)
−1‖ ≤ C.

Assumptions (A1)-(A3) are standard in the globalization of algorithms
for nonlinear programming. Assumption (A4) is satisfied, for instance, for
all positive semidefinite choices of Hk. Moreover, Assumption (A4) holds
also in a neighborhood of a regular point w∗ satisfying the second-order
sufficient conditions and strict complementarity, for the particular choice
Hk = ∇2

xx`(wk). Therefore, Assumption (A4) can be ensured globally by
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θ(wk) ≤ ∆k min{γ1, γ2∆
β
k} ?

�
�

�
�

�
�

��
true

H
H

H
Hjfalse

wk(∆k) is acceptable in filter
(with wk considered in filter if

mk(wk)−mk(wk(∆k)) < κθ(wk)
2)?

add wk to filter
enter restoration

compute wk+1 such that:
wk+1 is acceptable to filter,

wk+1 ∈ N (γ,M, p),
θ(wk+1) ≤ ∆in

k+1 min{γ1, γ2(∆
in
k+1)

β},
and return to step 1 with ∆in

k+1 = ∆k

?

true

H
HHHHH

Hj
false

∆in
k+1 := ∆′

k+1 := ∆k/2
return to step 3

ρk ≥ η
or

mk(wk)−mk(wk(∆k)) < κθ(wk)
2?

�
�

�
��

false

?

true

add wk to filter if
mk(wk)−mk(wk(∆k)) < κθ(wk)

2

∆in
k+1 ≥ ∆k

wk+1 = wk(∆k)
return to step 1

Figure 1. Steps 4-11 of Algorithm 3.1.

choosing Hk sufficiently positive definite and is implied locally by standard
second-order sufficiency conditions.

These assumptions will allow us to prove global convergence to KKT points,
which, of course, are feasible. Thus, this set of assumptions restrict in some
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form the analysis to problems that are not infeasible. As pointed out in [18], it
is the uniform boundedness of the KKT(wk)

−1 assumed in Assumption (A.5)
that is responsible for ruling out infeasibility.

We will prove in this paper the following global convergence result.

Theorem 4.1. Under Assumption 4.1, the sequence of iterates {wk} gener-
ated by the primal-dual interior-point method (Algorithm 3.1) satisfies

lim inf
k→∞

θ(wk) + θ`(wk) + µk = 0.

The proof of Theorem 4.1 requires the adaption of the analysis of global
convergence of [18] to the new optimality filter entries (12) and (13) intro-
duced in this paper.

The first result is a direct consequence of Assumptions 4.1 and of Lemmas
2.4, 2.5 and 2.7.

Lemma 4.1. The following hold:

i) The sequences {θh(wk)}, {θc(wk)}, {θ`(wk)}, {µk}, and {θg(wk)} are
bounded.

ii) The constants Mh, Mc, Mµ, Mg, and Mθ in Lemma 2.4 and Lemma
2.5 are bounded for all k.

iii) For all ε > 0, there exists a positive constant ∆min(ε) such that, for
all k for which θ`(wk) + µk ≥ ε, the conditions in steps 2 and 3 are
satisfied for all ∆′

k,∆
′′
k ∈ [0,∆min(ε)]. Thus, steps 2 and 3 leave ∆in

k

unchanged for 0 ≤ ∆in
k ≤ ∆min(ε) and we have ∆k = ∆in

k .

iv) It holds that ‖sn
k‖ ≤ C(M + (n2 − n)1/2)µk and ‖st

k‖ ≤ C((Mµk)
1
p +

(1− σ)n1/2µk) for all k.

As in [18], note that the result iv) follows from ‖Xz − µe‖ ≤ (n2 − n)1/2µ
and ‖(1−σ)µe‖ ≤ (1−σ)n1/2µ. Given the fact that {(xk, yk, zk)} is bounded
and αn

k and αt
k do not exceed one, one concludes from Lemma 4.1.iv that the

sequence {s(∆k)} is also bounded.
We show in the next lemma, as a direct consequence of the mechanisms of

the algorithm, that the first components of all filter entries are positive.

Lemma 4.2. If wk is added to the filter, then θ(wk) > 0.

Proof : An iterate wk is added to the filter either in step 4 or in step 8. In
the first case (step 4), we see that θ(wk) > ∆k min{γ1, γ2∆

β
k} > 0. In the
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second case (step 8), we see from Lemma 2.5, (35) that

θ(wk)
2 >

1

κ
(mk(wk)−mk(wk(∆k)) ≥

1

κ
(Mµα

t
kµk −Mθθ(wk)).

So, by contradiction, if we assume θ(wk) = 0, we would get

0 = θ(wk)
2 >

1

κ
(mk(wk)−mk(wk(∆k)) ≥

1

κ
Mµα

tµk ≥ 0.

Thus, in both cases, θ(wk) > 0.

It also requires no analysis and follows directly from the structure of the
algorithm that new iterates are always acceptable to the filter.

Lemma 4.3. In all iterations k ≥ 0, the current iterate wk is acceptable to
the filter.

Proof : See [18, Lemma 5].

The next four lemmas provide some technical results needed to establish
global convergence to first-order critical points. The first of these lemmas es-
tablishes a crucial inequality showing that feasibility and centrality at wk(∆k)
are of the order of ∆2

k.

Lemma 4.4. There exists a ∆r > 0 such that, if ∆k ≤ ∆r in step 5, it holds
that

θ(wk(∆k)) ≤ (Mh +Mc)∆
2
k.

Proof : See [18, Lemma 6].

It is important to note that Lemma 4.4 (and the next two Lemmas 4.5 and
4.6) deal with the situation in step 5 of the algorithm. Step 5 is preceded by
step 4, and thus, in step 5 it always holds that

θ(wk) ≤ ∆k min{γ1, γ2∆
β
k}, (53)

since otherwise step 4 calls restoration instead of step 5. We point out that it
is (53) that enables to show θ(wk(∆k)) = O(∆2

k) for sufficiently small values
of ∆k in Lemma 4.4.

The next two lemmas establish that wk(∆k) is acceptable to the filter in
step 5 for sufficiently small values of ∆k. The results are similar to those
proved in [18]. In both lemmas we analyze the acceptability of wk(∆k) to
the filter with wk considered in the filter if mk(wk)−mk(wk(∆k)) < κθ(wk)

2.
The latter is needed since, in this situation, wk will possibly be added to the
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filter in step 8. First, we derive a result that depends on the current filter
entries.

Lemma 4.5. Suppose that θ(wk) + θ`(wk) + µk ≥ ε > 0. Then there exists
∆a(ε) > 0 depending on ε and on the values of the filter entries, such that, if

0 < ∆k ≤ ∆a(ε),

then wk(∆k) is acceptable to the filter in step 5 (with wk considered in the
filter when mk(wk)−mk(wk(∆k)) < κθ(wk)

2).

Proof : Since 0 < γF < 1/2 < 1, we have from Lemma 4.2 that

θF
def
= min

(θf ,thetaf
g )∈F

(1− γF)θf > 0.

Consider first the case where θ(wk) ≥ ε/2. Then wk(∆k) is acceptable to
the filter (with wk considered in the filter when mk(wk) − mk(wk(∆k)) <
κθ(wk)

2) if

θ(wk(∆k)) ≤
1

2
min{θF , (1− γF)ε/2} < min{θF , (1− γF)ε/2}. (54)

We also know from Lemma 4.4 that

θ(wk(∆k)) ≤ (Mh +Mc)∆
2
k

holds for ∆k ≤ ∆r. Thus, (54) is satisfied for ∆k ≤ ∆
(1)
a (ε) with ∆

(1)
a (ε) > 0

depending only on θF , ε, Mh, Mc, γF , and ∆r.
Otherwise we have θ`(wk) + µk ≥ ε/2. Thus, Lemma 2.6 yields

µk ≥ a(ε/2).

If wk is not considered in the filter in step 5, then a similar argument,

with θ(wk(∆k)) ≤ 1
2θF instead of (54), shows that if ∆k ≤ ∆

(1)
a (ε) then

wk(∆k) is acceptable to the filter. Moreover wk(∆k) is also acceptable, with
wk considered in the filter when mk(wk) − mk(wk(∆k)) < κθ(wk)

2, if, in
addition,

θg(wk(∆k))− θg(wk) < −γFθ(wk). (55)

In the rest of the proof we show how this bound can be achieved for suffi-
ciently small ∆k. Since step 5 is reached, we know that

θ(wk) ≤ γ2∆
1+β
k .
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On the other hand, we obtain from µk ≥ a(ε/2) and Lemma 2.5 that

θg(wk(∆k))− θg(wk) ≤ −Mµα
t
ka(ε/2) +Mθθ(wk) +Mg∆

2
k

≤ −Mµα
t
ka(ε/2) +Mθγ2∆

1+β
k +Mg∆

2
k.

Hence it is sufficient to show that

−Mµα
t
ka(ε/2) +Mg∆

2
k < −(γF +Mθ)γ2∆

1+β
k .

Since ‖sn
k‖ and ‖st

k‖ are bounded by a constantMs and αt
k = min{1, ∆k

‖sn
k‖
, ∆k

‖st
k‖
},

we have for all ∆k ≤Ms, that αt
k ≥ ∆k/Ms. Thus (55) holds if

Mg∆k + (γF +Mθ)γ2∆
β
k ≤

Mµa(ε/2)

2Ms
<
Mµa(ε/2)

Ms
,

which in turn holds for all ∆k ≤ ∆
(2)
a (ε) with ∆

(2)
a (ε) > 0 depending only on ε,

Mg, Mθ, γF , γ2, β, Mµ, a(ε/2), andMs. Taking ∆a(ε) = min{∆(1)
a (ε),∆

(2)
a (ε)}

concludes the proof.

Now we derive a similar result that does not depend on the values of the
filter entries, but where we impose a condition relating θ(wk) and ∆k.

Lemma 4.6. Suppose that for given ε > 0

θ`(wk) + µk ≥ ε and θ(wk) >
∆k

2
min{γ1, γ2(∆k/2)β}. (56)

Then there exists ∆f(ε) > 0 depending on ε, but not on the filter entries,
such that, if

0 < ∆k ≤ ∆f(ε),

then wk(∆k) is acceptable to the filter in step 5 (with wk considered in the
filter when mk(wk)−mk(wk(∆k)) < κθ(wk)

2).

Proof : Since, by Lemma 4.3, wk is acceptable to the filter, then wk(∆k) is
acceptable to the filter (with wk considered in the filter when mk(wk) −
mk(wk(∆k)) < κθ(wk)

2) if

θ(wk(∆k)) ≤ θ(wk)

and

θg(wk(∆k)) < θg(wk)− γFθ(wk). (57)

We know from Lemma 4.4 that, if ∆k ≤ ∆r then

θ(wk(∆k)) ≤ (Mh +Mc)∆
2
k.
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Hence, θ(wk(∆k)) ≤ θ(wk) is ensured by the second inequality in (56) if in
addition

(Mh +Mc)∆k ≤
1

2
min{γ1, γ2(∆k/2)β}. (58)

Moreover, the first inequality in (56) and Lemma 2.6 yield

µk ≥ a(ε).

Therefore, we have by Lemma 2.5

θg(wk(∆k))− θg(wk) ≤ −Mµα
t
ka(ε) +Mθθ(wk) +Mg∆

2
k.

We have pointed out before that αt
k ≥ ∆k/Ms for all ∆k ≤ Ms, see the end

of the proof of Lemma 4.5. So,

θg(wk(∆k))− θg(wk) ≤ ∆k

(
−Mµa(ε)

Ms
+Mg∆k

)
+Mθθ(wk).

Since we are concerned with step 5 of the algorithm, we know that θ(wk) ≤
γ2∆

1+β
k , see (53). Hence, we obtain (57) whenever

Mg∆k + (γF +Mθ)γ2∆
β
k ≤

Mµa(ε)

2Ms
<
Mµa(ε)

Ms
. (59)

The requirements 0 < ∆k ≤ ∆r, (58) and (59) on ∆k are obviously satisfied
if 0 < ∆k ≤ ∆f(ε) with some constant ∆f(ε) > 0.

Now we are ready to derive asymptotic results. We appeal first to a com-
monly used argument in filter convergence proofs to show that lim infk→∞ θ(wk) =
0 when infinitely many iterates are added to the filter.

Lemma 4.7. From the moment that wk is added to the filter, the filter always
contains an entry that dominates wk.

Proof : See [18, Lemma 9].

Lemma 4.8. Suppose there are infinitely many points added to the filter.
Then there exists a subsequence {ki} such that wki

is added to the filter and

lim
i→∞

θ(wki
) = 0. (60)

Proof : See [18, Lemma 10].
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As we pointed out in [18], Lemma 4.8 asserts (60) only for some partic-
ular subsequence {wki

} of iterates added to the filter and not for any such
subsequence. The reason is that acceptability to a pair does not imply ac-
ceptability to a dominated pair. If required, this effect can be circumvented
in several ways. The easiest approach is to never remove dominated entries
from the filter. Then the above proof can be easily modified to establish
that (60) holds for any infinite subsequence of iterates that are added to the
filter. An alternative to derive this stronger result, if one wishes to remove
dominated filter entries, can also be obtained by slightly modifying the filter
acceptance test, see [5] and [6, §15.5]. In fact, if we require

either θf − θ(w) > γFθ
f or θf

g − θg(w) > γFθ(w),

then acceptability to a pair implies acceptability to all dominated pairs and
it is straightforward to prove that (60) holds for any infinite subsequence of
iterates added to the filter, see [6, Lem. 15.5.2].

We now proceed with the analysis. The next step is to show that when
there are infinitely many iterates added to the filter, then the sequence {ki}
of Lemma 4.8 must contain a subsequence converging to a first-order KKT
point. Note that the subsequence {ki} must contain either a subsequence
where restoration is invoked, or a subsequence where the iterates are added
to the filter in step 8. We consider the two cases separately in the Lemmas 4.9
and 4.10. We start by considering an infinite number of iterations in {ki} at
which restoration is invoked.

Lemma 4.9. Suppose that there exists an infinite sequence {ki} of iterations
at which restoration is invoked and for which holds that

lim
i→∞

θ(wki
) = 0.

Then {ki} contains a subsequence {k′j} with

lim
j→∞

θ(wk′j
) = 0, lim

j→∞
θ`(wk′j

) + µk′j
= 0.

Proof : Let ki be a subsequence where restoration is invoked for every ki (and
thus wki

is added to the filter) such that limi→∞ θ(wki
) = 0. For deriving a

contradiction, assume that there exists ε > 0 with

θ`(wki
) + µki

≥ ε ∀ i.
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By Lemma 2.6 this implies that

µki
≥ a(ε)

def
= ε∗ > 0 ∀ i.

Since the restoration is invoked it must hold that

θki
> ∆ki

min{γ1, γ2∆
β
ki
}. (61)

Therefore, we have

0 = lim
i→∞

θki
= lim

i→∞
∆ki

and thus we can find K0 > 0 such that ∆ki
< ν∆min(ε∗) for all ki ≥ K0 with

∆min(ε∗) (depending on ε∗) from Lemma 4.1, iii), with ν ∈ (0, 1). We show
next that

∆ki−1 ≤ 2∆ki
, ∆ki

= ∆in
ki

for all ki ≥ K0, (62)

which then yields

0 = lim
i→∞

θki
= lim

i→∞
∆ki

= lim
i→∞

∆ki−1. (63)

In fact, ∆ki
< ν∆min(ε∗) for ki ≥ K0 shows that ∆ki

= ∆in
ki

for ki ≥ K0, since,

by Lemma 4.1, iii), step 2 and step 3 yield only ∆ki
6= ∆in

ki
if ∆in

ki
> ∆min(ε∗).

But then the result of step 2 and step 3 would be a radius ∆ki
> ν∆min(ε∗),

which is not the case for ki ≥ K0. Thus, we have ∆ki
= ∆in

ki
for ki ≥ K0 and

conclude that ∆ki
≥ ∆ki−1/2 for all ki ≥ K0. Thus, (62) and (63) holds.

We show next that there exists K1 ≥ K0 − 1 such that

µki−1 ≥ ε∗/2 for all ki − 1 ≥ K1. (64)

In fact, we have either wki
= wki−1 or wki

= wki−1(∆ki−1). In the first case
(64) is obvious since then µki−1 = µki

≥ ε∗, for all ki ≥ K0 with wki
= wki−1.

In the case wki
= wki−1(∆ki−1) it follows from Lemma 2.4 that

µki
= µki−1(∆ki−1) ≤ (1− αt

ki−1(1− σ))µki−1 + 4∆2
ki−1,

and thus

ε∗ ≤ µki
≤ µki−1 + 4∆2

ki−1.

We can therefore conclude from (63) that (64) holds for K1 ≥ K0 − 1 large
enough. Using (64) and applying Lemma 4.1, iii) with ε = ε∗/2, we can apply
the same argument as for deriving (62) to show that there exists K2 ≥ K1
with ∆ki−1 = ∆in

ki−1 for all ki−1 ≥ K2. Hence, together with (62), this yields

∆ki−1 = ∆in
ki−1, ∆ki

= ∆in
ki

for all ki − 1 ≥ K2. (65)
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We show next that step 5 is reached in all iterations ki − 1 ≥ K2. In
fact, otherwise the restoration procedure is called in iteration ki − 1. Thus,
we have ∆in

ki
= ∆ki−1 and consequently ∆ki

= ∆ki−1 by (65). Since by our
assumption the restoration is invoked in iteration ki−1, by using ∆ki

= ∆ki−1
the outcome of the restoration is an iterate wki

with

θki
≤ ∆ki−1 min{γ1, γ2∆

β
ki−1} = ∆ki

min{γ1, γ2∆
β
ki
},

which contradicts (61). Hence, step 5 is reached for all iterations ki−1 ≥ K2
and thus in particular

θki−1 ≤ ∆ki−1 min{γ1, γ2∆
β
ki−1}. (66)

Next, we show that step 7 must be reached for all iterations ki − 1 with
ki − 1 ≥ K3 and K3 ≥ K2 large enough. In fact, let ∆f(ε∗/2) be the bound
of Lemma 4.6 corresponding to ε = ε∗/2 instead of ε. By (63) we can find
K3 ≥ K2 such that ∆ki−1 ≤ ∆f(ε∗/2) holds for all ki − 1 ≥ K3. Now assume
that step 7 is not reached in iteration ki−1 ≥ K3−1. Then step 5 is followed
by step 11 and thus θki

= θki−1, and, using (65), ∆ki
= ∆in

ki
= ∆ki−1/2.

Therefore, by (61),

θki−1 >
∆ki−1

2
min{γ1, γ2(∆ki−1/2)β}.

Hence, we obtain from Lemma 4.6 and (64) that wki−1(∆ki−1) was acceptable
to the filter in step 5, since ki−1 ≥ K3 ensures ∆ki−1 ≤ ∆f(ε∗/2). Therefore,
step 5 would not have branched to step 11 as assumed. Hence, step 7 is always
reached in all iterations ki − 1 ≥ K3.

We conclude the proof by showing the existence of K4 ≥ K3 such that step
9 is reached for all iterations ki − 1 with ki − 1 ≥ K4. This will provide the
desired contradiction: In fact, by (65) and steps 9, 10 we have ∆ki

= ∆in
ki
≥

∆ki−1, wki
= wki−1(∆ki−1). Thus, since step 9 is reached via step 5, we can

apply Lemma 4.4 to obtain for all ∆ki−1 ≤ ∆r (which holds by (63) for all i
large enough)

θki
= θ(wki−1(∆ki−1)) ≤ (Mh +Mc)∆

2
ki−1 ≤ (Mh +Mc)∆

2
ki
.

This contradicts (61) and (63).
Hence, it remains to show that step 9 is eventually reached in all iterations

ki − 1 with ki − 1 ≥ K4, K4 ≥ K3 large enough. We recall that by (64) we
have µki−1 ≥ ε∗/2. Now, from Lemma 2.5, (63), and (66), we obtain, for all
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ki ≥ K4

mki−1(wki−1)−mki−1(wki−1(∆ki−1)) ≥

≥Mµα
t
ki−1

ε∗
2
−Mθθ(wki−1)

≥ ∆ki−1Mµ
ε∗

2Ms
−Mθγ2∆

1+β
ki−1

≥ ∆ki−1Mµ
ε∗

4Ms
,

for all ki−1 ≥ K4 ≥ K3 with some K4 ≥ K3. As before, Ms denotes an upper
bound for ‖sn

k‖ and ‖st
k‖. Also, we used again the fact that αt

ki−1 ≥ ∆ki−1/Ms

if ∆ki−1 ≤Ms, which holds by (63) possibly after increasing K4. On the other
hand, we have

|mki−1(wki−1)−mki−1(wki−1(∆ki−1))− θg(wki−1) + θg(wki−1(∆ki−1))|
= O(∆2

ki−1).

The last two bounds show that ρki−1 → 1 and hence, possibly after increasing
K4, that step 9 is reached in all iterations ki − 1 with ki − 1 ≥ K4.

As we have already seen, this leads to a contradiction. Hence, θ`(wki
) +

µki
≥ ε for all i is not true. The proof is therefore completed since there exists

a subsequence {k′j} ⊂ {ki} for which limj→∞ θ(wk′j
) = limj→∞ θ`(wk′j

)+µk′j
=

0.

The other situation is when the sequence {ki} of Lemma 4.8 contains a
subsequence, where the iterates are added to the filter in step 8. As in the
previous lemma we have the following result.

Lemma 4.10. Suppose that there exists an infinite sequence {ki} of iterations
for which wki

is added to the filter in step 8 and, in addition, limi→∞ θ(wki
) =

0. Then {ki} contains a subsequence {k′j} such that

lim
j→∞

θ(wk′j
) = 0, lim

j→∞
θ`(wk′j

) + µk′j
= 0.

Proof : Let {ki} be a sequence of iterations such that wki
is added to the filter

in step 8 and limi→∞ θ(wki
) = 0. Suppose now that θ`(wki

) + µki
≥ ε > 0 for

all ki ≥ K0 for some K0 ≥ 0. Then we have, by Lemma 2.6, that µki
≥ a(ε).

By Lemma 2.5 and since wki
is added to the filter in step 8 we have

Mµα
t
ki
a(ε) ≤ mki

(wki
)−mki

(wki
(∆ki

)) +Mθθ(wki
)

< κθ(wki
)2 +Mθθ(wki

).
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Thus, we obtain αt
ki
→ 0 and consequently ∆ki

→ 0. In particular, αt
ki
≥

∆ki
/Ms for large enough i, and since the restoration procedure is not called,

we have θ(wki
) ≤ γ2∆

1+β
ki

and conclude that

∆ki
Mµ

a(ε)

Ms
≤ mki

(wki
)−mki

(wki
(∆ki

)) +Mθθ(wki
)

< κ(γ2∆
1+β
ki

)2 +Mθγ2∆
1+β
ki

,

which is a contradiction to ∆ki
→ 0.

We put both situations together in the next lemma.

Theorem 4.2. Suppose that infinitely many iterates are added to the filter.
Then there exists a subsequence {kj} such that

lim
j→∞

θ(wkj
) = 0, lim

j→∞
θ`(wkj

) + µkj
= 0.

Proof : By Lemma 4.8 there exists a sequence {ki} of iterates such that wki

is added to the filter and limi→∞ θ(wki
) = 0. As we have already observed

there exists either a subsequence {k′j} of {ki} such that wk′j
are added to the

filter before entering restoration or a subsequence {k′j} of {ki} such that wk′j
are added to the filter in step 8. In the first case the assertion follows from
Lemma 4.9; in the second case from Lemma 4.10.

Finally, we analyze the case where the algorithm runs infinitely but only
finitely many iterates are added to the filter.

Theorem 4.3. Suppose that the algorithm runs infinitely and only finitely
many iterates are added to the filter. Then

lim
k→∞

θ(wk) = 0, lim inf
k→∞

θ`(wk) + µk = 0.

Proof : The assumption says that for k ≥ K, with K large enough, no further
filter entry is added. Hence, the filter contains for all k ≥ K the same finitely
many entries, and the restoration is never invoked. Thus, all new iterates
wk+1 6= wk are computed in step 10. We now show that step 10 is reached
infinitely many times.

In fact, step 5 is reached in each iteration, and, by Lemma 4.5, step 7 is
reached after finitely many reductions of ∆k in step 11 (note that µk > 0,
since xk, zk > 0). Again, step 8 is reached after finitely many reductions of
∆k. In fact, if θ(wk) > 0 then clearly

mk(wk)−mk(wk(∆k)) < κθ(wk)
2
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for ∆k sufficiently small and step 8 is reached. Otherwise, θ(wk) = 0 and
θ`(wk) + µk > 0 and therefore ρk ≥ η for all ∆k small enough (we may apply
exactly the same arguments as at the end of the proof of Lemma 4.9). So,
step 10 is always reached after finitely many reductions of ∆k, producing
always new iterates.

Since no further entry is added to the filter we know, cf. step 8, that in
step 10 it always holds that

θg(wk)− θg(wk+1) ≥ η(mk(wk)−mk(wk(∆k))) ≥ ηκθ(wk)
2.

Since this holds for all successful steps and {θg(wk)} is bounded, we conclude
that

lim
k→∞

θ(wk) = 0. (67)

Now assume that θ`(wk) + µk ≥ ε > 0 for all k ≥ K and some ε > 0. Then
Lemma 2.6 yields again µk ≥ a(ε). Since the filter entries do not change for
k ≥ K, the test in step 5 is passed whenever ∆k ≤ ∆a(ε) (cf. Lemma 4.5).
Also, since θ`(wk) + µk ≥ ε > 0, we obtain as before that ρk ≥ η whenever
∆k ≤ ∆′(a(ε)) for some ∆′(a(ε)) > 0. Finally, we know by Lemma 4.1.iii
that for ∆in

k ≤ ∆min(ε) steps 2 and 3 yield ∆k = ∆in
k . Hence, we see that

∆k ≥ δ(ε)
def
= min{∆a(ε)/2,∆

′(a(ε))/2, ν∆min(ε),∆K} > 0 for k ≥ K. Thus,
step 10 is reached for all successful steps with ∆k ≥ δ(ε) > 0 and we have,
as above (using (67)), for k sufficiently large,

θg(wk)− θg(wk+1) ≥ η(mk(wk)−mk(wk(∆k)))

≥ ηMµa(ε)α
t
k − ηMθθ(wk)

≥ ηMµa(ε) min

{
δ

Ms
, 1

}
− ηMθθ(wk)

≥ ηMµa(ε) min

{
δ

Ms
, 1

}
,

where Ms is as before a uniform upper bound on max{‖st
k‖, ‖sn

k‖}. This is a
contradiction to the boundedness of θg(wk) and the proof is complete.

Our global convergence result (Theorem 4.1) can be obtained by combining
Theorems 4.2 and 4.3.
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5. The solver ipfilter for nonlinear programming
Our implementation of the interior-point filter method (Algorithm 3.1) is

called ipfilter. The code is written in Fortran 90. In this section we review
the main practical issues involved in ipfilter. For more details see (1).

5.1. Upper and lower bounds. The implemention of the primal-dual
interior-point filter method (Algorithm 3.1) considered in ipfilter handles
problems of the form

min f(x)

s.t. h(x) = 0,

l ≤ x ≤ u,

where l ∈ ({−∞}∪R)n and u ∈ (R∪{∞})n. Upper and lower bounds on the
variables are thus considered explicitly avoiding in this case the introduction
of slack variables. In some problems not all variables have upper and lower
bounds, and ipfilter was adapted to take care of such situations, including
the case where all the variables are free. The current version of the code also
addresses unconstrained problems and problems with simple bounds but this
is not treated in this paper.

Under this new formulation, the Lagrangian function becomes

`(w) = f(x) + h(x)Ty − (x− l)Tzl − (u− x)Tzu,

where w = (x, y, zl, zu) ∈ R3n+m and zl ∈ Rn and zu ∈ Rn are the Lagrange
multipliers associated with the lower and upper bounds, respectively. The
quantity µ is now defined as

µ =
(x− l)Tzl + (u− x)Tzu

2n
,

and the centrality measure as

θc(w) =

∥∥∥∥(
(X − L)zl − µe
(U −X)zu − µe

)∥∥∥∥ ,
where L = diag(l) and U = diag(u). Finally, the neighborhood N (γ,M, p)
is now defined as

N (γ,M, p) =
{
w : l < x < u, (zl, zu) > 0, (X − L)zl ≥ γµe,

(U −X)zu ≥ γµe, θh(w) + θ`(w)p ≤Mµ} .
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5.2. Linear systems. The systems of linear equations that define the nor-
mal and tangential steps are redefined as

H A −I I
AT 0 0 0
Z l 0 X − L 0
−Zu 0 0 U −X




∆xn

∆yn

∆zl,n

∆zu,n

 = −


0

h(x)
(X − L)zl − µe
(U −X)zu − µe

 (68)

and 
H A −I I
AT 0 0 0
Z l 0 X − L 0
−Zu 0 0 U −X




∆xt

∆yt

∆zl,t

∆zu,t

 = −


∇x`(w)

0
(1− σ)µe
(1− σ)µe

 , (69)

where H denotes ∇2
xx`(w) or an approximation thereof, A denotes ∇h(x),

Z l = diag(zl), and Zu = diag(zu). From now on, we will deal with both
systems at the same time, considering a generic right-hand-side of the form
(r1, r2, r3, r4).

Most of the computational effort of the algorithm is spent in solving these
systems of linear equations. Instead of solving the nonsymmetric linear sys-
tems (68) and (69), we solve equivalent, smaller and symmetric systems,
using some algebraic manipulations known in interior-point methods. We
start by eliminating the last two block rows

∆zl = (X − L)−1(r3 − Z l∆x),

∆zu = (U −X)−1(r4 + Zu∆x),

and writing(
H + (X − L)−1Z l + (U −X)−1Zu A

AT 0

) (
∆x
∆y

)
=

=

(
r1 + (X − L)−1r3 − (U −X)−1r4

r2

)
.

To avoid the inversion of X−L and U−X in the matrix systems, we rewrite
them as:(
D1/2HD1/2 + (U −X)Z l + (X − L)Zu D1/2A

(D1/2A)T 0

) (
∆x
∆y

)
=

(
r̄1 + r̄3 − r̄4

r2

)
,

(70)
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where
D = (X − L)(U −X),
r̄1 = D1/2r1,
r̄3 = (U −X)1/2(X − L)−1/2r3,
r̄4 = (U −X)−1/2(X − L)1/2r4,
∆x = D1/2∆x.

Our implementation in ipfilter uses the sparse routines MA27 from HSL [7]
(the former Harwell Subroutine Library) to solve these symmetric systems.
MA27 computes a factorization A = LDLT of a symmetric matrix A, where
L is a lower triangular matrix with ones in the diagonal and D is a block
diagonal matrix formed by 1 × 1 or 2 × 2 diagonal blocks. We changed the
following MA27 parameters: as the threshold parameter for the numerical
pivoting we choose 10−6 and as the pivoting tolerance we use 10−12.

The parameter σ is chosen in the following way: If µ < 10−6 then σ =
σint

f = 2.6× 10−3, otherwise σ = σmin = 10−5.
We must also mention that we compute a safe step if the tangential step

length αt(∆) is less than a positive quantity ψ (in our implementation ψ =
0.8). In that case, we use σ = σmax

s = 0.1 (if αt(∆) < 10−3) or σ = σint
s = 10−3

(otherwise) and recompute the tangential step st by resolving the system (69).

5.3. Control of inertia and conditioning. In ipfilter we introduce
perturbations in the (1, 1) and (2, 2) blocks of the symmetric matrix M of
the systems (70), (

M11 + ε1I M12
MT

12 −ε2I

)
, (71)

where ε1 and ε2 are positive parameters. The (1, 1)-block perturbation is
related to the regularization often applied to make the approximation of the
Hessian of the Lagrangian positive definite on the null space of the con-
straints. The (2, 2)-block perturbation corresponds to the regularization of
the equality constraints given by h(x)− ε2y = 0.

The perturbations are chosen to force the inertia of M to be equal to
(n,m, 0) (n positive eigenvalues, m negative eigenvalues, and 0 zero eigen-
values), which is known to be related to a QP subproblem convexification.
The inertia control scheme that we use (see Algorithm 5.1) is based on the
one suggested by Wächter and Biegler [21].

Algorithm 5.1 (Inertia Control). Start with εlast
1 = 0 at the beginning of

the optimization.
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In each iteration:

1. Attempt to factorize the system matrix (71), with ε1 = ε2 = 0. If the
inertia is (n,m, 0) or both θ`(w) and θh(w) are small (less than 10−5),
solve the systems (70). Otherwise, go to step 2.

2. If the matrix is singular, set ε2 = 10−20, otherwise, set ε2 = 0. Set also
ε1 = 0.5× 10−6 (if εlast

1 = 0) or ε1 = max{10−20, εlast
1 /3} (otherwise).

3. Attempt to factorize the perturbed matrix (71). If the inertia is now
(n,m, 0) then set εlast

1 = ε1 and solve the systems (70). Otherwise, go
to step 4.

4. If εlast
1 = 0, set ε1 = 10× ε1, otherwise ε1 = 2× ε1.

5. If ε1 > 106, set εlast
1 = ε1, ε1 = 0, and ε2 = 10−20 and solve the

systems (70). Otherwise, go back to step 3.

Note that an approximation to the inertia of a matrix is readily available
from the application of MA27 [7].

5.4. Initial point and warm start. Given the initial primal point xin
associated with each problem, ipfilter first projects this point onto the
interior of the box defined by the bound constraints and then, starting from
this point, it applies a number (5 in the current implementation) of itera-
tions of Newton’s method (subject to the bound constraints) to minimize the
function

f(x) + ρ h(x)Th(x)− µin

n∑
i=1

log(xi − li)− µin

n∑
i=1

log(ui − xi),

with µin = 103 and ρ chosen in the following way: If ‖h(xin)‖1 > 50 then
ρ = ρmax = 105; otherwise if ‖h(xin)‖1 < 10−10 then ρ = ρmin = 1, otherwise
ρ = ρint = 1.77 × 103. The resulting point is the initial iterate x0. The
iterations taken in this initial procedure are counted in the tables.

The initial multipliers with respect to the equality constraints are first set
to:

y0 = argmin‖∇f(x0) +∇h(x0) y − zl
in + zu

in‖,
where, componentwise, we have zl

in = µin/(x0 − l) and zu
in = µin/(u− x0). If

y0 obtained in this way is too large, i.e., if ‖y0‖∞ > ymax (with ymax = 2×103

in our implementation), then this initial value for y0 is discarded and the
algorithm starts with y0 = 0. Then, the initial multipliers with respect to
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the bounds are set to:

zl
0 = max{∇f(x0) +∇h(x0)y0 + zu

in , z
l
in},

zu
0 = max{−∇f(x0)−∇h(x0)y0 + zl

0, z
u
in}.

The linear systems resulting from the application of Newton’s method in
the primal warm start procedure and from the calculation of y0 are converted
in a 2×2 symmetric block format by introducing an auxiliar, later discarded
vector of variables. The sparse routines MA27 from HSL [7] are also used to
solve these symmetric systems. Our implementation uses the routines aplb

and amub from the SPARSKIT Library (Version 2) [16] to perform the matrix
multiplications needed in the primal warm start procedure.

5.5. Restoration. The purpose of a restoration algorithm in the context of
Algorithm 3.1 is to find a point wk+1 ∈ N (γ,M, p) acceptable to the filter and
such that the condition θ(wk+1) ≤ ∆in

k+1 min{γ1, γ2(∆
in
k+1)

β} is satisfied with
∆in

k+1 = ∆k. The implementation chosen for ipfilter follows the restoration
algorithm proposed in [18, Algorithm 2] where essentially our primal-dual
step computation is applied to minimize the value of

θ2(w)
def
=

1

2

(
θh(w)2 + θc(w)2) =

1

2

(
‖h(x)‖2 + ‖Xz − µe‖2

)
.

The iterates of this restoration algorithm are forced to stay in the central
neighborhood N (γ,M, p) and to satisfy a sufficient decrease condition for θ2.
We have tested also the alternative restoration scheme suggested in [18] but
its performance was not superior.

We have introduced some practical modifications to [18, Algorithm 2] to
put emphasis on the reduction of θ2 and therefore improve its efficiency. Thus,
we replaced H by the identity matrix in the primal-dual systems defining the
normal and tangential components. Also, in the right-hand-side vector of the
linear system defining the tangential step we have replaced the term−∇x`(w)
by zero. In the restoration phase, we always introduce a perturbation in the
(2, 2) block of the system matrix, of the form−ε2I, where ε2 = min{µk, 10−8}.

5.6. Other parameters and stopping criterion. The γ and M parame-
ters in N (γ,M, p) are computed as follows:

γ = min

{
10−3,

1

2 µ0
min

i=1,...,n

{
min

{(
X0 − L)zl

0
)
i
,
(
U −X0)z

u
0
)
i

}}}
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and

M = max

{
103,

103

µ0

(
θh(w0) + θ`(w0)

)}
.

The current implementation sets p = 1 in N (γ,M, p) since it supports only
the use of second-order derivatives. The update of τk obeys to

τk = 1−min{10−2, 10−2µ2
k}.

For the initial step length parameter ∆in
0 we have chosen the value 105.

The update of ∆in
k in step 9 took the form: ∆in

k+1 = 2∆k when ρk > η2 and
∆in

k+1 = ∆k otherwise. We have picked η = η1 = 10−4, η2 = 0.8, and ν = 0.5.
For the remaining parameters of the main algorithm we have chosen:

γ1 = 0.5, γ2 = 1, β = 0.75, κ = 0.1, and γF = 10−3.

The parameters needed to update ∆k in the restoration procedure [18,
Algorithm 2] were set similarly as in the main algorithm. The value of ∆k

in the restoration is kept constant when the ratio of actual over predicted
decreases for θ2 was between ξ1 and ξ2 and doubled when this ratio is larger
then ξ2. We chose ξ1 = 10−5 and ξ2 = 0.5. The parameter ν to enforce
the iterates to lie in the central neighborhood was set to 0.5. Finally we set
σ = 1.

The stopping criterion used by ipfilter is as similar to the one of ipopt [21]
as possible. In fact, ipfilter is stopped if

max

‖h(xk)‖∞,

∥∥∥∥(
(Xk − L)zl

k

(U −Xk)z
u
k

)∥∥∥∥
∞

sc
,
‖∇x`(wk)‖∞

s`

 < 10−8,

where sc and s` are scaling factors given by

sc = 10−2 max

{
100,

‖zl
k‖1 + ‖zu

k‖1

2n

}
,

s` = 10−2 max

{
100,

‖yk‖1 + ‖zl
k‖1 + ‖zu

k‖1

m+ 2n

}
,

or if

∆k < 10−10,

or if the number of iterations reaches 1000.
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# problems
dimensions an old CUTE set CUTEr (Sept. 2008)
n < 1000 388 (45) 390 (56)

1000 ≤ n < 10000 76 (1544) 182 (3194)
n ≥ 10000 5 (7979) 59 (6354)

total 469 631
Table 1. Dimensions of the test problems (n is the number of
variables and in brackets it is indicated the average number of
equality constraints).

# problems
problem class an old CUTE set CUTEr (Sept. 2008)
equality constrained 245 327
inequality constrained 177 226
mixed (equalities and inequalities) 47 78
linearly constrained 171 205
nonlinearly constrained 298 426
quadratic programming 91 103

Table 2. A summary of the test problems.

6. Numerical results
We report the results of ipfilter on a set of problems from the CUTEr

test set [14] with at least one constraint (not of the simple bound type) for
which n ≥ m in our formulation. The problem dimensions are summarized
in Table 1. In Table 2, we give some information on the different types of
problems of this test set1. Since we tested ipfilter mostly on an old CUTE
set (also reported in these tables), we also present the results for this test
set. The two lists of problems are given in (1).

We compared the performance of ipfilter (version 0.2) with the interior-
point barrier filter solver ipopt, version 3.5.1 in C++, developed by Wächter
and Biegler [21]. The tests were run on a Fujitsu-Siemens Celsius V810 work-
station (4 GB RAM, 2 processors AMD 2.2GHz). The results are summarized
in Table 3. We declared failure for both codes when the step size becomes

1We excluded 91 problems which required an increase of the default size parameters of sifdec
in CUTEr.
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an old CUTE set CUTEr (Sept. 2008)
ipfilter ipopt ipfilter ipopt

# problems solved 449 448 532 549
% robustness 95.74% 95.52% 84.34% 87.00%
# average iterations 27.55 27.19 47.44 38.58
# problems solved (< 500 iter.) 449 447 525 545
% robustness (< 500 iter.) 95.74% 95.31% 83.20% 86.37%
# average iterations (< 500 iter.) 27.55 25.78 37.51 34.14

Table 3. Robustness and average number of iterations.

an old CUTE set CUTEr (Sept. 2008)
ipfilter ipopt ipfilter ipopt

# problems solved 91 88 97 93
% robustness 100.00% 96.70% 94.17% 90.29%
# average iterations 26.74 36.45 42.35 47.09
# problems solved (< 500 iter.) 91 88 96 92
% robustness (< 500 iter.) 100.00% 96.70% 93.20% 89.32%
# average iterations (< 500 iter.) 26.74 36.45 33.90 40.96

Table 4. Robustness and average number of iterations (qua-
dratic programming problems).

too small (either in the main algorithm or in the restoration), the maximum
number of (primal-dual) iterations is reached or a budget of 500 minutes of
CPU time is spent, before the termination criterion is met for a stopping
tolerance of 10−8.

We made several other tests which are not reported in detail in this paper.
For instance, we tested the impact on the performance of ipfilter, of the
new optimality filter entries, (12) and (13), compared to the one suggested
in [18] and given in (11). Regardless of the measure chosen (robustness,
number of iterations, or final objective function value), the optimality filter
entry (13) seems to be the best among the three.

We also analyzed the performance of the two codes on the different problem
classes of Table 2. The relative performances for the different classes followed
the general pattern, except for quadratic programming where ipfilter seems
to be currently slightly better than ipopt (see Table 4).
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Appendix: Proof of Lemma 2.2
For the proof of Lemma 2.2 we use the following estimates.

Lemma 6.1. The following estimates hold, using the conventions 00 = 1,
0α = 0, α > 0.

∀ a, b ≥ 0, α ∈ [0, 1] : (a+ b)α ≤ aα + bα. (72)

∀ α, t ∈ [0, 1] : tα + (1− t)α ≤ 21−α. (73)

Proof : Proof of (72): The cases a = 0 or b = 0 or α = 0 are obvious. We
thus can assume a, α > 0 and bracket out a. Then we have to prove

f(t)
def
= 1 + tα − (1 + t)α ≥ 0 ∀ 0 ≤ t ≤ 1.

We have

f(0) = 0, f ′(t) = αtα−1 − α(1 + t)α−1 ≥ 0 (t > 0).

Proof of (73): Consider first the case α = 0. Then

t0 + (1− t)0 = 1 + 1 = 21−0.

For the case α ∈ (0, 1] and t ∈ {0, 1} we obtain

tα + (1− t)α = 0α + 1α = 1 ≤ 21−α.

Finally, let α ∈ (0, 1] and t ∈ (0, 1) and consider

f(t)
def
= tα + (1− t)α.

Then

f ′(t) = αtα−1 − α(1− t)α−1


≥ 0 0 < t < 1/2,

= 0 t = 1/2,

≤ 0 1/2 < t < 1.

Therefore,
f(t) ≤ f(1/2) = 2 · 2−α = 21−α.
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We are now able to prove Lemma 2.2.

Proof : (of Lemma 2.2) We have

∇g(x) = p‖x‖p−2x (x 6= 0), ∇g(0) = 0 (p > 1).

Furthermore,

∇2g(x) = p‖x‖p−2I + p(p− 2)‖x‖p−4xxT (x 6= 0), ∇2g(0) = 2I (p = 2).

Let x, y ∈ Rn be arbitrary and let τ be the minimizer of t ∈ [0, 1] 7→ ‖(1 −
t)x+ ty‖. Setting z = (1− τ)x+ τy we have z⊥(y − x).

We first consider the situation ρ
def
= ‖z‖ > 0 and prove the second part of

the lemma. The eigenvalues of ∇2g(x) are:

p‖x‖p−2 (multiplicity n− 1), p‖x‖p−2 + p(p− 2)‖x‖p−2 = p(p− 1)‖x‖p−2.

Hence, since p ≤ 2
‖∇2g(x)‖ = p‖x‖p−2.

Therefore, we can estimate

‖∇g(y)−∇g(x)‖ ≤
∫ 1

0
‖∇2g(x+ t(y − x))(y − x)‖ dt ≤ pρp−2‖y − x‖.

Now we turn to the first assertion of the lemma. We distinguish two cases.

If ρ
def
= ‖z‖ ≤ ‖y − x‖/2 we obtain by using (72) and (73)

‖∇g(y)−∇g(x)‖ ≤ ‖∇g(y)‖+ ‖∇g(x)‖ = p‖y‖p−1 + p‖x‖p−1

= p(‖z‖2 + (1− τ)2‖y − x‖2)
p−1
2 + p(‖z‖2 + τ 2‖y − x‖2)

p−1
2

≤ 2p‖z‖p−1 + p(τ p−1 + (1− τ)p−1)‖y − x‖p−1

≤ 2p‖z‖p−1 + 22−pp‖y − x‖p−1

≤ 2 · 21−pp‖y − x‖p−1 + 22−pp‖y − x‖p−1

= 23−pp‖y − x‖p−1.

If ρ
def
= ‖z‖ > ‖y − x‖/2 we can use the assertion already proved to arrive at

‖∇g(y)−∇g(x)‖ ≤ pρp−2‖y − x‖ ≤ 22−pp‖y − x‖p−1.
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