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Abstract: The choice of the bandwidth is a crucial issue for kernel density
estimation. Among all the data-dependent methods for choosing the bandwidth,
the plug-in method has shown a particularly good performance in practice. This
procedure is based on estimating an asymptotic approximation of the optimal
bandwidth, using two ‘pilot’ kernel estimation stages. Although two pilot stages
seem to be enough for most densities, for a long time the problem of how to
choose an appropriate number of stages has remained open. Here we propose
an automatic (i.e., data-based) method for choosing the number of stages to
be employed in the plug-in bandwidth selector. Asymptotic properties of the
method are presented and an extensive simulation study is carried out to compare
its small-sample performance with that of the most recommended bandwidth
selectors in the literature.
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1. Introduction

In this paper we give a solution to an open problem posed by Park and
Marron (1992), which is also highlighted in Wand and Jones (1995, p. 73).

The background of the problem is kernel density estimation. Specifically,
if X1, . . . , Xn are independent copies of a real random variable X, having
an absolutely continuous probability distribution P , with density f , the
kernel estimator of f is defined as

fnh(x) =
1

n

n
∑

i=1

Kh(x−Xi), (1)

where the kernel K is a real integrable function with
∫

K = 1, h is a
positive real number, called bandwidth or smoothing parameter, and we
are using the notation Kh(x) = K(x/h)/h.

It is widely known (see, e.g., Silverman, 1986) that the performance
of this estimator depends strongly on the choice of h. In this sense,
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the so-called optimal bandwidth hMISE is the minimizer of the mean in-
tegrated squared error function, MISE(h) = E[ISE(h)], where ISE(h) =
∫

{fnh(x) − f(x)}2dx. Chacón et al. (2007) provide sufficient conditions
for hMISE to exist. A data-based bandwidth selector is just an estimator of
the theoretically optimal bandwidth hMISE.

For an arbitrary real function α, denote R(α) =
∫

α(x)2dx and µp(α) =
∫

xpα(x)dx for p ∈ N. When a positive kernel with a finite second-order
moment µ2(K) is used in (1), under some smoothness assumptions on f ,
it is possible to give an asymptotic approximation of hMISE, namely

h0 = c1ψ
−1/5
4 n−1/5, (2)

where we are abbreviating ψr =
∫

f (r)(x)f(x)dx = Ef (r)(X) for an even

number r (see Wand and Jones, 1995) and c1 = [R(K)/µ2(K)2]1/5. As the
only unknown quantity in (2) is ψ4, the problem of providing a bandwidth
selector reduces to that of estimating ψ4.

The kernel estimator of ψr for an arbitrary even r is given by

ψ̂r(g) =
1

n2

n
∑

i,j=1

L(r)
g (Xi −Xj) (3)

(Hall and Marron, 1987a; Jones and Sheather, 1991), where in this case
the kernel L and the bandwidth g may be different from K and h. We
say that L is a kernel of order ν if µp(L) = 0 for p = 1, 2, . . . , ν − 1 and
µν(L) 6= 0. A method for constructing a kernel Gν of arbitrary even order
ν based on the Gaussian one, φ(x) = (2π)−1/2e−x2/2, is given in Wand and
Schucany (1990). Such a class of higher-order kernels is the one that will
be used henceforth for the estimation of ψr, so that L = Gν in (3), with

Gν(x) =

ν/2−1
∑

s=0

(−1)s

2ss!
φ(2s)(x).

As ψr is a real parameter, it is natural to use in (3) the bandwidth g

minimizing the mean squared error of the estimator, MSE(g) = E[{ψ̂r(g)−
ψr}2]. Under some additional assumptions on f it is possible to obtain an
asymptotic representation of the MSE function, namely AMSE(g), and the
minimizer of this AMSE function is given by

g0,r =

∣

∣

∣

∣

∣

ν!G
(r)
ν (0)

µν(Gν)ψr+νn

∣

∣

∣

∣

∣

1/(r+ν+1)

(4)
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(Jones and Sheather, 1991). In view of (4), it is clear that the problem
becomes somehow a cyclic process, as the asymptotically best bandwidth
for estimating ψr depends on ψr+ν , another of these density functionals.

To overcome this problem, the usual solution is to use an ℓ-stage band-
width selection procedure (see Tenreiro, 2003, and references therein),
which consists in the following:

(1) Provide a quick and simple estimate of ψr+ℓν . This may be achieved
by using an estimate of the corresponding functional for some ref-
erence distribution. The normal distribution with zero mean and
standard deviation σ is mostly used as a reference since in this case,
following Wand and Jones (1995, p. 72), any functional ψs with even
s can be written as

ψNR
s ≡ ψNR

s (σ) =
(−1)s/2s!

(2σ)s+1(s/2)!
√
π
, (5)

so that an easy estimate of ψr+ℓν is given by ψ̂NR
r+ℓν = ψNR

r+ℓν(σ̂) where
σ̂ denotes any standard deviation estimate.

(2) Estimate successively the ℓ density functionals

ψr+(ℓ−1)ν, ψr+(ℓ−2)ν, . . . , ψr+ν, ψr,

with a kernel estimator. The bandwidth g = ĝ0,r+jν used in the ker-

nel estimator ψ̂r+jν(g) is just the one given by (4), with the unknown
functional ψr+(j+1)ν replaced by its previously calculated estimate.

The final step of the above procedure will give us an estimate of ψr, which
we will denote ψ̂r,ℓ. In particular, for r = 4, replacing ψ4 with ψ̂4,ℓ in (2)

results in what is called the ℓ-stage plug-in bandwidth selector, ĥPI,ℓ. In

particular the normal scale rule, which consists of replacing ψ4 with ψ̂NR
4

in (2), can be thought as being a zero-stage plug-in bandwidth selector.
Park and Marron (1992) observe that the influence on the plug-in selector

of the arbitrary reference distribution used in the initial step diminishes
as the number of stages increases. However, the cost of using additional
estimation steps results in an increment of the variance of the bandwidth
selector. Therefore, Park and Marron (1992) pose the following problem:
how many kernel functional estimation stages should be used? It would
be useful to have a method to select the correct (in some sense) number of
steps, in order to balance the two aforementioned effects. This is the main
goal of this paper.

The rest of the paper is organized as follows. In Section 2, we describe
the behaviour of plug-in bandwidth selectors depending on the number of
pilot stages. In Section 3 we introduce a method for choosing the number
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of pilot stages from the data. In Section 4 an extensive simulation study
is carried out to compare the performance of the proposed method with
the most recommended ones in the literature. All the proofs are deferred
to Section 5.

2. Asymptotic and finite sample behaviour of multi-

stage plug-in bandwidth selectors

Here we will present some theoretical results and examples providing
some insight into the problem of how to select the number of stages for the
plug-in bandwidth selector.

First of all we should say that, asymptotically, all the multistage plug-in
bandwidth selectors are equivalent, as long as they use ℓ ≥ 2 pilot stages.
This is a well known result, which can be stated in the following way.

Theorem 1 (Tenreiro, 2003). Assume that f has bounded derivatives up
to order 4+ℓν and there exists σf 6= 0 such that σ̂−σf = OP (n−1/2), where
σ̂ is the standard deviation estimate in the multistage procedure.

a) If ν = 2 then ĥPI,ℓ/h0 − 1 = OP (n−α) with α = 2/7 for ℓ = 1 and
α = 5/14 for all ℓ ≥ 2.

b) If ν = 4 then ĥPI,ℓ/h0 − 1 = OP (n−α) with α = 4/9 for ℓ = 1 and
α = 1/2 for all ℓ ≥ 2.

c) If ν ≥ 6 then ĥPI,ℓ/h0 − 1 = OP (n−1/2) for all ℓ ≥ 1.

The previous result justifies the usual recommendation of using ℓ = 2
when ν = 2 (Aldershof, 1991; Sheather and Jones, 1991; Park and Marron,
1992). However, from a nonasymptotic point of view, considerable im-
provements can be obtained in some cases if we allow for a higher number
of pilot estimation stages.

To see this, let us consider the case where the kernel K is taken to be the
standard normal density and the density f is a mixture of normal densities,
as in Marron and Wand (1992). For this kernel and class of densities there
are fast and easy-to-implement formulas to compute the exact ISE of the
kernel estimator, therefore, we can easily obtain a sample of size B of
the random variable ISE(ĥPI,ℓ) by using B artificially generated samples

with density f . This way, we can explore the distribution of ISE(ĥPI,ℓ) for
several values of ℓ. Moreover, by averaging over the B samples we get an
impression of the behavior of EISE(ℓ) = E[ISE(ĥPI,ℓ)] as a function of ℓ. It
is to be remarked here that the EISE function should not be mistaken for
the MISE function (see Jones, 1991).

In Figure 1 we give plots showing the effect of the number of pilot stages
both on the ISE and the EISE. This figure shows 15 graphs, corresponding
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to the 15 normal mixture densities in Marron and Wand (1992). In all cases
we have set L to be the standard normal density, so that ν = 2. In each
graph we show 21 boxplots representing the distribution of the random
variable ISE(ĥPI,ℓ) for ℓ = 0, 1, 2, . . . , 20 based on B = 1000 simulated
samples of size n = 200. Also, we include a polygonal line going through the
sample mean values of these distributions, thus giving an approximation of
EISE(ℓ) for ℓ = 0, 1, 2, . . . , 20. The solid black circle is used then to point
out the optimal number of stages in the EISE sense; that is, the number
of stages minimizing the (approximation of the) EISE function.

The same picture was generated for sample sizes n = 100 and n = 400,
but they will not be included here to save space. Nevertheless, we include
in Table 1 the EISE-optimal number of stages for these three sample sizes
along the 15 normal mixture densities considered. This shows that, with
the only exception of density #15, there are not drastic changes in the
EISE-optimal number of stages with the sample size. This supports the
usual recommendation that the number of stages does not need to be chosen
depending on the sample size.

Sample Density number

size 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

n = 100 0 0 10 7 0 2 3 3 3 16 2 10 2 12 8
n = 200 0 0 11 6 0 2 3 3 3 18 2 12 3 14 16
n = 400 0 0 10 6 0 2 3 4 4 15 2 12 4 17 26

Table 1. EISE-optimal number of stages.

In view of Figure 1 we can classify our 15 test densities into three groups:

(1) There is a group of densities for which the straightforward use of a
normal reference estimate of ψ4 in the formula of the asymptotically
optimal bandwidth h0 does a good job. This is the case mainly for
those densities whose shape is close to #1 (the normal one), like #2,
or for those densities for which the sample size n = 200 is perhaps
too small to try to estimate their more complicated features. The
latter is the case for densities #5, #6, #8, #9, #11 and #13.

(2) There is another different group of densities for which using a mul-
tistage plug-in selector is highly advisable, in the sense that a big
decrease of ISE is clearly noticeable from the 0-stage method to a
certain number of stages (depending on each particular density),
from which the ISE distribution stabilizes. In this group we include
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Figure 1. Distribution of ISE(ĥPI,ℓ) depending on the number
of stages (n = 200).
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densities #3, #4, #7, #14 and #15. For these densities the EISE-
optimal number of stages may be high but, in most of those cases,
using such a high number of stages does not represent a significant
gain over using, say, 5 or 6 stages.

(3) The third pattern that may be observed in Figure 1 corresponds to
densities #10 and #12. In those cases, the EISE-optimal number
of stages is high, but the distribution of the ISE does not show an
abrupt descent in the first stages, as in the previous case.

The main conclusion after observing Figure 1 is that in some cases (spe-
cially for those densities in groups 2 and 3 above) the plug-in method may
improve considerably if we allow for a higher number of stages than the
usual advice ℓ = 2.

We also performed some preliminary simulations to analyze the behavior
of the plug-in selector using a pilot kernel of order ν = 4 but, in common
with other studies in the literature (see, e.g., Marron and Wand, 1992,
or Jones, Marron and Sheather, 1996), despite its theoretical superiority
there were no significant improvement in practice over the plug-in selector
with ν = 2. Therefore, we will not include higher-order kernels further in
the simulations below, although we still allow higher-order kernels for the
sake of completeness in our theoretical analysis.

3. Data-based choice of the number of stages

The natural question which arises from the previous considerations is:
how should we choose the number of pilot stages ℓ? If we fix a maximum
number of pilot stages L, say, choosing a stage ℓ among the set of possible
pilot stages {0, 1, . . . ,L} is naturally equivalent to choosing one of the
bandwidths

ĥPI,ℓ = c1ψ̂
−1/5
4,ℓ n−1/5,

for ℓ = 0, 1, . . . ,L, where ψ̂4,0 = ψ̂NR
4 . Following Hall and Marron (1988)

who used cross-validation as a method for choosing the kernel order for ker-
nel density estimators, we propose here the same technique for the practical
choice of the number of pilot stages to be used in the plug-in bandwidth
selector.

The least-squares cross-validation criterion proposed by Rudemo (1982)
and Bowman (1984) is an unbiased estimator of MISE(h)−R(f) given by

CV(h) =
R(K)

nh
+

1

n(n− 1)

∑

i 6=j

(n−1
n Kh ∗Kh − 2Kh)(Xi −Xj),

where ∗ denotes the convolution product. The least-squares cross-validation
method involves choosing h > 0 to minimize CV(h). See Hall (1983)
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and Stone (1984) for some optimal properties of the least-squares cross-
validation bandwidth. Our proposal is to take for the number of pilot
stages the value ℓ̂(L) = ℓ̂(X1, . . . , Xn; L) defined by

ℓ̂(L) = argminℓ∈LCV(ĥPI,ℓ), (6)

where L = {0, 1, . . . ,L}. This method for choosing the number of pilot

stages leads to the data-based bandwidth ĥPI,ℓ̂(L), that can be seen as a

hybrid between cross-validation and direct plug-in bandwidths.
In the following, as a consequence of the results of Hall (1983, 1984)

and Hall and Marron (1987b), we establish the large sample optimality
of the cross-validation method for choosing the number of pilot stages by
proving that ℓ̂(L) works as well as the ‘optimal’ choice for ℓ in the following
asymptotic sense.

Theorem 2. Under the conditions of Theorem 1 assume that:

a) K is a compactly supported, symmetric density function which is
two-times differentiable with Hölder continuous second derivative,
that is, |K ′′(x) − K ′′(y)| ≤ c|x − y|δ, for some c, δ > 0 and all
x, y ∈ R.

b) The distribution function F of f satisfies
∫

(F (x)(1−F (x)))1/2dx <
∞.

Therefore

ISE(ĥPI,ℓ̂(L))

minℓ∈{0,1,...,L} ISE(ĥPI,ℓ)

P−→ 1.

Hereafter, we show that if we take L = {1, . . . ,L} in (6), the data-

based bandwidth ĥPI,ℓ̂(L) inherits the asymptotic rates of convergence of

the multistage bandwidths ĥPI,ℓ, ℓ = 1, . . . ,L, presented in Theorem 1, thus
reducing the cross-validation variability and leading to better asymptotics.
The key point to achieve this goal is given in the following non-asymptotic
result which strongly depends on the Gaussian kernel family used in the
multistage procedure. This result also gives some important insight into
the finite sample behaviour of the ℓ-stage plug-in bandwidth as a function
of ℓ described in Figure 1.

Lemma 1. If for fixed r ∈ {0, 2, . . .} and ℓ ∈ {0, 1, . . .} the sample X =

{X1, . . . , Xn} is such that |ψ̂r+ℓν,1| ≥ |ψ̂NR
r+ℓν| then |ψ̂r,ℓ+1| ≥ |ψ̂r,ℓ|. There-

fore, if X is such that |ψ̂4+ℓν,1| ≥ |ψ̂NR
4+ℓν|, for all ℓ = 0, 1, . . . ,L, then

ĥPI,L ≤ ĥPI,L−1 ≤ . . . ≤ ĥPI,2 ≤ ĥPI,1 ≤ ĥPI,0.
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The next result is a direct consequence of Theorem 1 and the previous
lemma. Although it is stated for the previously introduced cross-validatory
choice of ℓ with L = {1, . . . ,L}, it is also valid for any other (measurable)

rule ℓ̂ for choosing ℓ taking values in {1, . . . ,L}. Also remark that better
asymptotic rates of convergence could be obtained for ν ≤ 4 by restricting
the choice of ℓ to the set {2, . . . ,L}.
Theorem 3. Under the conditions of Theorem 1 assume that f has bounded
derivatives up to order 4 + Lν and

|ψ4+ℓν| ≥ |ψNR
4+ℓν(σf)|, for all ℓ = 1, 2, . . . ,L. (7)

For ℓ̂(L) defined by (6) with L = {1, . . . ,L} we have:

a) If ν = 2 then ĥPI,ℓ̂(L)/h0 − 1 = OP (n−2/7).

b) If ν = 4 then ĥPI,ℓ̂(L)/h0 − 1 = OP (n−4/9).

c) If ν ≥ 6 then ĥPI,ℓ̂(L)/h0 − 1 = OP (n−1/2).

Although condition (7) is not very restrictive due to the smoothness prop-
erties of the normal distribution, it can be improved or even suppressed
if for each ℓ = 1, 2, . . . ,L, an appropriate reference distribution family is
used. This is the case when the reference distribution used in the mul-
tistep procedure is taken from the scale family of the beta distribution
Beta(−1, 1, s/2 + 2, s/2 + 2) with s = 4 + νℓ. Precisely, if we denote by
ψBR

s ≡ ψBR
s (σ) the value of the ψs functional corresponding to the member

of the scale family of the distribution Beta(−1, 1, s/2 + 2, s/2 + 2) with
standard deviation σ, then condition (7) becomes |ψ4+ℓν| ≥ |ψBR

4+ℓν(σf)| for
all ℓ = 1, 2, . . . ,L, which is fulfilled by every density f (cf. Terrell, 1990,
Theorem 1). Besides, as in the case of the normal reference distribution,
explicit formulas for ψBR

s for even s are easy to obtain. In fact,

ψBR
s =

(−1)s/2(s!)2(s+ 1)(s+ 3)

2s((s/2)!)2(s+ 5)(s+3)/2σs+1
,

where σ is the scale parameter. Some preliminary simulations were also
conducted to analyze the behavior of the proposed plug-in bandwidth se-
lector for the beta scale rule but no significant practical improvements over
the normal scale rule were observed.

4. Simulation study

We performed a simulation study to compare the new procedure (labelled
CT) with the two most successful bandwidth selection methods in the liter-
ature, namely the direct plug-in method with fixed number of stages ℓ = 2
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proposed by Sheather and Jones (labelled SJ) and the least-squares cross-
validation method (labelled CV). These two methods have been shown to
provide quite reasonable results in practice; see Cao, Cuevas and González-
Manteiga (1994) or Jones, Marron and Sheather (1996), and references
therein.

Based on the observation that for most densities there seems not to
represent a significant gain to consider more than 5 or 6 pilot stages, we
will select the number of stages among {0, 1, . . . , 5} in the new CT proposal.

We will use as test densities the same 15 normal mixture densities that we
referred to in Section 2. Based on 500 samples of size n = 200 for each test
density in the study, we plot in Figure 2 the boxplots for the distributions
of ISEs corresponding to each of the three bandwidth selection methods.

Due to the fact that the cross-validation choice is made on a set of “good
bandwidths” in the case of the CT method, the reduction of the variability
of the cross-validation procedure, as indicated in Theorem 3, is also clear
from the practical point of view.

Besides, the CT bandwidth shows some kind of adaptive behavior, in
the sense that its performance gets close to the one which is best between
SJ and CV. For instance, for density #8 SJ is better than CV due to
its smaller variability and CT is quite close to SJ (although slightly more
variable), whereas for density #3, say, CV is clearly better than SJ because
the latter is too biased and in this case CT gets quite close to CV. The
exceptions to this general behavior are densities #10, #12 and #14, where
the advantage of CV over CT is noticeable. However, this is not unexpected
in view of Table 1, as for these hard-to-estimate densities maybe L = 5
can be regarded as being too few pilot estimation stages. Anyway, in all
these cases CT is generally better than SJ. Therefore, if we were to make
a single recommendation for bandwidth selection, we would take the new
CT method.

5. Proofs

Proof of Theorem 2: Let Hn = {ĥPI,ℓ : ℓ = 0, 1, . . . ,L}. From Theorem
1 we have

P(Hn ⊂ [ǫn−1/5, λn−1/5]) → 1, (8)

for some 0 < ǫ < λ <∞. Therefore, from Theorem 1 of Hall (1983) we get

CV(h) = ISE(h) − 2

n

n
∑

i=1

f(Xi) + R(f) + rn(h),
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=
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where
n4/5 sup

h∈Hn

|rn(h)| = oP (1).

Consequently

ISE(ĥPI,ℓ̂(L)) = min
h∈Hn

ISE(h) + oP (n−4/5).

Since
min
h∈Hn

ISE(h) ≥ min
h>0

ISE(h),

in order to conclude it is enough to show that

n4/5 min
h>0

ISE(h) = C + oP (1),

for some positive constant C. This is a consequence of Theorem 2.2 of
Hall and Marron (1987b) and Theorem 2 of Hall (1984). In fact, if hISE =
argminh>0ISE(h) we have

n4/5 min
h>0

ISE(h) = n4/5ISE(hISE)

= n4/5ISE(hMISE) + OP (n−1/5)

= 5R(K)4/5µ2(K)2/5R(f ′′)1/5/4 + oP (1).

2

Proof of Lemma 1: For r = 0, 2, . . ., denote

ϕr(t) =

(

ν!|G(r)
ν (0)|

|µν(Gν)|nt

)1/(r+ν+1)

, t > 0,

so that we can write g0,r = ϕr(|ψr+ν|) for the AMSE-optimal bandwidth of

the kernel estimator (3). The ℓ-stage plug-in estimator ψ̂r,ℓ of ψr which in-
volves the estimation of the ℓ density functionals ψr+(ℓ−1)ν, ψr+(ℓ−2)ν, . . . , ψr,
can be written in a recursive way in terms of the i-stage plug-in estimators
ψ̂r+iν,ℓ−i of ψr+iν , for i = 1, . . . , ℓ− 1:

ψ̂r,ℓ = ψ̂r(ϕr(|ψ̂r+ν,ℓ−1|)),
ψ̂r+ν,ℓ−1 = ψ̂r+ν(ϕr+ν(|ψ̂r+2ν,ℓ−2|)),

...

ψ̂r+(ℓ−2)ν,2 = ψ̂r+(ℓ−2)ν(ϕr+(ℓ−2)ν(|ψ̂r+(ℓ−1)ν,1|)),
ψ̂r+(ℓ−1)ν,1 = ψ̂r+(ℓ−1)ν(ϕr+(ℓ−1)ν(|ψ̂NR

r+ℓν|)).

Therefore,
|ψ̂r,ℓ| = Ψr(Ψr+ν(. . . (Ψr+(ℓ−1)ν(|ψ̂NR

r+ℓν|))))
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and also

|ψ̂r,ℓ+1| = Ψr(Ψr+ν(. . . (Ψr+(ℓ−1)ν(|ψ̂r+ℓν,1|)))),
where Ψs = |ψ̂s|◦ϕs, for s = 0, 2, . . ., is a function depending on the sample

X . Since X is such that |ψ̂r+ℓν,1| ≥ |ψ̂NR
r+ℓν|, and ϕs is a strictly decreasing

function, in order to conclude it is enough to prove that g → |ψ̂s|(g) is a

decreasing function. Using the positive-definiteness of (−1)s/2G
(s)
ν we get

|ψ̂s|(g) = (−1)s/2ψ̂s(g) for all g > 0, and then

d|ψ̂s|
d g

(g) = − 1

n2gs+2

n
∑

i,j=1

W

(

Xi −Xj

g

)

≤ 0,

for all g > 0 since W (t) = (−1)s/2((s + 1)G
(s)
ν (t) + tG

(s+1)
ν (t)) is also a

positive-definite function on the real line, as it is the Fourier transform of
x→ xs+νφ(x)/(2

ν

2
−1(ν

2 − 1)!).
2

Proof of Theorem 3: Writing ΩL = {ĥPI,L ≤ ĥPI,L−1 ≤ . . . ≤ ĥPI,2 ≤
ĥPI,1}, from Theorem 1 and Lemma 1, we have P(ΩL) → 1 as n goes to

infinity. The conclusion follows now easily from Theorem 1 since ĥPI,L/h0−
1 ≤ ĥPI,ℓ̂(L)/h0 − 1 ≤ ĥPI,1/h0 − 1 for a sample in ΩL.

2

References
Aldershof, B. (1991) Estimation of Integrated Squared Density Derivatives. Ph.D. thesis,
University of North Carolina, Chapel Hill.

Bowman, A. W. (1984) An alternative method of cross-validation for the smoothing of
density estimates. Biometrika, 71, 353–360.
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