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Abstract: In this work numerical methods for one-dimensional diffusion problems
are discussed. The differential equation considered, takes into account the variation
of the relaxation time of the mass flux and the existence of a potential field. Conse-
quently, according to which values of the relaxation parameter or the potential field
we assume, the equation can have properties similar to a hyperbolic equation or to
a parabolic equation. The numerical schemes consist of using an inverse Laplace
transform algorithm to remove the time-dependent terms in the governing equation
and boundary conditions. For the spatial discretisation, three different approaches
are discussed and we show their advantages and disadvantages according to which
values of the potential field and relaxation time parameters we choose.
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1. Introduction

The classical way to treat the diffusion problem of a Brownian particle is
to start with the well known Fick’s law for the mass flux

J(x, t) = −D∂c

∂x
(x, t),

where c is the mass concentration of the Brownian particle and D is the
diffusion coefficient. If we combine this equation with the mass conservation
law (or continuity equation)

∂c

∂t
(x, t) +

∂J

∂x
(x, t) = 0, (1)

the dynamics of a Brownian particle is described by the diffusion equation

∂c

∂t
(x, t) = D

∂2c

∂x2
(x, t). (2)

When a uniform force field such as gravitation exists, a uniform flow is
produced with the terminal velocity determined by the balance of the driving
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force and the frictional force from the surrounding fluid acting on the particle
[11]. Therefore, the flow is given by

J(x, t) = −D∂c

∂x
(x, t) − P (x)c(x, t), (3)

where

P (x) =
1

mγ

dV

dx
(x),

V is the potential field, m is the particle mass and γ the friction constant.
The diffusion constant can also be written as

D = κB
T

mγ
,

where κB is the Boltzmann constant and T is the temperature of the fluid.
As it was been pointed out by several authors, equation (2) presents an

unphysical property: if a sudden change in the concentration is made at a
point, it will be felt instantly everywhere. This property, known as infinite
speed of propagation, is not present in mass diffusion phenomena and there-
fore we have the violation of the principle of causality. This turns out to be
a problem, specially if we are interested in the transient problem in a short
period of time, or for low temperature [13]. In order to describe the mass
diffusion with a finite speed of propagation, we must consider the so-called
non-Fickian diffusion equations. Das [6, 7] has derived a non-Fickian diffu-
sion equation in the presence of a potential field from the Kramer’s equation.
This equation is a hyperbolic equation, although the corresponding Fickian
equation is a parabolic equation.

To accommodate the finite propagation speed, the generalized Fick’s law
can be written as [7]

θ
∂J

∂t
(x, t) + J(x, t) = −D∂c

∂x
(x, t) − P (x)c(x, t), (4)

where θ = 1
γ
∈]0, 1] is the parameter that measures the propagation speed of

the mass wave and can be regarded as the relaxation time of the mass flux.
In fact, if we assume that the mass flux at point x and time t results from
the concentration gradient at x but at some passed time instead of (3), we
must consider

J(x, t+ θ) = −D∂c

∂x
(x, t) − P (x)c(x, t),
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where θ is a small parameter. Considering a first order approximation to the
flux we can obtain (4). Integrating the first order differential equation (4),
we obtain the generalization of the Cattaneo’s law for the flux [10]

J(x, t) = −1

θ

∫ t

0

e−
t−s
θ

(
D
∂c

∂x
(x, s) + P (x)c(x, s)

)
ds.

Elimination of the mass flux J between equations (1) and (4) leads to the
equation

∂c

∂t
(x, t) =

1

θ

∫ t

0

e−
t−s
θ

(
D
∂2c

∂x2
(x, s) +

∂

∂x
(P (x)c(x, s))

)
ds. (5)

If we impose some regularity conditions on the initial condition, it may be
proven that (5) is equivalent to the hyperbolic telegraph equation

∂c

∂t
+ θ

∂2c

∂t2
=

∂

∂x
(Pc) +D

∂2c

∂x2
, x ∈ ]0,∞[ , t > 0. (6)

For our problem we consider the initial conditions given by

c (x, 0) = 0, x ∈ [0,∞[ , (7)

θ
∂c

∂t
(x, 0) = 0, x ∈ [0,∞[ (8)

and the boundary conditions

c (0, t) = f(t), t > 0, (9)

c (∞, t) = 0, t > 0. (10)

Equation (6) is a more general equation than the ones presented in works,
such as [3, 4, 9, 13, 15]. In order to study problems of hyperbolic type
and parabolic type, we consider θ ∈ [0, 1], since the parameter θ is directly
related with the parabolic or hyperbolic behavior of equation (6). For θ 6= 0,
this problem transmits waves with finite velocity [8]. Note that, for θ = 0,
equation (6) is the classical parabolic advection-diffusion equation. In this
work, we present numerical methods that can be considered for both cases,
the parabolic case and the hyperbolic case being the latter usually more
difficult to handle.
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2. The numerical schemes

In this section we describe the numerical methods applied to solve the
problem (6)–(10). Our approach can be separated in three steps. First, we
apply the Laplace transform to (6)–(10) in order to remove the time depen-
dent terms and we obtain an ordinary differential equation in x that also
depends on the Laplace transform parameter s. Secondly, we solve the ordi-
nary differential equation obtained using three different space discretisations:
the first one is a finite volume discretisation suggested in [2], the second one
is a piecewise linearized method suggested in [14] and the third one is a fi-
nite difference scheme proposed by us, which considers the central difference
approximations for the first and second derivatives with the purpose of com-
paring the previous two methods with more well known discretisations and
henceforth to highlight their advantages and disadvantages. Lastly, using a
numerical inverse Laplace transform algorithm, suggested in [1], we obtain
the final approximated solution.

Let us start to describe the Laplace transform technique, which removes
the t-dependent terms.

The Laplace transform c̃ of the mass concentration c is defined by

c̃ (x, s) =

∫ ∞

0

e−stc (x, t) dt.

We obtain the ordinary differential equation

d2c̃

dx2
− λ2

sc̃+
d

dx

(
P

D
c̃

)
= 0 (11)

where λs =
((
θs2 + s

)
/D

)1/2
and s is a complex variable.

If P is a constant, then we easily obtain the exact solution of equation (11)

c̃ (x, s) = Aeν
+
s x + Beν

−

s x, (12)

for ν±s = − P
2D

±
√
Rs, with Rs =

(
P
2D

)2
+ λ2

s, and A, B are constants to be
determined. From the boundary conditions (9)–(10) we get

c̃ (0, s) = f̃(s) and c̃ (∞, s) = 0. (13)

The substitution of these conditions in (12) implies that

c̃ (x, s) = f̃(s)eν
−

s x.
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For f(t) = c0 we have

c̃ (x, s) = c0
1

s
eν

−

s x. (14)

In the following sections, we present the space discretisations and we de-
scribe the algorithm used to perform the Laplace inversion. If P is constant
we do not need to do a space discretisation and therefore we can directly ap-
ply the inverse Laplace transform algorithm. For non-constant P the spatial
discretisation is mandatory.

2.1. Space discretisation. In this section we consider three different ways
of discretising the ordinary differential equation (11). The three methods
can be written in the form of a matrix iteration. Assume we have a space
discretisation xi = i∆x, i = 0, . . . , N . Let C̃i(s), i = 0, . . . , N represent
the approximation of c̃ (xi, s) in the Laplace transform domain. The out-
flow boundary is such that C̃N(s) = 0, for all s and N sufficiently large,
which is according to the physical boundary condition (13). After the spatial
discretisation we obtain the linear system

K (s) C̃ (s) = b̃ (s) , (15)

where K(s) = [Ki,j(s)] is a band matrix of size N−1×N−1 with bandwidth

three, C̃ (s) = [C̃1 (s) , . . . , C̃N−1 (s)]T and b̃ (s) contains boundary conditions,
being represented by

b̃ (s) =




−K1,0(s)C̃0(s)
0
...
0

−KN−1,N(s)C̃N(s)



.

In what follows, we present the space discretisations by giving the entries
of the matrix K. As we have seen above the matrix K and the discretisation
points depend on s. In the next two sections and in the sake of clarity we
omit the parameter s denoting Ki,j(s) and C̃i(s) by Ki,j and C̃i respectively.

2.1.1. Finite volumes. The ordinary differential equation (11) is discretised
using a finite volume formulation by integrating the ordinary differential
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equation in the i-th control volume [xi − ∆x/2, xi + ∆x/2],
∫ xi+∆x/2

xi−∆x/2

[
d2C̃

dx2
− λ2

sC̃ +
d

dx

(
P

D
C̃

)]
dx

where C̃(x, s) is an approximation of c̃(x, s). As suggested in [2], for x ∈
[xi, xi+1], i = 0, . . . , N − 1, we approximate c̃ (x, s) by the following combi-
nation of hyperbolic functions,

C̃ (x, s) =
sinh (λs (xi+1 − x))

sinh (λs∆x)
C̃i +

sinh (λs (x− xi))

sinh (λs∆x)
C̃i+1.

The evaluation of the integral produces the following discretised equations

Ki,i−1C̃i−1 +Ki,iC̃i +Ki,i+1C̃i+1 = 0, i = 1, . . . , N − 1, (16)

for

Ki,i−1 = 1 − Pi−1/2
sinh (λs∆x/2)

Dλs

Ki,i = −2 cosh (λs∆x) +
(
Pi+1/2 − Pi−1/2

) sinh (λs∆x/2)

Dλs

Ki,i+1 = 1 − Pi+1/2
sinh (λs∆x/2)

Dλs
,

where Pi±1/2 = P (xi ± ∆x/2). Therefore, equation (16) can be written in
the matrix form (15) with matrix K defined by the entries given above.

2.1.2. Piecewise linearized method. Now we describe the space discretisation
suggested in [14]. We can write equation (11) in the form

d2c̃

dx2
+
P

D

dc̃

dx
+

(
P ′

D
− λ2

s

)
c̃ = 0, (17)

P ′ represents the x derivative of P . In each interval [xi−1, xi+1] the equation
can be approximated by

d2C̃

dx2
+
Pi
D

dC̃

dx
+

(
P ′
i

D
− λ2

s

)
C̃ = 0, (18)

where C̃(x, s) represents an approximation of c̃(x, s), Pi = P (xi) and P
′

i =
P ′(xi). This equation is obtained from (17) by freezing the coefficients at the
mid-point of the considered interval. The solution of (18) in [xi−1, xi+1] is

C̃(x, s) = Aie
ν+

s,i(x−xi) + Bie
ν−s,i(x−xi). (19)
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The values Ai and Bi can be determined from (19) as

Ai =
C̃i−1 − C̃ie

−ν−s,i∆x

e−ν
+

s,i∆x − e−ν
−

s,i∆x
=
C̃i+1 − C̃ie

ν−s,i∆x

eν
+

s,i∆x − eν
−

s,i∆x
, (20)

Bi = C̃i −Ai, (21)

where ν±s,i = − Pi

2D ±
√
Rs,i, assuming Rs,i =

(
Pi

2D

)2
+ (λ2

θ − P
′

i ) > 0. From
(20)–(21) we obtain the following three-point finite difference equation

Ki,i−1C̃i−1 +Ki,iC̃i +Ki,i+1C̃i+1 = 0, i = 1, . . . , N − 1

where

Ki,i−1 = e(ν+

s,i+ν
−

s,i)∆x,

Ki,i = −eν
+

s,i∆x − eν
−

s,i∆x,

Ki,i+1 = 1.

We expect this method to be less oscillatory than the one of the previous
section as mentioned in [14].

2.1.3. Finite differences. For the finite differences discretisation we consider
central differences to approximate the first derivative and the second deriv-
ative of equation (11),

C̃i−1 − 2C̃i + C̃i+1

∆x2
− λ2

sC̃i +
Pi
D

C̃i+1 − C̃i−1

2∆x
= 0, i = 1, . . . , N − 1.

Therefore the matrix K has entries of the form

Ki,i−1 =
1

∆x2
− λ2

s −
Pi

2D∆x
,

Ki,i = − 1

∆x2
− λ2

s,

Ki,i+1 =
1

∆x2
− λ2

s +
Pi

2D∆x
.

2.2. Laplace transform inversion. The next step is to determine an ap-
proximated solution C (xi, t) from C̃ (xi, s) by using a Laplace inversion nu-

merical method. For each xi, i = 0, . . . , N , let us denote C̃ (xi, s) by C̃ (s).

We denote the inverse Laplace transform of C̃ (s) by C (t) which is

C (t) =
1

2πi

∫ α+i∞

α−i∞
estC̃ (s) ds,
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and can be expressed as

C (t) =
1

π
eαt

∫ ∞

0

Re
{
C̃ (s) eiωt

}
dω,

where s = α+ iω. Using the trapezoidal rule, with step size π/T , we obtain

C(t) =
1

T
eαt

[
C̃ (α)

2
+

∞∑

k=1

Re

{
C̃

(
α+

ikπ

T

)
e

ikπt
T

}]
−ET , (22)

for 0 < t < 2T and where ET is the discretisation error. It is known that
the infinite series in this equation converges very slowly. To accelerate the
convergence, we apply the quotient-difference algorithm, proposed in [1], to
calculate the series in (22) by the rational approximation in the form of a con-
tinued fraction. Under some conditions we can always associate a continued
fraction to a given power series.

We denote v (z) the continued fraction

v (z) = d0/ (1 + d1z/ (1 + d2z/ (1 + · · ·))) (23)

associated to the power series in (22), that is,

v (z) =
C̃ (α)

2
+

∞∑

k=1

C̃

(
α +

ikπ

T

)
zk, (24)

where

z = eiπt/T .

Let the M -th partial fraction v(z,M) be

v (z,M) = d0/ (1 + d1z/ (1 + d2z/ (1 + · · · + dMz))) .

We denote EM
F the truncation error associated to the continued fraction, that

is,

v (z) = v (z,M) + EM
F .

Then

C (t) =
1

T
eαtRe

{
v (z,M) + EM

F

}
− ET .

The approximation for C (t) is denoted by C(t) and given by

C (t) =
1

T
eαtRe {v (z,M)} .
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3. The discretisation error

To solve the partial differential equation (6) firstly we apply a Laplace
transform in t, to obtain the ordinary differential equation in x (11). Equa-
tion (11) is then approximated using different spatial discretisations as de-

scribed in the previous section. Let us denote by ẼS the error associated to
the spatial discretisation, that is, ẼS is such that

c̃(xi, s) = C̃(xi, s) + ẼS(xi, s). (25)

The next errors come from the numerical inversion of Laplace transform,
where the Laplace inverse transform of C̃(xi, s) is, as described in the previous
section, the solution

C (xi, t) =
1

T
eαtRe

{
v (z,Mi) + EM

F (xi, t)
}
− ET (xi, t), (26)

where ET is the error associated with the trapezoidal approximation and
EM
F is the truncation error associated to the continued fraction. Note that

for each xi the algorithm chooses an Mi and therefore for each xi we have
a different value of the approximation of the continued fraction, v (z,Mi).
Therefore from (25)–(26) we have

c(xi, t) =
1

T
eαtRe

{
v (z,Mi) + EM

F (xi, t)
}
− ET (xi, t) + ES(xi, t),

where ES(xi, t) is the inverse Laplace transform of the error ẼS(xi, s).
The error ET that comes from the integral approximation using the trape-

zoidal rule, according to Crump [5], is

ET =
∞∑

n=1

e−2nαT c(xi, 2nT + t).

Assume now that our function is bounded such as |c(xi, t)| ≤ eσt, for all xi.
Therefore the error can be bounded by

ET ≤ eσt
∞∑

n=1

e−2nT (α−σ) =
eσt

e2T (α−σ) − 1
, 0 < t < 2T.

It follows that by choosing α sufficiently larger than σ, we can make ET as
small as desired. For practical purposes and in order to choose a convenient
α we use the inequality which bounds the error

ET ≤ eσt−2T (α−σ).
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If we want to have the bound ET ≤ bT then by applying the logarithm in
both sides of the previous inequality we have

α ≥ σ
2T + t

2T
− 1

2T
ln (bT ) .

Assuming σ ≥ 0 we can write

α ≥ σ − ln (bT )

2T
.

In our example we consider σ = 0. In practice the trapezoidal error ET is
controlled by the parameter α we choose.

The second error, EM
F comes from the approximation of the continued

fraction given by (24). This error is controlled by imposing a tolerance TOL
such as

|v (z,M) − v (z,M − 1)| < TOL,

in order to get the approximation C (xi, t) given by

C (xi, t) =
1

T
eαtRe{v (z,Mi)},

where Mi changes according to which xi we are considering.
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Figure 1. Error EF and EG for θ = 0, P = 2, t = 1, 0 ≤ x ≤ 10
and α = 10−6 and different values of TOL. The global error is
controlled by the parameter α.

In order to understand better how we control the trapezoidal error with
the parameter α and how the tolerance TOL affects the error we present a
practical example. We assume P constant, in order to not consider a spatial
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Figure 2. Error EF and EG for θ = 0, P = 2, t = 1, 0 ≤ x ≤ 10
and α = 10−10 and different values of TOL. The parameter α is
chosen such that the global error is not affected.

discretisation, since when P is constant we can apply directly the inverse
Laplace transform to the exact solution (14).

For θ = 0, P constant and c (0, t) = c0, the analytical solution is

c (x, t) =
c0
2

(
erfc

[
x + Pt

2
√
Dt

]
+ e−Px/Derfc

[
x− Pt

2
√
Dt

])
.

In Figures 1 and 2, for P = 2, t = 1 and 0 ≤ x ≤ 10, we plot the following
errors,

EF = max
1≤i≤N−1

|v(z,Mi) − v(z,Mi − 1)| and EG = ||c(xi, t) − C(xi, t)||∞,

where || · ||∞ is the infinity norm. The error EF is related with the error EM
F

since we control EM
F by controlling EF with the tolerance TOL. Figures 1

and 2 show how the parameter α, given by α = − ln(10−6)/2T in Figure 1
and α = − ln(10−10)/2T in Figure 2, affect the global convergence. Note that
in Figure 1 the precision does not go further than 10−6. The global error of
Figure 1 and Figure 2 is not affected by the spatial error ES since we apply
the Laplace inversion algorithm directly in (14).

The Laplace inversion algorithm approximates the value of the infinite
series using a truncated continued fraction and this truncation is done by
choosing an Mi for each xi. This Mi is chosen according to which value of
the tolerance TOL we consider. We show in Figure 3 the variations of Mi

and it is clear the algorithm concentrates the high values of M in the region
that presents steep gradients.
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Figure 3. Number of iterationsM for θ = 1, P = −2, t = 1 and
TOL = 1/N2.The figure on the left represents the approximated
solution. The figure on the right is the number of M iterations
we need to run for each xi.

To finish this section we add some few comments about the error EM
F . In

practice it is very difficult to choose an M according to a theoretical result
since the analytical errors we can get for continued fractions are strongly
dependent on the d′ks. Additionally, to prove the analytical convergence of
the algorithm is not an easy task. The following theorem [12], although
restrictive in what concern the variables dk, it can be applied in some of our
examples.

Theorem 3.1. Let {QM} be a sequence of complex numbers QM = qMeiψM

such that ∣∣∣∣QM − 1

2

∣∣∣∣ ≤
1

2
− ε, 0 < ε <

1

2
, M = 0, 1, 2, . . . .

Let {EM} be the sequence of parabolic regions defined by

EM =
{
ω : |ω| − Re

(
ωe−i(ψM+ψM−1)

)
≤ 2kqM−1 (cosψM − qM)

}
, (27)

where 0 < k < 1. If v (z) is a continued fraction (23) with elements satisfying

d0 ∈ E1, dMz ∈ EM+1, M = 1, 2, . . . , 0 < |dMz| < L, M = 0, 1, 2, . . . ,

for some L > 0, then v (z) converges to a finite value v and

|v − v (z,M)| ≤ |d0| (cosψ1 − q1)(
1 + ε2 (1−k)

L

)M−1
, M = 2, 3, 4, . . . .
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Figure 4. The regions are defined by EM given in (27). The
parameters dk ∈ Ek+1 are represented by the points inside the
parabolas.

We show an application of Theorem 3.1, since it is illustrative of the com-
plexity of the theoretical results. The example considers θ = 0, P = 0, t = 1
and TOL = 1

N . By running the inverse Laplace algorithm, we obtain the dk
values that define the truncated continued fraction v(z,M). In Figure 4 we
plot some of the parameters dk and show the dk’s are inside parabolic regions
defined by EM in (27).

4. Numerical Tests

In this section we analyse different aspects of the space discretisations
described in section 2. In all of our examples we consider D = 1. In the end
we show the solution for different values of t, P and θ in order to understand
the physical role of these parameters.
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4.1. Convergence of the space discretisations. In this section we start
to display some figures that show how the different space discretisations deal
with different values of θ and P . Since we do not have an exact solution
for θ 6= 0 we compare the approximated solution with the solution c(x, t)
obtained from applying the numerical inverse Laplace transform algorithm
to the solution (14), for c0 = 1, which is given by

c̃ (x, s) =
1

s
eν

−

s x.

The solution c(x, t) is not affected by the spatial error and therefore when
compared with the approximated solution C gives an indication of the nu-
merical problems that are associated with the spatial discretisation.
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Figure 5. Approximated solution using different space discreti-
sations, for different values of P and θ at t = 1 for N = 64. The
− solution refers to the solution c(x, t).
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Figure 6. Approximated solution using finite volumes method
and the piecewise linearized method. The − solution refers to
the solution c(x, t).
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Figure 7. Approximated solution using the finite volumes and
the piecewise approximation for N = 32. The finite volumes
method shows more oscillations. The − solution refers to the
solution c(x, t).

In Figure 5, we consider a parabolic case, for θ = 0, and a hyperbolic
case for θ = 1. The finite volume formulation (FV), the piecewise linearized
method (PL) and the finite difference schemes (FD) are compared. The
finite volume formulation has a similar behavior to the piecewise linearized
method although for the case θ = 1, P = 2 we can see a slightly better
behavior for the piecewise linearized method. The finite differences method
performs worst than the other two methods since oscillations are not avoided
for small space steps.
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In Figure 6 we display another example comparing the finite volumes
method with the piecewise linearized method and this performs better than
the finite volume method. In Figure 6 the piecewise linearized method co-
incides with the line of the solution we are using to test the performance of
the methods and therefore it is not visible.
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Figure 8. Rate of convergence for the space discretisations
where θ = 0, t = 1, TOL = 1/N3, α = 10−16: (a) P = 2,
t = 1 and 0 ≤ x ≤ 10; (b) P = 10, t = 1, 0 ≤ x ≤ 3.
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Figure 9. Rate of convergence for the space discretisations
where θ = 0, t = 1, TOL = 1/N3, α = 10−16: (a) P = −2,
t = 1 and 0 ≤ x ≤ 12; (b) P = −10, t = 1, 0 ≤ x ≤ 22.

Additionally the finite volume method in certain situations oscillates as
shown in Figure 7. In Figure 7 we show two examples for θ = 1 with P = 20
and P = 1000. For P = 20 we have a large space step and for P = 1000
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we have a small space step. Therefore for small space steps and large P
oscillations are not avoided.

To have information about the space discretisation errors we show the
global error in Figures 8 and 9 for the three schemes. We consider θ = 0 and
P constant since it is the example we have access to an exact solution. We
observe the piecewise linearized method has a smaller error than the other
two schemes. In Figure 8 for P = 2 and P = 10 the rate of convergence
for the finite volumes and finite differences methods is around 2.0. The rate
of convergence for the piecewise linearized method is 2.9 for P = 2 and is
2.3 for P = 10. Therefore, it has a significant higher order than the other
two schemes. In Figure 9 for P = −2 the finite volume and finite difference
methods have a rate of convergence of order around 2.0 and for P = −10
is around 1.7. The piecewise linearized scheme in both situations has a rate
of convergence around 2.5. We can conclude that in general the piecewise
linearized method is a better choice.

In the next section we display some figures that help us to understand the
behavior of the exact solution of the differential equation (6) according to
which values of θ and P we choose.
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Figure 10. Solution for time t = 1.

4.2. Behavior of the solution. The solutions in this section are obtained
by running the algorithm with the piecewise linearized method. First we
consider the problem with boundary condition c (0, t) = 1 and P constant,
that is, we consider the partial differential equation,

∂c

∂t
+ θ

∂2c

∂t2
= P

∂c

∂x
+D

∂2c

∂x2
. (28)
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Figure 11. Behavior of the solution as we travel in time for P = −2.
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Figure 12. Behavior of the solution as we travel in time for P = 2.

We have a discontinuous initial solution at x = 0 and since the equation is
hyperbolic for θ 6= 0 the discontinuity is transported along the characteristics.
The characteristic equation associated to equation (28) is

θ

(
dx

dt

)2

−D = 0.

The characteristic curves are given by x = t
√

D
θ + ξ and the waves are

transmitted with velocity v =
√
D/θ. At ξ = 0 we have x = t

√
D
θ . For

θ = 1/4 and D = 1, the discontinuity at t = 1 appears at x = 2 as shown
in Figure 10. We also notice that the discontinuity does not depend on the
value of P .
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Figure 13. The influence of P in the solution.

In Figure 11 and 12 we display the behavior of the mass concentration C
as we travel in time. In Figure 11, the jump discontinuity quickly dissipates
with time. This means that the non-Fickian effects are more significative in
short times. As t increases, the hyperbolic solution tends to the parabolic
solution.

Figure 13 shows the effect of the parameter P in the solution. The peak
increases with |P | for P < 0 and decreases with |P | for P > 0. The jump
discontinuity at a specific time is the same for different values of P . This
phenomena is explained from the definition of the propagation speed, which
do not depend on P .

Figure 14 shows the behavior of the solution as we change the parameter θ.
When θ increases, the hyperbolic effects start to appear in a lower point x,
that is, the velocity decreases with θ as the jump discontinuity peak increases.
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Figure 14. Behavior of the solution as we change θ, for P = 0.

Let us now consider the case where the potential P is non-constant. Ob-
serving the profile of C for various time instants from Figures 15 and 16, we
can deduce that the hyperbolic differential equation is sensitive to changes in
the potential field. In Figure 15, for P (x) = −2x and P (x) = 2x, we observe
the solutions have different profiles. In Figure 16 we consider P (x) = −2e−x

and P (x) = 2e−x. This figure when compared with Figure 15 can lead us to
conclude that the profile of the solution seems to be quite different between
negative potential fields whereas for positive potential fields seems to be more
similar.

In Figures 17 and 18 we consider P (x) = Px and P (x) = Pe−x respectively,
for different values of P . It is shown that the influence of the potential field
is quite significant. As stated before, we observe in these figures that, the
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location of the jump discontinuity does not depend on P . Furthermore, the

position of the mass wave front is still t
√

D
θ .
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Figure 15. Solutions for a non-constant potential and θ = 1.
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Figure 16. Solutions for a non-constant potential and θ = 1.

Another solution is considered by assuming c(0, t) = e−t at the inflow
boundary (9). In this case, equation (14) changes to

C̃ (x, s) =
1

s+ 1
eν

−

s x.

Comparing Figures 19 and 20 with Figure 13 we observe that the change
of the boundary condition does not produce a very strong effect in the way
the mass concentration C behaves, that is, the profile of the solutions have
similarities. Note that for this case we also have a discontinuity at x = 0.
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Figure 17. Solutions for a non-constant potential P (x) = Px.
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Figure 18. Solutions for a non-constant potential P (x) = Pe−x.

We have seen that the solution is affected by the values of θ and P we
consider. For θ very close to zero, we have a parabolic equation and therefore
the solution is smooth for different values of P . For θ 6= 0 and close to one
we have a hyperbolic equation which transports the initial discontinuity at
the inflow boundary. Such discontinuity dissipates as we travel in time.
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CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal

E-mail address: alma@mat.uc.pt

C. Neves
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