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SAMPLING AND INTERPOLATION IN THE
BARGMANN-FOCK SPACE OF POLYANALYTIC

FUNCTIONS

LUIS DANIEL ABREU

Abstract: We give a complete characterization of all lattice sampling and inter-
polating sequences in the Fock space of polyanalytic functions (poly-Fock spaces),
displaying a ”Nyquist rate” which increases with n, the degree of polyanaliticity of
the space: A sequence of lattice points is sampling if and only if its density is strictly
larger than n, and it is interpolating if and only if its density is strictly smaller than
n. In our method of proof we introduce a unitary mapping between vector valued
Hilbert spaces and poly-Fock spaces which allows the extension of Bargmann´s the-
ory to polyanalytic spaces. Then we connect this mapping to Gabor transforms
with Hermite windows and apply duality principles from time-frequency analysis in
order to reduce the problem to a ”purely holomorphic” situation.

Keywords: time-frequency analysis, polyanalytic functions, Gabor frames and su-
per frames, Bargmann transform, poly-Fock spaces, sampling, density conditions .

1. Introduction

1.1. The Bargmann-Fock space of polyanalytic functions. The Bargmann-
Fock space of polyanalytic functions, Fn(Cd), consists on all functions satis-
fying the equation

(

d

dz

)n

F (z) = 0. (1)

and such that
∫

Cd

|F (z)|2 e−π|z|2dz < ∞. (2)

Functions satisfying (1) are known as polyanalytic functions of order n. Since
(1) generalizes the Cauchy-Riemann equation

d

dz
F (z) = 0,

then the space Fn(Cd) is a generalization of the Bargmann-Fock space of
analytic functions, where, in d = 1, a complete description of the sampling
and interpolation sets is known [26],[30],[31].
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Polyanalytic functions inherit some of the properties of analytic functions,
often in a nontrivial form [3]. An obvious difference lies on the structure of
the zeros. For instance, while nonzero entire functions don´t have sets of
zeros with an accumulation point, polyanalytic functions can vanish along
closed curves. Just take F (z) = zz − 1 = |z|2 − 1, a polyanalytic function of
order 2.

In this paper we will study the spaces Fn(Cd) using time-frequency analy-
sis, offering a completely new point of view over this spaces. The basic theory
of Fn(Cd) is derived in such a way it leaves intact, with some variations, most
of the structure of the classical analytic situation. Moreover, by means of the
connection to time-frequency analysis, it is enriched by the intrinsic structure
of Gabor spaces, providing us with tools that were unavailable using com-
plex variables. Thanks to this approach, we will discover a duality between
sampling and interpolation in Fn(C) and multi-sampling and interpolation
in F(C), a problem studied in [6]. This results in the following complete
characterization of all lattice sampling and interpolating sequences in Fn(C),
in terms of Beurling density for lattices, D(Λ) = |detA|−1, where Λ = AZ

2:

Theorem 5. The lattice Γ is a sampling sequence for Fn(C) if and only if

D(Γ) > n.

Theorem 7. The lattice Γ is an interpolating sequence for Fn(C) if and
only if

D(Γ) < n.

For convenience, we will also consider the spaces constituted by the func-
tions satisfying (2), which are polyanalytic of order n, but are not polyana-
lytic of any lower order (in particular they have no analytic functions). These
are the true poly-Fock spaces Fn(Cd). The poly-Fock and true poly-Fock
spaces are related by the following orthogonal decomposition (see Corollary
1 in section 3):

Fn(Cd) = F0(Cd) ⊕ ... ⊕Fk−1(Cd).

Before making a technical summary of our arguments, we would like to
say that the ”Nyquist rate” phenomenon has been studied in other spaces
of analytic functions, first in the Paley-Wiener space [5],[24],[25] and then
in Bargmann-Fock [26],[30],[31] and Bergman [32] spaces of analytic func-
tions. The proofs use analytic function arguments and it is unclear how to
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extend them the polyanalytic situation. Therefore, we introduce new meth-
ods. They are based on the extension of Bargmann´s work [4] to the setting
of polyanalytic function spaces. This will allow the application of ideas from
signal analysis, by relating the problem to vector valued Gabor systems. It
is also worth of notice that the density theorem in Gabor analysis has it-
self a very rich story, beginning with fundamental but imprecise statements
by John Von Neumann and Dennis Gabor, which catched the attention of
mathematicians after conjectures by Daubechies and Grossman [8]. See the
survey article [19].

1.2. Technical summary. To give a context to our approach, we start
from the classical connection between the Bargmann-Fock space and time-
frequency analysis.

It is well known that, up to a weight, the Gabor transform with a Gaussian
window belongs to the Fock-space of analytic functions. Moreover, it has
been shown that this is the only choice leading to spaces of analytic functions
[1].

However, a nice picture shows up when we take Hermite functions as win-
dows. Then, the analytic situation generated by the gaussian window, be-
comes the tip of the iceberg of a larger structure involving spaces of polyan-
alytic functions. Indeed, the Gabor transform with the nth Hermite func-
tion, is, up to a weight, a polyanalytic function of order n + 1. Each space
Fn(Cd) is associated with Gabor transforms with the nth Hermite window,
with F0(Cd) = F(Cd), the Fock space of analytic functions. Such occur-
rence, which seems to have been hitherto unnoticed, will be fundamental our
discussion. This observation is related to some recent developments in Ga-
bor analysis with Hermite functions [16],[17],[13], to Janssen´s approach to
the density theorem [22],[23] and also to the techniques used in [20],[21],[36],
which suggest that wavelet spaces and polyanalytic functions share intriguing
patterns.

We will follow Vasilevskii [35] and call poly-Fock spaces to the Fock spaces
of polyanalytic functions. They are briefly mentioned in Balk´s monograph
[3] and they are implicit in quantum mechanics, in connection to the Landau
levels of the Schrödinger operator with magnetic field [29],[14] and displaced
Fock states [34]. However, we were not able to find any reference to polyana-
lytic functions in the mathematical physics literature, apart from [35], where
creation and annihilation operators are used.
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To extend Bargmann´s theory [4] to the polyanalytic setting, we first in-
troduce what we call the true-poly-Bargmann transform:

(Bnf)(z) = n!−
1

2π
n
2 eπ|z|2 dn

dzn

[

e−π|z|2F (z)
]

.

Here F stands for the Bargmann transform of f . As we will see this is a
unitary mapping from L2(Rd) to Fn(Cd). This mapping relates to Gabor
transforms with Hermite windows Φn in the following way:

VΦn
f(x, ω) = eiπxω−π

|z|2

2 (Bnf)(z).

Then we define, for vector-valued functions f = (f0, ..., fn−1), the poly-Bargmann
transform,

(Bnf) =
n−1
∑

k=0

(Bkfk),

which will be unitary between L2(Rd, Cn) and Fn(Cd).
With the tools described above at hand, our main argument will depend

on two profound results. More specifically, we will combine two variations
of the Janssen-Ron-Shen duality principle [28] with the characterization of
multi sampling and interpolation sequences in the Fock space [6]. The first
result and its variations reflect all the rich inner structure of Gabor frames.
The second uses a deep elaboration on Beurling´s balayage technique [5]
developed by Seip in [32]. We will proceed as follows. First, using an or-
thogonal basis for the poly-Fock spaces, we prove the unitary of Bn and
Bn. Then we study sampling in Fn(C). Using the unitary mapping Bn we
show that the problem is equivalent to the study of vector valued frames
with Hermite windows, also known as superframes [2],[17]. This problem has
been recently studied in [17], but we provide an alternative proof, which is
more natural in the context of sampling and interpolation: applying a vector
valued version of Janssen-Ron-Shen duality we translate the statement into
a problem concerning unions of Riesz sequences. After noticing that the lat-
ter is equivalent to a multi-interpolation problem in Fock spaces of analytic
functions, we apply the interpolation result in [6]. Then we study interpo-
lation in Fn(C). In order to do this, we ”dualize” the arguments that we
have used in the sampling part, once again using Ron-Shen duality, this time
between vector-valued Riesz sequences and multi-frames with Hermite func-
tions. This translates our interpolation problem into one of multi-sampling.
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Noticing that this problem is equivalent to multi-sampling in Fock spaces,
we apply the sampling result from [6].

It may be possible to find a proof of theorem 7 by using the methods of
[17].

1.3. Outline. The paper is organized as follows. The next section contains
the classical tools we are going to use. We list the basic properties of the
Gabor transform, the Bargmann transform and the Hermite functions. In the
third section, we introduce the true-poly-Bargmann and the poly-Bargmann
transform. By making a connection to the Gabor transform, we study their
basic properties, find an orthogonal basis for the poly-Fock spaces and prove
the unitarity properties. Then we study the poly-Bargmann transform. Our
main results are in the fourth and fifth sections, where we study sampling
and interpolation for Fn(C).

2. Tools

2.1. The Gabor transform. Fix a function g 6= 0. Then the Gabor (short-
time) Fourier transform of a function f with respect to the ”window” g is
defined, for every x, ω ∈ R

d as

Vgf(x, ω) =

∫

Rd

f(t)g(t − x)e−2πitωdt. (3)

There is a very important property enjoyed by inner products of this trans-
forms. The following relations are usually called the orthogonal relations
for the short-time Fourier transform. Let f1, f2, g1, g2 ∈ L2(Rd). Then
Vg1

f1, Vg2
f2 ∈ L2(R2d) and

〈Vg1
f1, Vg2

f2〉L2(R2d) = 〈f1, f2〉L2(Rd) 〈g1, g2〉L2(Rd). (4)

The Gabor transform provides an isometry

Vg : L2(Rd) → L2(R2d),

that is, if f, g ∈ L2(Rd), then

‖Vgf‖L2(R2d) = ‖f‖L2(Rd) ‖g‖L2(Rd) . (5)

For every x, ω ∈ R
d define the operators translation by x and modulation by

ω as

Txf(t) = f(t − x),

Mωf(t) = e2πiωtf(t).
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Using these operators we can write (3) as

Vgf(x, ω) = 〈f, MωTxg〉L2(Rd) .

2.2. The Bargmann transform. Here we will use multi-index notation,
z = (z1, ...zd), n = (n1,...nd) and |n| = n1 + ...+nd. The Bargmann transform
is defined by

(Bf)(z) =

∫

Rd

f(t)e2πtz−πz2−π
2
t2dt.

It is an isomorphism
B : L2(Rd) → F(Cd),

where F(Cd) stands for the Bargmann-Fock space of analytic functions in
C

d with the norm

‖F‖2
F(Cd) =

∫

Cd

|F (z)|2 e−π|z|2dz. (6)

The collection of the monomials of the form

en(z) =

(

π|n|

n!

)

1

2

zn =
d

∏

j=1

πnj

√

nj!
znj , n = (n1,...nd), (7)

with ni ≥ 0, constitutes an orthonormal basis of F(Cd). The reproducing
kernel of F(Cd) is the function

K(z, w) = eπwz. (8)

Diferentiating k times the corresponding reproducing equation we obtain
〈

F (w), wn−keπwz
〉

F(Cd)
= πk−nF (n−k)(z). (9)

A simple calculation shows that the Bargmann transform is related to the
Gabor transform with the Gaussian window ϕ(x) = 2

d
4e−πx2

by the formula

Vϕf(x,−ω) = eiπxωe−π
|z|2

2 (Bf)(z), (10)

where z = x + iω.
We will need one more operator. Define a ”translation operator” βζ on

F(Cd) by

βζF (z) = eiπxω−π
|ζ|2

2 eπζzF (z − ζ). (11)

The operator βζ satisfies the intertwining property

βζB = BMωTx, z = x + iω. (12)
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2.3. The Hermite functions. The Hermite functions can be defined via
the so called Rodrigues Formula

hn(t) = cne
πt2

(

d

dt

)n
(

e−2πt2
)

.

where cn is chosen in such a way they can provide an orthonormal basis of
L2(−∞,∞). Now let n = (n1,...nd) and x ∈ R

d. The d-dimensional Hermite
functions are

Φn(x) =
n

∏

j=1

hnj
(x).

They form a complete orthonormal system of L2(Rd).
A very important property of the Hermite functions is that they are mapped

into a basis of the Bargmann-Fock space via the Bargmann transform:

(BΦn)(z) = en(z). (13)

3. Poly-Fock spaces and poly-Bargmann transforms

3.1. Definitions. We will use multi-index notation in such a way that there
will be little difference between the one and the d-dimensional case. We thus
write

(

d

dz

)n

=
d|n|

dzn1

1 ...dznn
n

It is well known [3] that every polyanalytic function of order n can be
uniquely expressed in the form

F (z) = ϕ0(z) + zϕ1(z) + ... + zn−1ϕn−1(z), (14)

where {ϕp(z)}n−1
p=0 are analytic functions, each of them with a power series

expansion

ϕp(z) =

∞
∑

j=0

cj,pz
j ,

As a result, the polyanalytic F has a power series expansion

F (z) =
n−1
∑

p=0

zp

∞
∑

j=0

cj,pz
j . (15)



8 LUÍS DANIEL ABREU

Definition 1. The poly-Fock space, Fn(C), is the space of polyanalytic func-
tions of order n satisfying

∫

Cd

|F (z)|2 e−π|z|2dz < ∞.

The inner product is given by

〈F, G〉
Fn(C) =

∫

Cd

F (z)G(z)e−π|z|2dz.

3.2. The true poly-Bargmann transform.

Definition 2. The true poly-Bargmann transform of order n, of a function
on R

d, is defined by the formula

(Bnf)(z) = n!−
1

2π
n
2 eπ|z|2 dn

dzn

[

e−π|z|2F (z)
]

, (16)

where F (z) = (Bf)(z).

Clearly B0f = Bf and Bn is a generalization of the Bargmann transform.
We now provide the fundamental properties of Bn. We try to stay as close
as possible to the presentation of section 3.4 in [15]. The next proposition is
the departing point of our study.

Proposition 1. If f is a function on Rd with polynomial growth, then its
true poly-Bargmann transform Bnf is a polyanalytic function of order n + 1
on Cd. If we write z = x + iω then this transform is related to the Gabor
transform with Hermite windows in the following way:

VΦn
f(x, ω) = eiπxω−π

|z|2

2 (Bnf)(z). (17)

Moreover, if f ∈ L2(R) then

‖Bnf‖
L2(Cd,e−π|z|2)

= ‖f‖L2(Rd) . (18)

Proof : Let F = Bf . The following calculation is from Proposition 3.2 in [16],
where (9) is used:

VΦn
f(x, ω) = 〈f, MηTuΦn〉L2(Rd) = 〈F, βwBΦn〉F(Cd)

=
π|n|eiπxω−π

2
|z|2

n!

〈

F (w), eπzw(w − z)n
〉

F(Cd)

=
eiπxω−π

2
|z|2

√
π|n|n!

n
∑

|k|=0

(

n

k

)

(−πz)kF (n−k)(z).
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Now, since the Bargmann transform is an entire function [15, Proposition
3.4.1], the functions F (n−k)(z) are also entire, and from (14) we recognize the
sum as a polyanalytic function of order n + 1. To prove (17) observe that
the last expression can be written as

eiπxω−π
|z|2

2

eπ|z|2

√
πnn!

dn

dzn

[

e−π|z|2F (z)
]

= eiπxω−π
|z|2

2 (B(n)f)(z).

The isometric property (18) is an immediate consequence of (17) and (5).

3.3. Orthogonal decomposition.

Definition 3. For k, n ∈ N0, the functions ek,m are the polynomials defined
as

ek,m(z) =
eπ|z|2

√
πkk!

(

d

dz

)k
[

e−π|z|2em(z)
]

. (19)

Obviously,

ek,m(z) =
eπ|z|2

√
πkk!

(

d

dz

)k
[

e−π|z|2(BΦm)(z)
]

= (BkΦm)(z), (20)

Theorem 1. The set {ek,m}k=0,1,...n−1;m=0,1,...is an orthogonal basis of Fn(Cd).

Proof : The orthogonality follows from (20) and (17), since

〈ek,m, el,j〉L2(R2d) =
〈

BkΦm,B(l)Φj

〉

F(Cd)

=

〈

eπ
|z|2

2
−iπxωVΦk

Φm, eπ
|z|2

2
−iπxωVΦl

Φj

〉

F(Cd)

= 〈VΦk
Φm, VΦl

Φj〉L2(R2d)

= 〈Φm, Φj〉L2(Rd) 〈Φk, Φl〉L2(Rd) = δm,jδk,l

To prove completeness of {ek,m} in Fn(Cd), suppose that F ∈ Fn(Cd) such
that

〈F, ek,m〉F(Cd) = 0, k = 0, 1, ...n− 1; m = 0, 1, ....

For k = 0, we can use the representation of F in power series (15). In-
terchanging the sums with the integrals and using the orthogonality of the
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functions (7), the result is

〈F, e0,m〉F(Cd) =
n−1
∑

p=0

cp+m,p

(p + m)!√
m!π|2p+m|

= 0, m ≥ 0 (21)

For k ≥ 1, a calculation using integration by parts gives:

〈F, ek,m〉F(Cd) =

∫

Cd

e−π|z|2em(z)p...(p− k + 1)
n−1
∑

p=k

zp−k
∑

j≥0

cj,pz
jdz

=
n−1
∑

p=k

∑

j≥0

cj,p

p...(p− k + 1)π|m|
√

m!

∫

Cd

zjzm+p−ke−π|z|2dz.

As a result,

n−1
∑

p=k

p...(p− k + 1)(p + m − k)!

π|m+2p−2k|
√

m!
cm+p−k,p = 0, m ≥ 0, k ≤ n − 1,

resulting in a triangular system for each m. Solving this system we obtain
cj,p = 0 for |p| = 0, ..., |n| and |j| = 0, 1, .... Therefore, F = 0.

Remark 1. It is clear that these functions are reminiscent of the so-called
special Hermite functions, which are the Wigner transforms of two Hermite
functions [33]. They also appear in the study of Landau levels in [14].

Definition 4. The true poly-Fock space of order n are defined as

Fn(Cd) = Span
[

{en,m(z)}m=0,1,...

]

. (22)

Remark 2. Observe that
(

d

dz

)k
[

e−π|z|2zm
]

=
dm+n

dzkdzm

[

e−π|z|2
]

.

Therefore, our functions en,m are essentially the complex Hermitian functions
introduced in [29, pag. 126] and, as a result, according to theorem 7.1 in [29]
, the true poly-Fock spaces are the eigenspaces of the Schrödinger operator
with magnetic field in R2, associated to the eigenvalue n + 1

2. Also, observe
that the basis used in [27] approaches this one by a formal limit procedure.

The orthogonal basis property has the following consequence.
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Corollary 1. The poly-Fock space, Fn(Cd), admits the following decomposi-
tion in terms of true poly-Fock spaces Fk(Cd).

Fn(Cd) = F0(Cd) ⊕ ... ⊕Fk−1(Cd). (23)

This results in a definition equivalent to the one in [36], where the spaces
were defined using the decomposition. Observe that F1(Cd) = F0(Cd) =
F(Cd) and that functions in Fn(Cd) are polyanalytic of order n + 1.

3.4. Unitarity of Bn.

Theorem 2. The true poly-Bargmann transform is an isometric isomor-
phism

Bn : L2(Rd) → Fn(Cd).

Proof : Since we know from (18) that Bn is isometric, we only need to show
that Bn[L2(Rd)] is dense in Fn(Cd). This is now easy, since the Hermite
functions constitute a basis of L2(Rd) and, by (20), they are mapped into
the basis {en,m(z)} of Fn(C). Since Bn[L2(Rd)] contains a basis of Fn(Cd)
it must be dense.

3.5. The poly-Bargmann transform. Now, consider the Hilbert space
H = L2(Rd, Cn) consisting of vector-valued functions f = (f0, ..., fn−1) with
the inner product

〈f , g〉H =
n−1
∑

k=0

〈fk, gk〉L2(Rd) . (24)

The poly-Bargmann transform of a function f = (f0, ..., fn−1) is defined as

(Bnf)(z) =

n−1
∑

k=0

(Bkfk)(z). (25)

This transform is also unitary.

Theorem 3. The poly-Bargmann transform is an isometric isomorphism

Bn : H → Fn(Cd).
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Proof : It is isometric, since, using the isometric property of Bn, we have

‖Bnf‖2
Fn(Cd) =

n−1
∑

k=0

∥

∥Bkfk

∥

∥

2

Fn(Cd)

=

n−1
∑

k=0

‖fk‖2
L2(Rd) = ‖f‖2

H .

Moreover, Bn[L2(Rd)] is dense in Fn(Cd), since, by the decomposition (23),
every element F ∈ Fn(Cd) can be written as F = F0 + ...Fn−1, with Fk ∈
Fk(Cd), k = 0, ..., n − 1. Since Bk is unitary, there exists fk ∈ L2(Rd) such
that Fk = Bkfk, for every k = 0, ..., n − 1. It follows that F = Bnf , with
f =(f0, ..., fn−1).

4. Sampling in Fn(C)
From now on, we restrict to d = 1.

4.1. Definitions. We will work with lattices. A lattice is a discrete subgroup
in R2 of the form Λ = AZ2, where A is an invertible 2 × 2 matrix. We will
define the density of the lattice by

D(Λ) =
1

|det A|. (26)

The adjoint lattice Λ0 is defined as

Λ0 = D(Λ)Λ.

Therefore,

D(Λ0) =
1

D(Λ)
.

We will use the notation Γ = {z = x + iω} to indicate the complex sequence
associated to the sequence Λ = (x, ω). The density of Γ will be the density
of the associated lattice, that is D(Γ) = D(Λ).

Definition 5. Γ is a sampling sequence for the space Fn(C) if there exist
positive constants A and B such that, for every F ∈ Fn(C),

A ‖F‖2
Fn(C) ≤

∑

z∈Γ

|F (z)|2 e−π|z|2 ≤ B ‖F‖2
Fn(C) . (27)
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The definition of sampling in the spaces Fk(C) is exactly the same.
Now, we take the following definition, obtained from [6, page 114], by mak-

ing a small simplification, (in the notation of [6, page 114] we set ν(z) = n )
and writing in our context (observe that the weight eiπxω makes no diference).

Definition 6. A sequence Γn, consisting of n copies of Γ is a multi-interpolating

sequence in the Fock space F(C) if, for every sequence {α(k)
i,j }k=0,...n−1 such

that {α(k)
i,j }k=0,...n−1 ∈ l2, there exists F ∈ F(C) such that 〈F, βzek〉 = α

(k)
i,j ,

for all k = 0, ...n− 1 and every z ∈ Γ.

Consider again the Hilbert space H = L2(R, Cn) consisting of vector-valued
functions f = (f0, ..., fn−1) with the inner product (24). The time-frequency
shifts act coordinate-wise in a obvious way.

Definition 7. The vector valued system G(g, Λ) = {MωTxg}(x,w)∈Λ is a
Gabor superframe for H if there exist constants A and B such that, for
every f ∈ H,

A ‖f‖2
H ≤

∑

(x,w)∈Λ

|〈f , MωTxg〉H|
2 ≤ B ‖f‖2

H . (28)

This kind of frames were introduced by Balan in the context of ”multiplex-
ing” [2]. We will need a fundamental structure theorem from time-frequency
analysis, namely the following version of the Janssen-Ron-Shen duality prin-
ciple [17, Theorem 2.7].

Theorem A. Let g = (g0, ..., gn−1) The vector valued system G(g, Λ)
is a Gabor superframe for H if and only if the union of Gabor systems
∪n−1

k=0G(gk, Λ
0) is a Riesz sequence for L2(R).

4.2. Duality principle. In this section we will obtain the following duality
principle.

Theorem 4. Γ is a sampling sequence for Fn(C) if and only if the adjoint
sequence Γ0

n is a multi-interpolating sequence in the Fock space F(C).

We first prove two lemmas. Combining them with theorem A, gives theo-
rem 4.

Lemma 1. The union of Gabor systems ∪n−1
k=0G(gk, Λ) is a Riesz sequence for

L2(R) if and only if Γn is a multi-interpolating sequence in the Fock space
F(C).
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Proof : The union of Gabor systems ∪n−1
k=0G(gk, Λ) is a Riesz sequence for

L2(R) if for every sequence {α(k)
i,j }k=0,...n−1 ∈ l2 there exists a f ∈ L2(R) such

that 〈f, MωTxgk〉 = α
(k)
i,j , for all k = 0, ...n − 1 and every (x, ω) ∈ Λ. Using

the unitarity of B and the intertwining property (12) gives

〈f, MωTxgk〉 = 〈Bf, βzek〉 ,

and setting F = Bf shows that Γn, is a multi-interpolating sequence in the
Fock space F(C).

The next lemma is a key step in our argument and it is at this point that
the unitarity of the poly-Bargmann transform is essential.

Lemma 2. Let hn = (h0, ..., hn−1). Then the set G(hn, Λ) is a Gabor super
frame for H = L2(R, Cn) if and only if the associated complex sequence Γ is
a sampling sequence for Fn(C).

Proof : Using the definition of the inner product (24), the identity (17) and
the definition of the poly-Bargmann transform, it is clear that

〈f , MωTxg〉H =
n−1
∑

k=0

〈fk, MωTxgk〉L2(R) (29)

=
n−1
∑

k=0

eiπxω−π
2
|z|2(Bkfk)(z)

= eiπxω−π
2
|z|2(Bnf)(z). (30)

Therefore, setting F = Bnf , the unitarity of Bn shows that the inequalities
(28) are equivalent to (27).

4.3. Main result. We will need the concept of Beurling density of a se-
quence.

Let n−(r) denote the smallest (and n+(r) the biggest) number of points
from Γ to be found in a translate of a compact set of measure 1 in the
complex plane. We define the lower and the upper Beurling density of Γ to
be

D−(Γ) = lim
r→∞

sup
n−(r)

r2
and D+(Γ) = lim

r→∞
sup

n+(r)

r2
,

respectively. When Γ is associated to the lattice Λ, D−(Γ) = D+(Γ) =
D(Γ) = D(Λ).
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We will now use the following result, which is theorem 2.2 in [6]. Observe
that we can remove the uniformly discrete condition from the statement in
[6] since we are dealing only with lattices.

Theorem B. The sequence Γn is a multi-interpolating lattice sequence in
the Fock space F(C) if and only if D(Γn) < 1.

From this we obtain the characterization of sampling lattices in Fn(C).

Theorem 5. The lattice Γ is a sampling sequence for Fn(C) if and only if
D(Γ) > n.

Proof : We know by the duality principle that Γ is a sampling sequence for
Fn(C) if and only if the adjoint sequence Γ0

n is a multi-interpolating sequence
in the Fock space F(C). By definition of Beurling density, it is obvious that

D(Γ0
n) = nD(Γ0).

Therefore, theorem B says that Γ0 is a multi-interpolating sequence in the
Fock space F(C) if and only if

D(Γ0) <
1

n
.

As a result, Γ is a sampling sequence for Fn(C) if and only if

D(Γ) =
1

D(Γ0)
> n.

Using lemma 1, we recover theorem 1.1 of [17].

Corollary 2. Let hn = (h0, ..., hn−1). Then the set G(hn, Λ) is a Gabor super
frame for H = L2(R, Cn) if and only if D(Γ) > n.

5. Interpolation in Fn(C)
5.1. Definitions.

Definition 8. The sequence Γ is an interpolating sequence for Fn(C) if, for

every sequence {αi,j} ∈ l2, there exists F ∈ Fn(C) such that eiπxω−π
2
|z|2F (z) =

αi,j, for every z ∈ Γ.
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Definition 9. The sequence Γn, consisting of n copies of Γ is is said to be a
multi-sampling sequence for F(C) if there exist numbers A and B such that

A ‖F‖2
F(C) ≤

∑

z∈Γ

n−1
∑

k=0

|〈F, βzek〉|2 ≤ B ‖F‖2
F(C) . (31)

Definition 10. The set ∪n−1
k=0G(gk, Λ) is said to generate a Gabor multi-frame

in L2(R) if there exist constants A and B such that, for every f ∈ L2(R),

A ‖f‖2
L2(R) ≤

∑

(x,ω)∈Λ

n−1
∑

k=0

∣

∣

∣
〈f, MωTxgk〉L2(R)

∣

∣

∣

2

≤ B ‖f‖2
L2(R) . (32)

Now we will need the dual of the duality principle stated in Theorem A. It
is stated at the end of [18] in the following form.

Theorem C. The set G(g, Λ) is a Riesz sequence for L2(R) if and only if
∪n−1

k=0G(gk, Λ
0) is a Gabor multi-frame in L2(R).

5.2. Duality principle. Now we prove the following duality.

Theorem 6. The sequence Γ is an interpolating sequence for Fn(C) if and
only if Γ0

n is a multi-sampling sequence for F(C).

As in the sampling section, we prove first two lemmas which, combined
with theorem C give the result. The next lemma requires only the unitarity
of the Bargmann transform.

Lemma 3. The set ∪n−1
k=0G(gk, Λ) is a Gabor multi-frame in L2(R) if and only

if Γn is a multi-sampling sequence for F(C).

Proof : Similar to lemma 1: using the unitarity of B and the intertwining
property (12) gives 〈f, MωTxgk〉 = 〈Bf, βzek〉; setting F = Bf it follows from
the unitarity of the Bargmann transform that (31) and (32) are equivalent.

Again, we make the key connection in the next step, where the unitarity
of the poly-Bargmann transform is required.

Lemma 4. The sequence Γ is an interpolating sequence for Fn(C) if and
only if G(hn, Λ) is a Riesz sequence for H.
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Proof : The sequence Γ is an interpolating sequence for Fn(C) if, for every se-

quence {αi,j} ∈ l2, there exists F ∈ Fn(C) such that eiπxω−π
2
|z|2F (z) = αi,j, for

every z ∈ Γ. Using the unitarity of Bn, we find, for every F ∈ Fn(C), a vector
valued function f ∈ H such that Bnf = F or, by (29)-(30), 〈f , MωTxhn〉H =
F . Therefore, the first assertion is equivalent to say that, for every sequence

{αi,j} ∈ l2, there exists a f ∈ H such that eiπxω−π
2
|z|2 〈f , MωTxhn〉H = αi,j, for

every z ∈ Γ. This says that G(hn, Λ
0) is a Riesz sequence for H.

5.3. Main result. We will need the following result, which is contained in
theorem 2.1 in [6]:

Theorem D. The sequence Γn is a multi-interpolating sequence in the
Fock space F(C) if and only if D(Γn) > 1.

As before, we can obtain our main result from this one.

Theorem 7. The lattice Γ is an interpolating sequence for Fn(C) if and only
if D(Γ) < n.

Proof : We know by the duality principle that Γ is an interpolating sequence
for Fn(C) if and only if Γn, is a multi-sampling sequence for F(C). Once
again we have D(Γ0

n) = nD(Γ0). Therefore, theorem D says that Γ0 is a
multi-interpolating sequence in the Fock space F(C) if and only if D(Γ0) > 1

n

As in theorem 5 it follows that Γ is an interpolating sequence for Fn(C) if
and only if D(Γ) < n.

From this we obtain a new result characterizing all the lattices which gen-
erate vector valued Riesz sequences in H = L2(R, Cn). This reveals, at least
for lattices, the existence of a ”Nyquist density” for vector-valued Gabor
systems with Hermite functions.

Corollary 3. G(hn, Λ) is a Riesz sequence for H if and only if D(Γ) < n.

Remark 3. We should remark that the reason we didn´t care about the Bessel
condition in the equivalence of the Riesz sequence and interpolating property,
used several times in the previous section is that the Hermite functions belong
to Feichtinger´s algebra S0 (see [10],[9]):

‖γ‖S0
=

∫

R

|〈γ,MωTxϕ〉| dz < ∞,
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and as a result they satisfy the Bessel condition [19, theorem 12].
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