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Abstract: The goal of this paper is to show that the use of minimum Frobe-
nius norm quadratic models can improve the performance of direct-search methods.
The approach taken here is to maintain the structure of directional direct-search
methods, organized around a search and a poll step, and to use the set of previously
evaluated points generated during a direct-search run to build the models. The min-
imization of the models within a trust region provides an enhanced search step. Our
numerical results show that such a procedure can lead to a significant improvement
of direct search for smooth, piecewise smooth, and stochastic and nonstochastic
noisy problems.
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1. Introduction
Direct-search methods are a very popular class of methods for derivative-

free optimization whose distinctive feature is to guide the new algorithmic
actions solely based on simple comparison rules of objective function values,
without any attempt to approximate derivatives or build models. With some
exceptions, like the Nelder-Mead methods, most of the direct-search meth-
ods are relatively inefficient since no attempt is made to explore curvature.
Direct-search methods of directional type (coordinate search, generalized pat-
tern search, generating set search, mesh adaptive direct search) exhibit in-
teresting convergence properties, in particular for nonsmooth problems, and
are relatively easy to code and to parallelize.

Model-based methods, in particular interpolation-based trust-region meth-
ods, have been shown to be more efficient and robust than direct search on
a relatively well-representative test suit of unconstrained optimization prob-
lems [10]. Although this has been known among researchers who have tested
both classes of methods, these recent results for piecewise smooth and noisy
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problems are nevertheless relatively surprising. One of the key ingredients
of these model-based implementations is the use of quadratic models com-
puted in an underdetermined form (using fewer points than the number of
basis components) but enforcing the Frobenius norm of the Hessian (or of
the variation in the Hessian) of the models to be as small as possible.

It is therefore natural to ask for a combination of both techniques. In this
paper we describe and test what might be considered as a natural way to
accomplish such a task. We form minimum Frobenius norm (MFN) models
based on sample points for which the objective function has already been
evaluated during the course of direct search. It is expected then that the
minimization of these MFN models speeds up the direct-search run. There
are, however, a number of variants in which this simple idea can be imple-
mented. We will report the various possibilities and describe the one which
we found to be the most successful. The final numerical results show a sig-
nificant improvement in efficiency for all types of problems, although the
modified direct-search method is still inferior than model-based methods for
smooth and nonstochastic noisy problems. Focusing on unconstrained opti-
mization, the best version we identified considers opportunistic polling and
builds the MFN models by minimizing the Hessian norm rather than its
variation. The resulting hybrid algorithm is competitive for all the different
classes of problems.

The paper is organized in the following way. In Section 2 we provide a short
summary of MFN models. Then, in Section 3, we show how to incorporate
these models into a directional direct-search framework. Section 4 reports
our numerical experiments and conclusions. We point out that all norms in
this paper are Euclidean.

2. Minimum Frobenius norm models
Given a sample set Y = {y0, y1, . . . , yp}, a polynomial basis

φ = {φ0(x), φ1(x), . . . , φq(x)},

and a polynomial model m(y) = α>φ(y), the conditions for polynomial in-
terpolation can be written as a system of linear equations:

M(φ, Y )α = f(Y ), (1)
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In this paper we use the natural basis of monomials which appears in Taylor
models (in two dimensions we have φ = {1, x1, x2, x

2
1/2, x

2
2/2, x1x2}). The

system (1) is determined when p = q, overdetermined when p > q, or un-
derdetermined when p < q. In this later case, we can select a solution by
computing the one with the minimum `2-norm, or the one with the minimum
Frobenius norm if only the size of the quadratic coefficients is considered.

When p ≥ n + 1, the error bounds for polynomial interpolation typically
obbey (see [4])

‖∇f(y)−∇m(y)‖ ≤ [CpCfΛ] ∆ ∀y ∈ B(x; ∆),

where Y is contained in the ball B(x; ∆) centered at x and of radius ∆, Cp is
a positive constant depending on p, Cf > 0 measures the smoothness of f
(e.g., the Lipschitz constant of ∇f), and Λ > 0 is a Λ–poisedness constant
related to the geometry of Y . The original definition of Λ–poisedness says
that the maximum absolute value of the Lagrange polynomials in B(x; ∆) is
bounded by Λ. An equivalent definition of Λ–poisedness is

‖M(φ, Yscaled)
†‖ ≤ Λ,

with Yscaled obtained from Y such that Yscaled ⊂ B(0; 1) and one of the points
in Yscaled has norm one.

The underdetermined case of interest to us is quadratic polynomial inter-
polation, corresponding to q = (n+1)(n+2)/2−1 and p < q. It is convenient
to write these quadratic models also in the form

m(y) = c + g>y +
1

2
y>Hy.

It will be necessary to explore the partition of the matrix M(φ, Y ) into linear
and quadratic terms

M(φ, Y ) =
[

M(φL, Y ) M(φQ, Y )
]

(in two dimensions this corresponds to φL = {1, x1, x2} and φQ = {x2
1/2, x

2
2/2,

x1x2}). Using this notation we also have m(y) = α>
LφL(y) + α>

QφQ(y). One
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can state that Y is ΛL–poised for linear interpolation or regression when

‖M(φL, Yscaled)
†‖ ≤ ΛL.

The following result provides a general error bound for underdetermined
quadratic polynomial interpolation [4].

Theorem 2.1. Let f be a continuously differentiable function in an open
set containing the ball B(x; ∆) with Lipschitz continuous gradient in B(x; ∆)
(and Lipschitz constant Cf > 0). If Y is ΛL–poised for linear interpolation
or regression then

‖∇f(y)−∇m(y)‖ ≤ CpΛL [Cf + ‖H‖] ∆ ∀y ∈ B(x; ∆).

where H is the Hessian of the model and Cp is a positive constant dependent
on p.

The constant multiplying ∆ in this error bound is strongly dependent on
the norm of the model Hessian H. Thus, it is not surprising that the mini-
mum Frobenius norm (MFN) models are built by minimizing the entries of
the Hessian (in the Frobenius norm) subject to the interpolation conditions:

min 1
4‖H‖2

F

s.t. c + g>(yi) + 1
2(y

i)>H(yi) = f(yi), i = 0, . . . , p,
(2)

or, equivalently,

min 1
2‖αQ‖2

s.t. M(φ, Y )α = f(Y ).

The solution of this quadratic problem requires a linear solve involving the
matrix

F (φ, Y ) =

[
M(φQ, Y )M(φQ, Y )> M(φL, Y )

M(φL, Y )> 0

]
.

The definition of ΛF–poisedness in the minimum Frobenius norm sense, which
we used in our computational tests, is given by the condition

‖F (φ, Yscaled)
−1‖ ≤ ΛF .

These MFN models are used in the DFO code of Scheinberg [1], which im-
plements an interpolation-based trust-region method. It is possible to show
that for these models the Hessian is bounded [4]:
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Theorem 2.2. Let f be a continuously differentiable function in an open
set containing the ball B(x; ∆) with Lipschitz continuous gradient in B(x; ∆)
(and Lipschitz constant Cf > 0). If Y is ΛF–poised in the minimum Frobe-
nius norm sense then

‖H‖ ≤ Cp,qCfΛF ,

where H is the Hessian of the model and Cp,q is a positive constant depending
on p and q.

These two theorems together yield the following error bound for MFN
models:

‖∇f(y)−∇m(y)‖ ≤ CpΛLCf [1 + Cp,qΛF ] ∆ ∀y ∈ B(x; ∆).

The conclusion is that MFN models are fully linear, as defined in [4], repro-
ducing well the accuracy of first-order Taylor models.

An alternative suggested by Powell [12] is to minimize the difference be-
tween the current and previous Hessians (in the Frobenius norm):

min 1
4‖H −Hold‖2

F

s.t. c + g>(yi) + 1
2(y

i)>H(yi) = f(yi), i = 0, . . . , p.
(3)

The resulting models are called least updating MFN models and are used in
Powell’s NEWUOA interpolation-based trust-region solver [13]. Powell provided
for these models the following theoretical insight [12].

Theorem 2.3. If f is itself a quadratic function then:

‖H −∇2f‖ ≤ ‖Hold −∇2f‖.

MFN models are being used by other authors in trust-region interpolation-
based methods (see, e.g., [14]) but their potential in optimization is still to
be fully explored.

3. Using MFN in direct search
Direct-search methods of directional type have been extensively analyzed

in the literature [4, 9]. We are interested in studying the possible positive
impact of using MFN models to enhance this class of methods. As a basis for
our study we selected coordinate search which has been shown to behave well
for unconstrained optimization [5, 6] among other generalized pattern search
methods. The poll step in coordinate search operates with the positive basis
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Dk = D⊕ = [ I − I ] as the set of poll vectors and evaluates the objective
function at the points in the poll set

Pk = {xk + αkd, d ∈ Dk}.

Polling can be opportunistic (stopping once a decrease in the value of the
objective function is found) or complete (identifying the lowest of the poll
points). A search step can be applied before the poll step by considering a
finite number of points in the current mesh:

Mk = {xk + αkDkz, z ∈ Z|Dk|}.

If a point in Mk is identified where the objective function is lower than f(xk),
then such a point becomes the new iterate, and both the search step and the
iteration are considered successful. Otherwise, a poll step is then applied.
The poll step may be unsuccessful (and so is the iteration) when no point
in Pk provides a function value lower than f(xk). The step size or mesh size
parameter αk > 0 is decreased at unsuccessful iterations and increased or
kept constant at successful poll or search steps.

The code SID-PSM is a MATLAB [2] implementation of a generalized pat-
tern search method, developed by the authors, that uses simplex derivatives
(i.e., derivatives of polynomial interpolation models) in the search and poll
steps. The code handles constraints (if their derivatives are provided) but
this is not treated in this paper. It also allows the selection of different
ordering strategies for the poll vectors, taking as the current default order-
ing the one according to a negative simplex gradient. However, the search
step in SID-PSM has been very crude and consisted of the minimization of a
quadratic model with a diagonal simplex Hessian.

Our idea is to form and minimize MFN models in the search step and thus
improve the performance of SID-PSM. The motivation is twofold. On the
one hand, we know that MFN models provide very good numerical results
within the DFO and NEWUOA interpolation-based trust-region codes. On the
other hand, we know that direct-search methods of directional type work
well for noisy/nonsmooth problems. Our goal is then to derive a hybrid
method capable of being competitive with interpolation-based trust-region
methods for smooth problems and perhaps better than these methods for
noisy/nonsmooth problems.

The best way of incorporating MFN models into directional direct search
that we found for derivative-free unconstrained optimization is as follows:
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• The underlying method uses the coordinate-search directions (the co-
ordinate vectors and their negatives) and the directions e and −e,
where e stands for a vector of ones of dimension n.

• In the search step, one computes a MFN model when there are more
than n+1 points (for which the objective function has been previously
computed) in a ball (or trust region)

B(xk; ∆k) = {x ∈ Rn : ‖x− xk‖ ≤ ∆k}

centered at xk with radius

∆k = σk αk−1 max
d∈Dk−1

‖d‖,

where Dk−1 is the set of poll vectors considered in the last iteration
and σk takes the value 1 if the previous iteration was unsuccessful, or 2
otherwise. When building a MFN model, the value of the trust-region
radius is never allowed to be smaller than 10−5.

When there are more than (n + 1)(n + 2)/2 points in B(xk; ∆k),
the quadratic model is built with exactly (n + 1)(n + 2)/2 points.
Since the model has a local purpose, 80% of the necessary points are
selected as the ones nearest to the current iterate. The last 20% are
chosen as the ones further away from the current iterate, in an attempt
of preserving geometry and diversifying the information used in the
model computation.

Note that we consider all the points previously evaluated (store-all
mode in the code SID-PSM), meeting the conditions above, and not
just those which lead to a decrease in the objective function value
(store-successful).

• The geometry control of the sample set used for the MFN model com-
putation is extremely loose. In fact, in the best version found we never
test the condition number of the matrix F (φ, Yscaled). Since the search
step is optional, this is an attempt to explore all model information
independently of the quality of the underlying sample sets (in what
resembles, in some way, the observations made in [7], in the context
of the use of complete quadratic interpolation models in trust-region
methods, about the use of badly poised sample sets).

Instead of controlling the condition number of F (φ, Y ), what we do
is to use the singular value decomposition of this matrix and, before
solving the corresponding system which computes the MFN model,
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replace all singular values smaller than machine precision eps by this
threshold.

• A search step is always attempted after a first MFN model has been
built, by minimizing the MFN model in B(xk; ∆k). If no new MFN
model is formed at the current iteration, then one uses the last previ-
ously built MFN model.

• The MNF models used are those defined by (2). The least updating
MFN models (3) performed worse in our context.

• Polling is opportunistic. The initial ordering of the poll vectors is
the one given by D = [ e − e I − I ]. At each iteration, there is an
attempt to order the poll vectors in Dk according to a negative simplex
gradient. With this purpose the code tries to identify a subset of
points, for which the objective function has been previously evaluated
and inside the trust region considered, which satisfies a Λ–poisedness
condition. (In this case there is no minimum value for the size of
the trust region.) In case of failure, polling is performed cyclicly in
Dk, i.e., the first polling vector at the beginning of a new poll step is
chosen as the one positioned in Dk right after the last one used in the
previous poll step.

In our numerical experiments we used the DGQT routine of the MINPACK2 [11]
package to solve the trust-region subproblems consisting of the minimization
of the MFN models in the trust regions.

The step-size parameter was maintained for successful iterations and halved
when no decrease has been achieved at a given iteration.

4. Numerical experiments and conclusions
To compare our new version of SID-PSM to other algorithms we chose to

work with the recently proposed data profiles [10] for derivative-free opti-
mization. Data profiles indicate how well a solver performs, given some com-
putational budget, to reach a specific reduction in function value, measured
by

f(x0)− f(x) ≥ (1− τ)[f(x0)− fL],

where x0 is the initial iterate and fL is the best objective value found by all
solvers tested for a specific problem. The computational budget is measured
in terms of the number of function evaluations.
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The test suite is also the one proposed in [10], where the test problems
have been divided into four classes: smooth (53 nonlinear least squares prob-
lems obtained from CUTEr functions, with n ∈ [2, 12]); nonstochastic noisy
(obtained by adding oscillatory noise to the smooth ones); piecewise smooth
(as in the smooth case but using `1-norms); stochastic noisy (obtained by
adding random noise to the smooth ones).

We compared the results obtained for SID-PSM using MFN models against
three solvers: NEWUOA [13], a trust-region code based on interpolation by
MFN models; NMSMAX [3] an implementation of the Nelder-Mead simplex
method; and APPSPACK [8], an implementation of an asynchronous generating
set search method mainly derived for parallel computing, but considered here
in the serial mode and with a random ordering of directions.

The computational budget consisted of 1500 function evaluations, as we are
primarily interested in the behavior of the algorithms for budgets applicable
to problems of expensive objective function evaluation. Figures 1, 2, 3, and 4
report the data profiles obtained for the four test sets, considering the two
different levels of accuracy τ = 10−3 and τ = 10−7 (Figure 1: smooth prob-
lems; Figure 2: nonstochastic noisy problems; Figure 3: piecewise smooth
problems; Figure 4: stochastic noisy problems).

In general, independently of the level of accuracy required and of the class
of problems considered, the best performance is obtained for NEWUOA. Our
implementation, SID-PSM, takes advantage over NEWUOA only for piecewise
smooth and stochastic noisy problems and for larger budgets of function
evaluations. In these cases, SID-PSM is the best of the four solvers tested.

For an accuracy level of τ = 10−7, SID-PSM is clearly the best among the
three direct-search solvers. For a lower level of accuracy (τ = 10−3), it is
hard to establish a comparison among these three solvers.

At the highest precision level, the gap between the SID-PSM and NEWUOA

data profiles reduces, essentially due to the application of the MFN search
steps.

Our conclusion is that the incorporation of MFN models in direct-search
methods of directional type is advantageous, resulting in a superior method
when compared to Nelder-Mead methods or basic directional direct-search
methods. However, our implementation took also into consideration other
relevant issues like the selection of poll vectors and its ordering for polling,
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Figure 1. Data profiles computed for the set of smooth prob-
lems, considering the two levels of accuracy 10−3 and 10−7. The
profiles are plotted as a function of the budget, expressed in num-
ber of simplices of dimension n.
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Figure 2. Data profiles computed for the set of nonstochastic
noisy problems, considering the two levels of accuracy 10−3 and
10−7. The profiles are plotted as a function of the budget, ex-
pressed in number of simplices of dimension n.
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Figure 3. Data profiles computed for the set of piecewise
smooth problems, considering the two levels of accuracy 10−3

and 10−7. The profiles are plotted as a function of the budget,
expressed in number of simplices of dimension n.
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Figure 4. Data profiles computed for the set of stochastic noisy
problems, considering the two levels of accuracy 10−3 and 10−7.
The profiles are plotted as a function of the budget, expressed in
number of simplices of dimension n.
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which had a mild but non-negligible impact in the improvement of the nu-
merical results. Based on the data profiles presented and on the test prob-
lems selected, we claim that SID-PSM (using MFN models) is a competitive
direct-search approach for unconstrained optimization, which outperforms
NEWUOA ability to solve piecewise-smooth and stochastic noisy problems for
larger budgets of functions evaluations. The SID-PSM website is located at
http://www.mat.uc.pt/sid-psm.
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