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Abstract: Option price data is often used to infer risk-neutral densities for future
prices of an underlying asset. Given the prices of a set of options on the same
underlying asset with different strikes and maturities, we propose a nonparametric
approach for estimating the evolution of the risk-neutral density in time. Our
method uses bicubic splines in order to achieve the desired smoothness for the
estimation and an optimization model to choose the spline functions that best fit the
price data. Semidefinite programming is employed to guarantee the nonnegativity of
the densities. We illustrate the process using synthetic option price data generated
using log-normal and absolute diffusion processes as well as actual price data for
options on the S&P500 index.

We also used the risk-neutral densities that we computed to price exotic op-
tions and observed that this approach generates prices that closely approximate the
market prices of these options.

Keywords: Risk-neutral density surface, volatility surface, semidefinite program-
ming, option pricing, binary options.
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1. Introduction
After the appearance of the Black-Scholes (BS) model in 1973, the option

pricing theory has undergone a strong and sustained development. Given
option market prices one can invert the BS formula in order to obtain the
option implied volatility of underlying securities, that is, the BS formula
can be used as an implied volatility calculator. While this approach is still
commonly used in practice, due to the discrepancies observed between the
constant volatility assumption of the BS model and the implied volatility
observed from the market prices, namely the smile or skew effect, or the
existence of a volatility term structure, there has been a constant stream
of generalized models that try to better explain options prices. Continuous
or jump diffusion models as well as stochastic volatility models have been
developed to incorporate new evidence from the markets and gave rise to
significant advances in the option pricing theory.
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The estimation of the risk-neutral density or the implied volatility from
option prices has its principal use in the pricing and hedging of other options,
and as such it is mainly an interpolation tool. Several approaches have been
presented in the literature to estimate risk-neutral densities. The existing
approaches can be classified as parametric or non-parametric depending on
the degrees of freedom and number of parameters needed to define the models
(see the surveys [4, 6, 14]). The temporal dynamics for implied volatilities
or risk-neutral densities gives information about the evolution in time, for
option prices, allowing more accurate hedging. This issue has been a subject
of intensive research and lead to different methods and implementations.

Market information such as the series of daily prices is commonly used to
infer the set of parameters of an option pricing model. One strategy often
used is to choose parameters that best fit the market prices. A common
measure for the fitting is the least-squares distance between the market price
and the theoretical price predicted by the model, given by

∑
i∈C(Ci(y)−Ci)

2,
where Ci(y) is the option price computed by the model which depends on
the parameters y, and Ci is the market price for option i. The parameters of
the model can be determined by minimizing the measure used for the fitting,
leading to a parameter estimation or inverse problem. The objective function
of such optimization problems, as a function of the parameters y, is usually
nonconvex (see, e.g., Hamida and Cont [11]) which can pose difficulties to
optimization solvers.

Several authors proposed regularization methods in order to enforce well-
posedness and overcome numerical difficulties, using smooth functions to
minimize the distance between market prices and theoretical prices. Avel-
laneda et al. [3] recovered the implied volatility surface extending the one-
period entropy minimization, presented by Butchen and Kelly [7] and Stutzer [18],
to a multi-period model. Crépey [10] considered a minimization problem
with a regularization parameter based on smoothness norms for volatility
functions. This approach was also followed by Lagnado and Osher [15], and
also by Jackson, Suli, and Howison [13] who used splines for the regulariza-
tion effect. Coleman, Verma, and Li [8] considered a minimization procedure
based on bicubic splines to ensure the desired smoothness of the implied
volatility surface.

The method we propose here is closest to the approach outlined by Cole-
man, Verma, and Li [8]. Instead of trying to model the implied volatility
surface we propose to directly invert the risk-neutral density surface. As
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in [8], we employ bicubic splines to obtain the desired density smoothness,
and consider a least-squares objective function where the optimization vari-
ables are the parameters defining the bicubic splines used to describe the
risk-neutral density surface. Our optimization problem has a convex objec-
tive function and convex constraints.

A major difficulty in implied volatility or risk-neutral density estimation
problems is the enforcement of the non-negativity of the estimated volatilities
or densities. We explore two approaches. In the first case, we impose the non-
negativity of the recovered density functions only at the spline knots. This
results in a problem with linear constraints, leading to a quadratic program-
ming (QP) approach. In the second model, following an argument suggested
for the single maturity case [17], we propose a semidefinite programming
(SDP) approach, where, due to appropriate semidefinite and second order
cone type constraints, one can rigorously ensure the nonnegativity of the
recovered risk-neutral densities everywhere.

Exotic options are derivative contracts that offer nonstandard payoffs and
allow a wider range of market strategies. Binary (or digital) options are an
example of exotic options with discontinuous payoffs and are notoriously dif-
ficult to hedge. Cash-or-nothing calls, in particular, pay a fixed amount if
the asset price, at maturity, is at or above the strike price, and nothing oth-
erwise. We apply our estimation method for the risk-neutral density to price
exotic options recently traded at the CBOE. The numerical results show that
the prices of exotic options recovered from our risk-neutral estimation closely
approximate the market prices of these securities and differ significantly from
those obtained using the Black-Scholes model and implied volatilities.

The rest of the paper is organized as follows. Section 2 describes the for-
mulation of the estimation problem (the objective function, the constraints,
and the QP and SDP approaches). In Section 3 we report our numerical
experiments for the estimation of risk-neutral densities. Then, in Section 4,
we use our risk-neutral estimation to price binary options. Some concluding
remarks are made in Section 5.

2. Problem formulation using bicubic splines
2.1. Basic formulation of the problem. We start by presenting a basic
optimization model to determine the dynamic evolution of the risk-neutral
densities of an underlying asset from the known prices of options on this
asset. Our goal is to compute a twice continuously differentiable bicubic
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spline function p(ω, u) representing the risk-neutral density function at state
ω and time u. The inputs to the problem are a set of option exercise dates
T , for which one knows the sets of corresponding option prices (CT and PT ,
T ∈ T , for calls and puts respectively) and the corresponding sets of strike
prices KT , T ∈ T . We are given also interest rates related to the period from
the initial time to the exercise date, which might vary across maturities.
Based on the values for the strikes and on the range of terminal values for
the underlying asset, we choose an interval [a, b] which should contain all
such values. We also select an interval [c, d] containing the maturities. The
set [a, b] × [c, d] forms the domain of the function p(ω, u) we are trying to
determine.

The decision variables in our optimization model are the coefficients of the
spline functions used to describe p(ω, u). To properly formulate the opti-
mization problem we first need to specify a “super-structure” for the spline
functions, namely, the number and location of the bicubic spline knots. We
consider ns + 1 asset knots in [a, b], a = ω1 < ω2 < · · · < ωns+1 = b, and
nt + 1 temporal knots in [c, d], c = u1 < u2 < · · · < unt+1 = d. Asset
knots are dependent on strikes or underlying asset prices but do not need
to coincide with them. Similarly, temporal knots do not need to coincide
with maturities. Thus, we partition the domain [a, b] × [c, d] into a ns × nt

grid. For each rectangular region Rst, s = 1, . . . , ns, t = 1, . . . , nt (defined by
these two partitions), the corresponding bicubic spline element has 16 param-
eters. Therefore, the total number of spline parameters is equal to 16nsnt.
These parameters, denoted by y ∈ <16nsnt, amount to all optimization vari-
ables in the basic formulation. Let py(ω, u) represent the twice continuously
differentiable bicubic spline. One must impose a number of constraints to
represent all spline requirements (continuity up to second derivatives at the
boundaries of Rst, s = 1, . . . , ns, t = 1, . . . , nt and natural spline conditions).
These constraints are linear in y and can be represented as follows:

(ak)>y = bk, k = 1, . . . , nc, (1)

for appropriate vectors ak ∈ <16nsnt and scalars bk, k = 1, . . . , nc. The number
nc, the total number of spline constraints, equals (42ns−18)nt+21ns−nt−17.

Since py(ω, u) approximates a probability density function, it must satisfy

py(ω, u) ≥ 0, ∀(ω, u) ∈ [a, b]× [c, d]
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and ∫ b

a

py(ω, u)dω = 1, ∀u ∈ [c, d].

These requirements can be imposed at the temporal knots by setting, respec-
tively,

py(ω, ut) ≥ 0, ∀ω ∈ [a, b], t = 1, . . . , nt + 1 (2)

and ∫ b

a

py(ω, ut)dω = 1, t = 1, . . . , nt + 1. (3)

The constraints (3) are linear in the variables of the problem. As in the static
case (see [17]), we will consider in the next two subsections two approaches
to deal with the nonnegativity constraints (2).

Considering py(ω, u) as the risk-neutral density, the discounted expected
value for future prices for an option corresponding to maturity T ∈ T and
strike K ∈ KT is given, respectively for calls and puts, by

CT,K(y) = e−r(T−t0)
∫ b

a

py(ω, T )(ω −K)+dω,

PT,K(y) = e−r(T−t0)
∫ b

a

py(ω, T )(K − ω)+dω.

Thus,
[CT,K − CT,K(y)]2 and [PT,K − PT,K(y)]2

are the distances between the market and recovered prices. Summing up
for all maturities and strikes, we obtain the following least-squares residual
objective function

E(y) =
∑
T∈T

{ ∑
K∈CT

θT,K [CT,K − CT,K(y)]2 +
∑

K∈PT

µT,K [PT,K − PT,K(y)]2

}
.

(4)
The weights θT,K , µT,K may serve the purpose of balancing the relevance of
each contribution under the presence of market information such as transac-
tion volumes.

Leaving aside the nonnegativity constraints (2) momentarily, our basic for-
mulation consists of the following quadratic programming problem (quadratic
objective function and linear constraints):

min
y

E(y) s.t. (1), (3). (5)
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We have pointed out before that all spline constraints (1) are linear. It is
also easy to see that each term in the objective function is quadratic. In
fact, let us look, for instance, at the formula for CT,K(y) for given T ∈ T and
K ∈ CT . Assuming that ω` ≤ K < ω`+1, we get

er(T−t0)CT,K(y)

=

∫ b

a

py(ω, T )(ω −K)+dω

=

ns∑
s=`

∫ ωs+1

ωs

py(ω, T )(ω −K)+dω

=

∫ ω`+1

K

py(ω, T )(ω −K)dω +

ns∑
s=`+1

∫ ωs+1

ωs

py(ω, T )(ω −K)dω.

Since py(ω, T ) is a piecewise cubic polynomial whose coefficients are the vari-
ables y, one can clearly see that this expression is linear with respect to
these variables. Once the integrals are calculated, one can see that these
terms involve powers of the type ω5 which will generate large values and
thus introduce ill-conditioning in the Hessian matrix of the objective func-
tion E(y).

The nonnegativity constraint (2) for the density surface can either be im-
posed heuristically (without guarantees) or rigorously. These two alternatives
lead to two different optimization problems that we explore in the next two
subsections.

2.2. Quadratic programming approach. Our first approach to enforce
nonnegativity of the estimated risk-neutral densities consists of imposing
nonnegativity at all spline knots:

py(ωs, ut) ≥ 0, s = 1, . . . , ns + 1, t = 1, . . . , nt + 1. (6)

This gives rise to a new QP formulation:

min
y

E(y) s.t. (1), (3), (6). (7)

The objective function is the same and the new constraints are linear in-
equalities in the optimization variables y. So, we are still in the presence of
a convex QP. Although many of our experiments with this formulation have
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resulted in nonnegative densities, we have observed in some instances that
the densities recovered exhibited small negative values between the knots.

2.3. Semidefinite programming approach. Since our objective is to
obtain nonnegative estimated risk-neutral densities, we suggest another ap-
proach based on semidefinite programming. The nonnegativity of the den-
sities is based on a characterization of nonnegativity for polynomials in real
intervals, given by Bertsimas and Popescu [5]. To apply this characteriza-
tion at the lines defined by the spatial and temporal knots, respectively,
ωs, s = 1, . . . , ns + 1, and ut, t = 1, . . . , nt + 1, we introduce new vari-
ables X` = [x`

ij]i,j=0,...,3
, ` = 1, . . . , n̄ = 2nsnt + ns + nt. In what follows the

symbol X � 0 denotes that the matrix X is symmetric and positive semi-
definite. According to the abovementioned characterization of nonnegativity
for polynomials (see also [17]), the piecewise bicubic polynomial py(ω, u) is
nonnegative in [a, b]× {ut}, for all ut, t = 1, . . . , nt + 1, and in {ωs} × [c, d],
for all ωs, s = 1, . . . , ns + 1, if and only if

H`
k •X` = 0, k = 1, 2, 3, ` = 1, . . . n̄,

(g`
k)
>y + H`

k •Xst = 0, k = 4, . . . , 7, ` = 1, . . . n̄,

X` � 0, ` = 1, . . . n̄,

(8)

for some vectors g`
k, k = 4, . . . , 7, and matrices H`

k, k = 1, . . . , 7, for ` =
1, . . . n̄, where the symbol • denotes the trace matrix inner product.

Note that because X` is positive semidefinite, we have that x`
00 is non-

negative which then means, in the context of our notation, that the bicubic
polynomial defined at the knots (ωs, ut) is always nonnegative. Thus, this
approach includes the linear inequality constraints (6) imposed for the QP
problem, yielding a stronger guarantee of nonnegativity. We can now pose a
semidefinite program to recover the risk-neutral density dynamically, in the
form:

min
y,X1,...,X n̄

E(y) s.t. (1), (3), (8). (9)

The constraints in (8) are linear in the optimization variables, except for the
positive semidefiniteness constraints. Since all these constraints are convex
and the objective function is quadratic the problem (9) is a convex semidef-
inite programming problem.
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Semidefinite and conic optimization software typically solves problems with
linear objective functions and thus we must provide a reformulation of prob-
lem (9) to be able to use available software options. It is easy to see that (9)
is equivalent to the following problem:

min
t,y,X1,...,X n̄

t s.t. t ≥ E(y), (1), (3), (8). (10)

Since E(y) is a convex quadratic function of y, the constraint t ≥ E(y) can
be reformulated as a second order cone constraint (see [16]). The resulting
problem is still more complex than the QP but it can be efficiently solved with
the current conic and semidefinite software. In our numerical experiments,
we used the solver SDPT3 [19].

3. Numerical experiments
We now present a number of experiments for the approaches introduced

in this paper to estimate the dynamic evolution of risk-neutral densities. To
solve the convex QP problem (7) we used the Matlab quadprog solver.
To solve the SDP problem (9) (reformulated using the second order cone con-
straints) we applied the interior-point code SDPT3 [19]. Since the Hessian
matrix is extremely ill-conditioned due to the magnitude of the powers of ω,
we had to scale the QP and SDP problems, choosing the average value of
the components of the vector of spatial knots as a scaling factor. We then
solved scaled versions of problems (7) and (10) by scaling first each spline
knot component by the average scaling value ωavg. This led to new scaled
variables related linearly to the original ones. The objective function was
scaled by 1/ω2

avg.

3.1. Black-Scholes data. In this first set of tests, we study the ability of our
method to recover a known risk-neutral density based on the prices of options
that are computed using this density. For this purpose, we generated option
prices using the Black-Scholes model which corresponds to the choice of a log-
normal risk-neutral density function. Using the function blsprice, from the
Financial Toolbox of Matlab, we generated call option prices considering
7 maturities T = {4/12, 5/12, 6/12, 8/12, 9/12, 11/12, 12/12} and, for each
maturity, 11 call options whose strikes are equally spaced between 20 and
100. We set S0 = 50 as the initial market price for the underlying asset, 0.1
as the risk-free interest rate, a volatility of 0.2, and considered no dividend
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rate. The log-normal risk-neutral density that corresponds to these settings
is plotted for t ∈ (4/12 : 0.002 : 1) (see the plot at the bottom of Figure 1).

Following [2, 8] we considered a region of the domain centered around S0
that is relevant for the choice of the spline knots. A spline knot corresponding
to an asset value far from S0 has lower relevance than a spline knot near S0
in terms of its contribution in the estimation of the risk-neutral density. Our
spline knots formed a non-uniform rectangular mesh. There were 40 asset
knots varying from 20 to 100. The number of asset knots near the at-the-
money locations was higher and corresponded to half of the total number
of asset knots, to account for the importance of the at-the-money options.
These asset knots were constant in time and did not coincide with strike
prices. The temporal knots set chosen was {4/12, 10/12, 12/12}.

We solved the scaled formulation for problems (7) and (10) and obtained
the dynamic evolution for the densities (see Figure 1). For this data set, we
did not consider any weights θT,K and µT,K . Since the Hessian of E(y) is
strongly rank-deficient (and despite the fact that it is theoretically positive
semidefinite), we observed numerically the presence of small negative eigen-
values. The Matlab QP solver encountered some difficulties due to these
negative eigenvalues. The scaling of the Hessian reduced the ill-conditioning
of the matrix, but we had still to perturb the Hessian by adding a term
of the form ξI, where ξ = |λmin|, which guaranteed a numerically positive
semidefinite Hessian.

For all the maturities considered, both the QP and SDP approaches per-
formed very well (see the upper plots of Figure 1). Since we know the log-
normal distributions represent the “true” risk-neutral densities for this ex-
periment, we plotted them against the recovered risk-neutral densities for the
QP and SDP approaches (see the plots at the middle of Figure 1). While the
fit is very good, the recovered density deviates slightly from the true density
for the first maturity. The estimated call prices, computed using the recov-
ered risk-neutral density, very accurately estimate the “true” Black-Scholes
prices for all seven maturities (see Figure 2). The residual E(y), obtained
for the sum of the seven maturities, and the average errors per option are
similar for QP and SDP approaches:
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BS data set QP SDP

residual E(y) 3.49× 10−3 3.72× 10−3

average abs. error per option 4.08× 10−3 4.42× 10−3

average rel. error per option 0,254 0,245

The dimensions of the QP problem solved are the following: 1248 variables,
2424 equality constraints, and 120 inequality constraints. The SDP problem,
reformulated using the second order cone (SOC) constraints, had 1248 linear
variables, 197 SDP variables, 1249 SOC variables, 2424 linear constraints, 352
constraints involving only SDP variables, 476 constraints involving linear and
SDP variables, and 1248 constraints involving linear and SOC variables.

Finally, we point out that the problem is relatively robust with respect to
the number of asset knots; a similar performance is found if we consider 20
or 30 asset knots or vary its locations, or change the temporal knots.

3.2. Absolute diffusion data. To demonstrate the effectiveness of our ap-
proach in recovering the time dynamics of the risk-neutral density for the
underlying asset, we generated another set of option prices, this time as-
suming that the underlying assets follow an absolute diffusion process of the
following form (see [8]):

dSt = (r − d)Stdt + 15dWt, t ∈ [0, τ ], τ > 0. (11)

Above, Wt is a standard Brownian motion and τ is a fixed trading horizon.
The choice of the parameters followed [8]: initial value for the asset S0 = 100,
risk-free interest rate r = 0.05, and dividend rate d = 0.02. There were 7
maturities T = {5/12, 7/12, 8/12, 9/12, 10/12, 11/12, 12/12}, and for each
maturity 15 call prices. The call option prices were computed using the
analytic formula for pricing European call options [9] when the underlying
asset follows an absolute diffusion process.

We considered 30 equally spaced asset spline knots between 50 and 150.
The set of temporal spline knots was {5/12, 12/12}. The Hessian perturba-
tion is the same as in the Black-Scholes case. We did not incorporate any
weights θT,K and µT,K .

As we can see from Figures 3 and 4, the shapes of the theoretical and
recovered surfaces are very similar. There is a good fitting when we plot,
at the maturities, the theoretical densities against the recovered ones. We
only observed a slight discrepancy at the recovered risk-neutral density for



DYNAMIC EVOLUTION FOR RISK-NEUTRAL DENSITIES 11

Figure 1. Recovered risk-neutral density surface from data gen-
erated by a Black-Scholes model using QP and SDP approaches,
plotted against the log-normal densities at the maturities.

the first maturity. The residual E(y) for the option prices for all maturities
and the errors per option are also good, for both QP and SDP approaches:
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abs. diff. data set QP SDP

residual E(y) 5.30× 10−3 5.28× 10−3

average abs. error per option 4.84× 10−3 4.83× 10−3

average rel. error per option 0,200 0.190

Once again, our methodology appears robust to the selection of the number
and location of the spline knots. For instance, if we change the number
of asset knots to any number belonging to [20, 40], we obtain essentially
identical results. Similarly, if we change the location of the temporal knots,
the estimation results remain the same.

In this case, the QP problem solved had 464 variables, 594 equality con-
straints, and 60 inequality constraints. The SDP problem, reformulated using
the second order cone (SOC) constraints, exhibited 464 linear variables, 88
SDP variables, 465 SOC variables, 594 linear constraints, 264 constraints
involving only SDP variables, 352 constraints involving linear and SDP vari-
ables, and 464 constraints involving linear and SOC variables.

3.3. S&P500 data. In this next set of experiments, we test the effectiveness
of our approach on recovering risk-neutral densities from traded option price
data. The first data set is the one used in [2, 8] and refers to European call
options on the S&P500 index traded in October 1995. There are 10 maturities
and for each maturity 10 strikes. We considered 7 maturities as in [8]. The
specifications of the data are as follows: the spot asset price is 590, the risk-
free interest rate is 0.06, and the dividend rate is 0.0262. The location of
the spline knots was chosen to be around the initial underlying asset price.
We considered 28 equally spaced asset knots belonging to [472, 826]. The
set of temporal knots is {0.175, 2}. The modification of the Hessian of the
objective function is the same as before and we did not consider any weights
θT,K and µT,K .

As illustrated in Figures 5 and 6, both the QP and SDP approaches gave
similar results and deviated clearly from log-normality. It is interesting to
observe the temporal evolution of the densities. The cumulative residual
E(y) for QP and SDP approaches as well as the errors per option were:

S&P 500 (1995) data set QP SDP

residual E(y) 13.65 13.82
average abs. error per option 3.00× 10−1 3.01× 10−1

average rel. error per option 0.122 0.449



DYNAMIC EVOLUTION FOR RISK-NEUTRAL DENSITIES 13

One can compare the obtained average, absolute and relative errors per
option to the error reported in [8] which seems to be around 0.0076, slightly
better than ours, although it is difficult to establish rigorous comparisons
without knowing exactly how the error in [8] was computed.

The dimensions of the QP problem solved are the following: 432 variables,
552 equality constraints, and 56 inequality constraints. The SDP problem,
reformulated using the second order cone (SOC) constraints, had 432 linear
variables, 54 SDP variables, 433 SOC variables, 552 linear constraints, 162
constraints involving only SDP variables, 216 constraints involving linear and
SDP variables, and 432 constraints involving linear and SOC variables.

Our second S&P500 data set was collected from CBOE on October 4, 2006
with maturities in October, November, and December (the set of maturities
was T = {16/360, 44/360, 72/360}). The strikes differ from one maturity
to the other and are, respectively, [1320, 1325, 1330, 1335, 1340, 1345, 1350,
1360, 1370, 1375, 1380, 1385], [1320, 1330, 1335, 1345, 1350, 1360, 1370, 1375,
1380, 1385], [1320, 1325, 1330, 1335, 1340, 1345, 1350, 1360, 1375, 1380, 1385].
We considered as option prices the average of the bid and ask prices. The
data selection followed [1]. Using put-call parity we translated the put prices
into call prices and then we checked for monotonicity and convexity in order
to eliminate arbitrage in the data (see also [17]).

The temporal spline knots corresponded to the first and last maturities.
The placement of the asset knots was made as before around the initial
underlying asset price. In this case there were 16 equally spaced asset knots
between 1281 and 1675. (If we choose the number of knots too small (less
than 10) the recovered risk-neutral densities exhibit less smoothness than in
the cases where the number of knots exceeds 10.) The Hessian was modified
as for the other data sets. The overall residual E(y) found for the three
maturities and the errors per option were:

S&P500 (2006) data set QP SDP

residual E(y) 2.71 2.97
average abs. error per option 0.725 0.756
average rel. error per option 0.125 0.129

Figure 7 depicts the recovered densities using the QP and SDP approaches
for this data set. The fitting for the first maturity is worse than for the other
two, for both QP and SDP approaches.
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For this data set, the QP problem solved had 288 variables, 363 equality
constraints, and 32 inequality constraints. The SDP problem, reformulated
using the second order cone (SOC) constraints, had the following dimen-
sions: 288 linear variables, 46 SDP variables, 289 SOC variables, 363 linear
constraints, 158 constraints involving only SDP variables, 184 constraints
involving linear and SDP variables, and 288 constraints involving linear and
SOC variables.

3.4. Advantages of the SDP formulation and CPU times. We have
observed, especially for nearly all market data tested in this paper, that the
QP approach yielded risk-neutral densities exhibiting negative values. The
SDP approach, in turn, always returned positive densities (along the spatial
and temporal lines of the discretization). In our previous paper, for the static
case, the SDP formulation showed multimodality in the recovered densities,
a feature not detected by the solution of the QP formulation.

We also point out that guaranteeing nonnegativity of the risk-neutral den-
sities inside the discretization rectangles (in the dynamic case and by inter-
polation) was never an issue once this was the case along the spatial and
temporal lines, a feature guaranteed by the SDP approach.

The SDP approach is computationally more expensive but not as much as
one could think, as reported in the following table (the tests were made in
an Intel(R) Core(TM)2 Duo CPU T7100, 1,8 GHz, 2GB RAM):

CPU time (sec.) QP SDP

BS data set 53.6 161.4
abs. diff. data set 3.2 40.7

S&P500 (1995) data set 2.9 18.8
S&P500 (2006) data set 1.4 4.9

4. Pricing binary options
The CBOE has started to trade binary option contracts on the S&P500 and

the VIX, in July, 2008. These options are of European style. CBOE binary
call options pay out C = 100USD if the settlement value ST , at maturity T ,
is at or above the strike price K, and pay nothing if the settlement value is
below the strike price.
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In this section we apply our method for estimating the risk-neutral density
to price binary options. The price of the above binary options can be calcu-
lated as the discounted value of C times the risk-neutral probability that the
underlying ST is in the money at maturity. Using our risk-neutral density
estimation, the price of a binary call option, with strike price K and maturity
T , is thus given by

Bpy
(K, T ) = e−r(T−t0)C

∫ +∞

K

py(ω, T )dω.

Since we chose a range [a, b] for possible terminal values for the underlying
asset we have, instead,

Bpy
(K, T ) = e−r(T−t0)C

∫ b

K

py(ω, T )dω. (12)

For binary options of this type, it is known that there exists a closed pricing
formula using the Black-Scholes formula (see, e.g., [12]):

B(K, T, σimp) = Ce−r(T−t0)N(d2(σimp)), (13)

where

d2(σimp) =
log(S0/K) + (r − d− σ2

imp/2)(T − t0)

σimp

√
T − t0

and where d is the dividend rate for the S&P500 index and σimp is an ap-
proximation for the implied volatility.

In order to compare these two different pricing strategies, we considered
a set of European vanilla call option prices on the S&P500 index collected
on July 15, 2008, with 3 maturities: July, August, and September. For each
maturity we have 15 strike prices. We collected also a set of binary call
option prices on July 15, 2008 and considered the market binary call prices
given by (bid price+ask price)/2.

For our computations, we first estimated the risk-neutral density for the
three maturities according to the SDP approach given in Section 2.3. Then,
the numerically estimated risk-neutral density was used in (12) to compute
the corresponding binary call prices. Finally, we also calculated the binary
option prices from (13), after computing the implied volatility.

Figure 9 depicts the binary call prices using SDP risk-neutral estimation
against the BS implied binary call prices and the market binary prices. We
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observe that the difference between BS implied binary prices and SDP re-
covered binary prices is significant and that market binary prices are much
closer to those recovered using the SDP formulation.

5. Concluding remarks
We have proposed a nonparametric method for estimating the dynamics of

the risk-neutral density. Bicubic splines are used to generate the surface of
densities, ensuring the appropriate smoothness. The optimization problems
formulated (QP and SDP) proved to be effective in recovering the densities
from a variety of data, including data generated from a Black-Scholes model
and from an absolute diffusion model and data collected from S&P500 index.
The fitting of the option prices for the generated models data was extremely
good, and the SDP approach ensured nonnegativity of the risk-neutral den-
sities everywhere. The fitting for the market data respected, in general, the
interval for the bid-ask spread. While our QP and SDP approaches per-
formed well on the 1995 S&P500 index data, the performance was not so
good for the 2006 S&P500 index data, especially in the fitting for the first
maturity. We should stress that the 2006 data set is smaller than the 1995
one, with strikes more irregularly located.

Finally, we used the proposed approach to price exotic options and ob-
served a departure from the prices computed using the Black-Scholes implied
volatility formula and a better fitting to the market exotic prices.
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Figure 2. Recovered expected prices plotted against Black-
Scholes prices for the seven maturities (QP and SDP approaches).
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Figure 3. Recovered risk-neutral density surface from data gen-
erated by an absolute diffusion model using QP and SDP ap-
proaches, plotted against the absolute diffusion densities at the
maturities.
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Figure 4. Recovered expected prices plotted against the abso-
lute diffusion prices for the seven maturities (QP and SDP ap-
proaches).
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Figure 5. Recovered risk-neutral density surface and risk-
neutral densities at the maturities, from S&P500 1995 data, using
QP and SDP approaches.



22 A. M. MONTEIRO, R. H. TÜTÜNCÜ AND L. N. VICENTE

Figure 6. Recovered expected prices plotted against the
S&P500 1995 prices for the seven maturities (QP and SDP ap-
proaches).
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Figure 7. Recovered risk-neutral density surface and risk-
neutral densities at the maturities, from S&P500 2006 data, using
QP and SDP approaches.
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Figure 8. Recovered expected prices plotted against the
S&P500 2006 prices for the three maturities (QP and SDP ap-
proaches).
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Figure 9. Recovered binary call prices from S&P500 data us-
ing the SDP approach against Black-Scholes binary prices and
S&P500 2008 binary prices.


