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Introduction
This article provides a unified framework for the study of universal central

extensions, using techniques from categorical Galois theory and, in particular,
Janelidze and Kelly’s relative theory of central extensions [28]. Its aim is to
make explicit the underlying unity of results in the literature (for groups, Leib-
niz algebras, precrossed modules, etc. [1, 10, 11, 20, 21]) and to unite them in
a single, general setting. Thus a basic theory of universal central extensions is
developed for all these special cases simultaneously.
We work in a pointed Barr exact Goursat category A with a chosen Birkhoff

subcategory B of A; the universal central extensions of A are defined relative
to the chosen B. This is the minimal setting in which the theory of central
extensions from [28] can be used to obtain meaningful results on the relations
between perfect objects and universal central extensions. (Indeed, we need A
to be Barr exact and Goursat for the concepts of normal and central extension
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to coincide, and for split epimorphic central extensions to be trivial; and perfect
objects can only be properly considered in a pointed context.)
The simultaneously categorical and Galois theoretic approach due to Jane-

lidze and Kelly is based on, and generalises, the work of the Fröhlich school [18,
19, 35] which focused on varieties of Ω-groups. Recall [25] that a variety of Ω-
groups is a variety of universal algebras which has amongst its operations and
identities those of the variety of groups but has just one constant; furthermore,
a Birkhoff subcategory of a variety is the same thing as a subvariety.
In order to construct universal central extensions, we further narrow the

context to that of semi-abelian categories with enough projectives [4, 29], which
still includes all varieties of Ω-groups. We need a good notion of short exact
sequence to construct the centralisation of an extension, and the existence of
projective objects gives us weakly universal central extensions. The switch to
semi-abelian categories also allows us to make the connection with existing
homology theories [14, 16, 17] and to prove some classical recognition results
for universal central extensions.
Although some examples (for instance groups vs. abelian groups and Lie al-

gebras vs. vector spaces) are absolute, meaning that they fit into the theory
relative to the subcategory AbA of all abelian objects, others are not: pre-
crossed modules vs. crossed modules, and Leibniz algebras vs. Lie algebras, for
instance. In this absolute case, some results were already investigated in [21];
they appear as special cases of our general theory.
The text is structured as follows. In the first section we develop that part

of the theory which does not depend on the existence of either projective ob-
jects or short exact sequences. Here we work in pointed Barr exact Goursat
categories. We sketch the context and recall the basic definitions of perfect
object and (universal) central extension. Some of the simpler correspondences
between them are developed, as e.g. Proposition 1.11 on the universality of a
central extension vs. perfectness of its domain. Further results are obtained
in the setting of semi-abelian categories with enough projectives. In Section 2
we prove that any perfect object admits a universal central extension (The-
orem 2.15). We show that, when AbA � B, a central extension is universal
exactly when its domain is perfect and projective with respect to all central
extensions (Proposition 2.22), and we also make connections with semi-abelian
homology (Theorem 2.23). In Section 3 we consider the case of nested Birkhoff
subcategories C � B � A. Given a perfect object B of B we obtain a short
exact sequence comparing the second homology of B, viewed as an object
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of B, with the second homology of B, viewed as an object of A. The differ-
ence between them is expressed in terms of a universal central extension of B
(Proposition 3.3, where we assume that AbA � C � B � A). Finally, in Sec-
tion 4, we show how the theory unifies existing with new results by explaining
the examples of groups vs. abelian groups, Leibniz algebras vs. Lie algebras vs.
vector spaces, and precrossed modules vs. crossed modules vs. abelian crossed
modules.

1. Basic definitions and results
In their article [28], Janelidze and Kelly introduced a general theory of relative

central extensions in the context of exact Goursat categories. This is the theory
we shall be considering here, focusing on the induced relative notion of universal
central extension. We give an overview of the needed definitions and prove
some preliminary results on the relation between universal central extensions
and perfect objects. In the following section we shall narrow the context to
semi-abelian categories with enough projectives in order to prove the existence
of universal central extensions.

1.1. Barr exact Goursat categories. Recall that a regular epimorphism
is a coequaliser of some pair of arrows. A category is regular when it is finitely
complete with coequalisers of kernel pairs and with pullback-stable regular epi-
morphisms. In a regular category, any morphism may be factored as a regular
epimorphism followed by a monomorphism, and this image factorisation is
unique up to isomorphism. A category is Barr exact when it is regular and
such that any internal equivalence relation is a kernel pair.
Next to Barr exactness, the theory of central extensions considered in [28]

needs the surrounding category to satisfy the Goursat property. (Then, for
instance, the concepts of normal extension and central extension coincide, and
every split epimorphic central extension is trivial. Both of these facts are crucial
in what follows.) A Barr exact category is called Goursat when for every pair
of equivalence relations R, S on an object X the condition SRS � RSR
holds. For most examples the slightly less general and better known context
of exact Mal’tsev categories suffices: here any internal reflexive relation is
an equivalence relation or, equivalently, the condition SR � RS holds for all
equivalence relations R, S on an object X. A variety is Mal’tsev in this sense if
and only if it is a Mal’tsev variety. Moreover, a Barr exact category is Mal’tsev
if and only if the pushout of a regular epimorphism along a regular epimorphism
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always exists, and the comparison morphism to the induced pullback is also a
regular epimorphism [8]. See [28] for further details.

1.2. Birkhoff subcategories. The notion of central extension introduced
in [28] is relative, being defined with respect to a chosen subcategory B of the
category A considered.
Let A be a Barr exact Goursat category. A Birkhoff subcategory B of A

is a full and reflective subcategory which is closed under subobjects and regular
quotients. We write the induced adjunction as

A
b ,2
K B
�

lr (A)

and denote its unit η : 1A ñ b. A Birkhoff subcategory of a variety of universal
algebras is the same thing as a subvariety. If A is finitely complete Barr exact
Goursat then so is any Birkhoff subcategory B of A.
For a given full, replete and reflective subcategory B, being closed under su-

bobjects is equivalent to the components ηA of the unit of the adjunction being
regular epimorphisms. If now B is full, reflective and closed under subobjects
then the Birkhoff property of B (i.e., closure under quotients) is equivalent to
the following condition: given any regular epimorphism f : B Ñ A in A, the
induced square of regular epimorphisms

B
f

,2

ηB
��

A
ηA

��

bB
bf

,2 bA

(B)

is a pushout.
From now on, B will be a fixed Birkhoff subcategory of a chosen Barr exact

Goursat category A.

1.3. Extensions and central extensions. An extension in A is a regular
epimorphism. A morphism of extensions is a commutative square between
them, and thus we obtain the category ExtA of extensions in A.
With respect to the Birkhoff subcategory B, there are notions of trivial,

normal and central extension. An extension f : B Ñ A in A is trivial (with
respect to B) or b-trivial when the induced square (B) is a pullback. The
extension f is normal (with respect to B) or b-normal when one of the
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projections f0, f1 in the kernel pair pRrf s, f0, f1q of f is b-trivial. That is to
say, f is normal with respect to B if and only if in the diagram

Rrf s
f0 ,2

f1

,2

ηRrfs

��

B
f

,2

ηB
��

A

bRrf s
bf0 ,2

bf1

,2 bB

both commutative squares are pullbacks, since one of them being a pullback
implies that so is the other. Finally, f is central (with respect to B) or
b-central when there exists an extension g : C Ñ A such that the pullback
g�f of f along g is b-trivial.

Remark 1.4. Clearly, every normal extension is central; in the present context,
the converse also holds, and thus the concepts of normal and central extension
coincide. Furthermore, a split epimorphism is a trivial extension if and only
if it is a central extension [28, Theorem 4.8]. Finally, central extensions are
pullback-stable [28, Proposition 4.3].

Remark 1.5. Together with the classes |ExtA| and |ExtB| of extensions in A
and B, the adjunction (A) forms a Galois structure

Γ � pA
b ,2
K B
�

lr , |ExtA|, |ExtB|q

in the sense of [26].

1.6. Pointed categories. In what follows it will be crucial that the terminal
object 1 of A is also initial, i.e., that the category A is pointed. In this case,
the object 1 � 0 is called the zero object of A. A morphism f is zero when
it factors over the zero object.
Since the reflector b always preserves pullbacks of split epimorphisms along

split epimorphisms, in the pointed case it also preserves products.
From now on, A will be a fixed pointed exact Goursat category; any Birkhoff

subcategory B of A is also pointed exact Goursat.

1.7. Perfect objects. An object P of A is called perfect (with respect
to B) or b-perfect when bP is the zero object 0 of B. If f : B Ñ A is an
extension and B is b-perfect then so is A, because the reflector b preserves
regular epimorphisms, and a regular quotient of zero is zero.
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Lemma 1.8. Let P be a b-perfect object and f : B Ñ A an extension.
(1) If f is b-trivial then the map

HompP, fq � f �p�q : HompP,Bq Ñ HompP,Aq

is a bijection;
(2) if f is b-central then HompP, fq is an injection.

Conversely, if HompP, fq is an injection for every b-trivial extension f then
the object P is b-perfect.

Proof : The extension f being b-trivial means that the square (B) is a pullback.
If b0, b1 : P Ñ B are morphisms such that f �b0 � f �b1 then b0 is equal to
b1 by the uniqueness in the universal property of this pullback: indeed also
ηB�b0 � bb0�ηP � 0 � bb1�ηP � ηB�b1. Thus we see that HompP, fq is
injective. This map is also surjective, since any morphism a : P Ñ A is such
that ηA�a � ba�ηP � 0 � bf �0 and thus induces a morphism b : P Ñ B for
which f �b � a.
Statement 2 follows from 1 because the functor HompP,�q preserves kernel

pairs, and a map is an injection if and only if its kernel pair projections are
bijections.
As to the converse: the morphism !bP : bP Ñ 0 is a b-trivial extension; since

!bP �ηP � 0 �!bP �0, the assumption implies that ηP is zero, which means that
P is b-perfect.

1.9.Universal central extensions. For an object A ofA, let CentrbA denote
the category of all b-central extensions of A, i.e., the full subcategory of the
slice category A{A determined by the central extensions. A (weakly) initial
object of this category CentrbA is called a (weakly) universal b-central
extension of A. A b-central extension u : U Ñ A is weakly universal when for
every b-central extension f : B Ñ A there exists a morphism f from u to f , i.e.,
such that f �f � u. Furthermore, u is universal when this induced morphism
f is unique. Note also that, up to isomorphism, an object admits at most one
universal b-central extension.

Lemma 1.10. If u : U Ñ A is a universal b-central extension then the objects
U and A are b-perfect.

Proof : Since the first projection prA : A� bU Ñ A is a trivial extension, by
Remark 1.4 it is central. By the hypothesis that u is universal, there exists
just one morphism xu, vy : U Ñ A� bU such that prA�xu, vy � u. But then
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0: U Ñ bU is equal to ηU : U Ñ bU , and bU � 0. Since a regular quotient of
a perfect object is perfect, this implies that both U and A are b-perfect.

Proposition 1.11. Let A be a pointed Barr exact Goursat category and B a
Birkhoff subcategory of A. Let u : U Ñ A be a b-central extension. Between
the following conditions, the implications 1 ô 2 ô 3 ñ 4 ô 5 hold:

(1) U is b-perfect and every b-central extension of U splits;
(2) U is b-perfect and projective with respect to all b-central extensions;
(3) for every b-central extension f : B Ñ A, the map

HompU, fq : HompU,Bq Ñ HompU,Aq

is a bijection;
(4) U is b-perfect and u is a weakly universal b-central extension;
(5) u is a universal b-central extension.

Proof : Suppose that 1 holds. To prove 2, let f : B Ñ A be a b-central extension
and g : U Ñ A a morphism. Then the pullback g�f : B Ñ U of f along g
is still b-central; hence g�f admits a splitting s : U Ñ B, and pf �gq�s is the
required morphism g Ñ f . Conversely, given a b-central extension f : B Ñ U ,
the projectivity of U yields a morphism s : U Ñ B such that f �s � 1U .
Conditions 2 and 3 are equivalent by Lemma 1.8.
Condition 3 implies condition 5: given a b-central extension f : B Ñ A of A,

there exists a unique morphism f : U Ñ B that satisfies f �f � u.
Finally, 4 and 5 are equivalent by Lemma 1.8 and Lemma 1.10.

Remark 1.12. To prove that condition 4 implies 3 we would require U itself
to admit a universal b-central extension, which need not be the case in the
present context. But if such a universal b-central extension of U does exist
then the above five conditions are equivalent, as is shown in Proposition 2.22.

2. The universal central extension construction
Our aim is now to prove that every perfect object admits a universal central

extension. To do so, a richer categorical context is needed; for instance, a
good notion of short exact sequence will be crucial in the construction of the
centralisation of an extension and in the passage to a perfect subobject of
an object. The existence of projective objects will also become important
now: they will give us weakly universal central extensions. We switch to the
framework of semi-abelian categories with enough projectives.
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2.1. Semi-abelian categories. A pointed and regular category is Bourn
protomodular when the (Regular) Short Five Lemma holds: this means
that for any commutative diagram

Krf 1s
ker f 1

,2

k
��

B1
f 1

,2

b
��

A1

a
��

Krf s
ker f

,2 B
f

,2 A

(C)

such that f and f 1 are regular epimorphisms, k and a being isomorphisms
implies that b is an isomorphism. A semi-abelian category is pointed, Barr
exact and Bourn protomodular with binary coproducts [29]. A variety of Ω-
groups is always a semi-abelian category. A semi-abelian category is always
Mal’tsev (hence it is also Goursat) [4].
Since a regular epimorphism is always the cokernel of its kernel in a semi-

abelian category, an appropriate notion of short exact sequence exists. A short
exact sequence is any sequence

K
k ,2 B

f
,2 A

that satisfies k � ker f and f � coker k. We denote this situation

0 ,2 K
� ,2 k ,2 B

f � ,2 A ,2 0. (D)

Lemma 2.2. [5, 6] Consider a morphism of short exact sequences such as (C)
above.

(1) The right hand side square f �b � a�f 1 is a pullback iff k is an isomorph-
ism.

(2) The left hand side square ker f �k � b� ker f 1 is a pullback iff a is a
monomorphism.

The first statement implies that any pullback square between regular epi-
morphisms (i.e., any square f �b � a�f 1 as in (C)) is a pushout. It is also
well-known that the regular image of a kernel is a kernel [29]. In any semi-
abelian category, classical homological lemma’s such as the Snake Lemma and
the 3� 3 Lemma are valid; for further details and many other results we refer
the reader to the article [29] and the monograph [4].
From now on, A will be a semi-abelian category and B a Birkhoff subcategory

of A.
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2.3. Commutators and centralisation. The kernel µ of the unit η of the
adjunction (A) gives rise to a “zero-dimensional” commutator as follows: for
any object A of A,

0 ,2 rA,Asb
� ,2
µA ,2 A

ηA � ,2 bA ,2 0

is a short exact sequence in A; hence A is an object of B if and only if
rA,Asb � 0. On the other hand, an object A of A is b-perfect precisely
when rA,Asb � A. This construction defines a functor r�,�sb : AÑ A and a
natural transformation µ : r�,�sb ñ 1A. The functor r�,�sb preserves reg-
ular epimorphisms; we recall the argument. Given a regular epimorphism
f : B Ñ A, by the Birkhoff property, the induced square of regular epimorph-
isms (B) is a pushout—but this is equivalent to the induced morphism rf, f sb
in the diagram

0 ,2 rB,Bsb
� ,2
µB ,2

rf,f sb
��

B

f
_��

ηB � ,2 bB

bf
_��

,2 0

0 ,2 rA,Asb
� ,2
µA

,2 A ηA

� ,2 bA ,2 0

being a regular epimorphism.
Lemma 2.2 implies that an extension f as in (D) is b-central if and only if

either one of the morphisms rf0, f0sb, rf1, f1sb is an isomorphism, which happens
exactly when they coincide, rf0, f0sb � rf1, f1sb.

rK,Bsb_��
kerrf0,f0sb

��

|�#

�#

0 ,2 rRrf s,Rrf ssb
� ,2
µRrfs

,2

rf0,f0sb _��
rf1,f1sb_��

Rrf s

f0 _��
f1_��

ηRrfs� ,2 bRrf s

bf0 _��
bf1_��

,2 0

0 ,2 rB,Bsb
� ,2

µB

,2 B ηB

� ,2 bB ,2 0

Hence the kernel rK,Bsb of rf0, f0sb measures how far f is from being central:
indeed, f is b-central if and only if rK,Bsb is zero.

Remark 2.4. This explains, for instance, why a sub-extension of a central
extension is central. It is worth remarking here that a morphism of extensions
pb0, a0q as in (E) below is a monomorphism if and only if such is b0.

The “one-dimensional” commutator rK,Bsb may be considered as a normal
subobject of B via the composite µB�rf1, f1sb� kerrf0, f0sb : rK,Bsb Ñ B. Thus
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the Galois structure Γ from Remark 1.5 induces a new adjunction

ExtA
b1 ,2
K CExtbA,
�

lr

where CExtbA is the full reflective subcategory of ExtA determined by the
b-central extensions. Given an extension f : B Ñ A with kernel K, its cent-
ralisation b1f : B{rK,Bsb Ñ A is obtained through the diagram with exact
rows

0 ,2 rK,Bsb
� ,2 ,2

_��

B
� ,2

f
_��

B
rK,Bsb

,2

b1f_��

0

0 � ,2 ,2 A A ,2 0.

Considering this diagram as a short exact sequence

0 ,2 Krη1f s
� ,2
µ1
f

,2 f
η1f � ,2 b1f ,2 0

in the semi-abelian category of arrows ArrA (morphisms here are commuta-
tive squares) we obtain a description of the unit η1 of the adjunction and its
kernel µ1.

2.5. Baer invariants. We recall the basic definitions of the theory of Baer
invariants [16, Definition 3.1 and 3.3]. Two morphisms of extensions pb0, a0q
and pb1, a1q : f 1 Ñ f

B1

f 1
_��

b1

,2
b0 ,2

B

f
_��

A1
a1

,2
a0 ,2

A

(E)

are homotopic when a0 � a1. A Baer invariant is a functor F : ExtAÑ A
which makes homotopic morphisms of extensions equal: if pb0, a0q � pb1, a1q
then F pb0, a0q � F pb1, a1q. Such a functor sends homotopically equivalent
extensions to isomorphic objects.
For instance, the functor ExtAÑ A that maps an extension

0 ,2 K
� ,2 k ,2 B

f � ,2 A ,2 0 (F)
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to the quotient rB,Bsb{rK,Bsb is an example of a Baer invariant, as is the func-
tor which maps this extension to the quotient pK ^ rB,Bsbq{rK,Bsb. See [16],
and in particular its Proposition 4.6, for further details.

2.6. Existence of a weakly universal central extension. We say that A
has weakly universal central extensions (for some Birkhoff subcategory
B of A) when every object of A admits a weakly universal b-central extension.
This happens, for instance, when A has enough (regular) projectives, so that
for any object A of A, there exists a regular epimorphism f : B Ñ A with B
projective, a (projective) presentation of A.

Lemma 2.7. If the category A is semi-abelian with enough projectives then it
has weakly universal central extensions for any Birkhoff subcategory B.

Proof : Given an object A of A, the category CentrbA has a weakly initial
object: given a projective presentation f : B Ñ A with kernel K, its central-
isation b1f : B{rK,Bsb Ñ A is weakly initial. Indeed, any b-central extension
g : C Ñ A induces a morphism b1f Ñ g in CentrbA, as the object B is projec-
tive.

2.8. The Schur multiplier. Let A be an object of A and f : B Ñ A a
projective presentation with kernel K. The induced objects

rB,Bsb
rK,Bsb

and
K ^ rB,Bsb
rK,Bsb

are independent of the chosen projective presentation of A as explained above.
Hence the following makes sense:

Definition 2.9. By analogy with classical homology theories, the latter object
pK ^ rB,Bsbq{rK,Bsb is called the second homology object or the Schur
multiplier of A (relative to B) and is written H2pA, bq. We write UpA, bq
for the object rB,Bsb{rK,Bsb, and H1pA, bq will denote the reflection bA of A
into B.

Remark 2.10. The objects H2pA, bq and H1pA, bq are genuine homology ob-
jects: if A is a semi-abelian monadic category then they may be computed
using comonadic homology as in [17]—note that the monadicity here implies
existence of enough projectives. In any case, they fit into the homology theory
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worked out in [14]. Theorem 5.9 in [16] states that any short exact sequence (D)
induces a five-term exact sequence

H2pB, bq ,2 H2pA, bq ,2 K
rK,Bsb

,2 H1pB, bq
� ,2 H1pA, bq ,2 0.

This is a relative generalisation of the Stallings–Stammbach sequence for groups
(which is recovered when b is the abelianisation functor from A � Gp to
B � Ab), a categorical version of the analogous results in [18, 19, 35].

2.11. Existence of a universal central extension. The Baer invariants
from 2.5 may now be considered for all weakly universal b-central extensions
of an object A: indeed, any two such extensions of A are always homotop-
ically equivalent. Since for any weakly universal b-central extension (F) the
commutator rK,Bsb is zero, the objects

rB,Bsb and K ^ rB,Bsb

are independent of the chosen weakly universal central extension of A. (Here,
as in [27], the Hopf formula becomes H2pA, bq � K ^ rB,Bsb. Also note that
UpA, bq � rB,Bsb.)
We are now ready to prove that, if A is b-perfect, then a universal b-central

extension of A does exist. This is a relative version of Proposition 4.1 in [21].

2.12. The perfect subobject. When there are weakly universal central ex-
tensions, any central extension of a perfect object contains a subobject with
a perfect domain. We prove this in two steps: first for weakly universal cen-
tral extensions, then in general. This implies that any perfect object admits a
universal central extension when weakly universal central extensions exist.

Lemma 2.13. Suppose A is a semi-abelian category with a Birkhoff subcat-
egory B. Then any weakly universal b-central extension of a b-perfect object
contains a subobject with a b-perfect domain.

Proof : Let (F) be a weakly universal b-central extension of a b-perfect objectA.
Since µA is an isomorphism and rf, f sb is a regular epimorphism, the morphism
f �µB � µA�rf, f sb in the induced diagram with exact rows

0 ,2 K ^ rB,Bsb
� ,2 ,2

_��

��

rB,Bsb_��
µB

��

f�µB� ,2 A ,2 0

0 ,2 K
� ,2 ,2 B

f

� ,2 A ,2 0
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is also a regular epimorphism. The extension f �µB is b-central as a subobject
of the b-central extension f ; its weak universality is clear. By Proposition 1.11,
the object rB,Bsb is b-perfect, because the extensions f �µB and f are homo-
topically equivalent, so that rB,Bsb � rrB,Bsb, rB,Bsbsb.

Lemma 2.14. Let A be a semi-abelian category with weakly universal central
extensions for a Birkhoff subcategory B of A. If f : B Ñ A is a b-central
extension of a b-perfect object A, then rB,Bsb is also b-perfect.

Proof : The object B admits a weakly universal central extension v : V Ñ B;
then the centralisation w : W Ñ A of the resulting composite f �v is a weakly
universal b-central extension. Indeed, given any b-central extension g : C Ñ A,
there is a factorisation f �g : V Ñ C of v through the pullback f �g : C Ñ B
of g along f , and then the composite pg�fq�pf �gq : V Ñ C yields the needed
morphism w Ñ g by the universal property of the centralisation functor.
Since the comparison W Ñ B is a regular epimorphism, such is the induced

morphism rW,W sb Ñ rB,Bsb; but a regular quotient of a perfect object is
perfect.

Theorem 2.15. Let A be a semi-abelian category with enough projectives and
B a Birkhoff subcategory of A. An object A of A is b-perfect if and only if
it admits a universal b-central extension. Moreover, this universal b-central
extension may be chosen in such a way that it occurs in a short exact sequence

0 ,2 H2pA, bq
� ,2 ,2 UpA, bq

ub
A � ,2 A ,2 0.

Proof : If an object admits a universal b-central extension then it is b-perfect
by Lemma 1.10. Conversely, let (F) be a weakly universal central extension of
a b-perfect object A (Lemma 2.7). Then by Lemma 2.13 it admits a (weakly
universal central) subobject with a b-perfect domain. By Proposition 1.11, this
subobject is also universal. The shape of the short exact sequence follows from
the arguments given in 2.11.

2.16. An “absolute” property of relative universal central extensions.
It is worth remarking here that a universal b-central extension is always cen-
tral in an absolute sense, namely, with respect to the abelianisation functor
ab : AÑ AbA. Here AbA is the Birkhoff subcategory of A consisting of all
objects that admit an internal abelian group structure; see, for instance, [7].
If u : U Ñ A is a universal b-central extension then U � rU,U sb since U is
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b-perfect and rU,U sb � rRrus,Rrussb since u is b-central. Hence the diag-
onal U Ñ Rrus, being isomorphic to µU : rRrus,Rrussb Ñ Rrus, is a kernel. By
Proposition 3.1 in [7], this implies that u is ab-central.

2.17. Cross-effects and the Higgins commutator. Central extensions,
relative to AbA may also be characterised in terms of the Higgins commuta-
tor [24, 36], which in turn may be obtained as a cross-effect of the identity
functor on A. This will turn out to be useful later on in Lemma 2.20, of
which the proof is based on the convenient properties higher cross-effects and
higher-order commutators.
Given two objects K and L of A, the second cross-effect

pK|Lq � Ker
�@

1K 0
0 1L

D
: K � LÑ K � L

�

of the identity functor 1A evaluated in K, L behaves as a kind of “formal
commutator” of K and L (see [24] and [36]). If now k : K Ñ X and l : LÑ X
are subobjects of an object X, their (Higgins) commutator rK,Ls ¤ X is
the image of the induced composite morphism

pK|Lq � ,2
ιK,L

,2 K � L
x kl y ,2 X.

When K _ L � X, the Higgins commutator rK,Ls is normal in X so that it
coincides with the Huq commutator considered in [7, 4]. Hence any extension
in A such as (F) above is ab-central if and only if rK,Bsab � rK,Bs is trivial.
The Higgins commutator generally does not preserve joins, but the defect

may be measured precisely—it is a ternary commutator which can be computed
by means of a cross-effect of order three. Let us extend the definition above:
given a third subobject m : M Ñ X of the object X from 2.17, the ternary
commutator rK,L,M s ¤ X is the image of the composite

pK|L|Mq � ,2
ιK,L,M

,2 K � L�M

B
k
l
m

F
,2 X,

where ιK,L,M is the kernel of

K � L�M

C
iK iK 0
iL 0 iL
0 iM iM

G
,2 pK � Lq � pK �Mq � pL�Mq.

The object pK|L|Mq is the third-order cross-effect of 1A evaluated in K, L
and M .



A RELATIVE THEORY OF UNIVERSAL CENTRAL EXTENSIONS 15

Lemma 2.18. [24, 23] If K, L, M �X, then

rK,L_M s � rK,Ls _ rK,M s _ rK,L,M s

where all joins are computed in X.

It is precisely the availability of this join decomposition which makes the
Higgins commutator useful in what follows. Many things can be said about
these ternary commutators; let us just mention that they are generally not de-
composable into iterated binary ones, and refer to [23] for further information.

2.19. Recognition of universal central extensions. We now prove some
recognition results on universal b-central extensions. As will be apparent from
the following crucial lemma and the counterexample 4.8, here we need that AbA
is contained in B, so that we may suitably reduce the given relative situation
to the absolute case.

Lemma 2.20. Let A be a semi-abelian category with enough projectives. If B
is an ab-perfect object and f : B Ñ A and g : C Ñ B are ab-central extensions
then the extension f �g is ab-central.

Proof : Let k : K Ñ C be the kernel of g and l : LÑ C the kernel of f �g, thenB
being ab-perfect implies that C � K _ rC,Cs:

rC,Cs � ,2
_��

��

rB,Bs

0 ,2 K
� ,2 k ,2 C

g � ,2

ηC
_��

B ,2

_��

0

abpCq g
� ,2 0

the pushout of ηC and g is trivial, and the join K _ rC,Cs (as normal subob-
jects, which in fact is also the ordinary join as subobjects) is the kernel of the
diagonal g�ηC . As a consequence, rL,Cs vanishes when rL, rC,Css does:

rL,Cs � rL,K _ rC,Css � rL,Ks _ rL, rC,Css _ rL,K, rC,Css

by Lemma 2.18, and rL,Ks ¤ rC,Ks � 0 as g is ab-central, which (via a result
from [24]) also implies that

rL,K, rC,Css ¤ rC,K,Cs ¤ rC,Ks

is trivial.
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The proof that rL, rC,Css � 0 is essentially a variation on Lemma 1.8, where
we use that rC,Cs is ab-perfect (Lemma 2.14 via Lemma 2.7). The extension f
being ab-central implies

grL, rC,Css � rgL, rB,Bss ¤ rKrf s, Bs � 0.

The extension g being ab-central means that the square in the diagram

Rrgs
g0 ,2

ηRrgs

��

C
g

,2

ηC
��

B

abRrgs
abg0

,2 abC

is a pullback. Hence

g�
@

l
µC

D
�ιL,rC,Cs � 0 � g�0: pL|rC,Csq Ñ L� rC,Cs Ñ C Ñ B

and there is an induced morphism x0,
@

l
µC

D
�ιL,rC,Csy : pL|rC,Csq Ñ Rrgs. Now

clearly g0�x0, 0y � 0 � g0�x0,
@

l
µC

D
�ιL,rC,Csy, but also

ηRrgs�x0, 0y � abx0, 0y�ηpL|rC,Csq

� 0

� abx0,
@

l
µC

D
�ιL,rC,Csy�ηpL|rC,Csq

� ηRrgs�x0,
@

l
µC

D
�ιL,rC,Csy;

in fact,

abx0,
@

l
µC

D
�ιL,rC,Csy �

A
abx0,ly

abx0,µCy

E
�ιL,rC,Cs �

A
abx0,ly
abx0,0y

E
�ιL,rC,Cs

� abx0, l�
@
1C
0

D
�ιL,rC,Csy � 0,

because rC,Cs is ab-perfect and
@
1C
0

D
�ιL,rC,Cs is zero (by definition of the cross-

effect pL|rC,Csq). The uniqueness in the universal property of pullbacks now
implies that

x0,
@

l
µC

D
�ιL,rC,Csy � x0, 0y : pL|rC,Csq Ñ Rrgs,

so that
@

l
µC

D
�ιL,rC,Cs � 0 and the commutator rL, rC,Css vanishes.

Lemma 2.21. Let A be a semi-abelian category with enough projectives and B
a Birkhoff subcategory of A that contains AbA. If u : U Ñ A is a b-central
extension and V : V Ñ U is a universal b-central extension then the extension
u�v is b-central.
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Proof : As explained in 2.16, both u and v are ab-central. Moreover, as AbA
is contained in the Birkhoff subcategory B of A, the objects U , V and A are
ab-perfect. Now by Lemma 2.20, also the composite u�v : V Ñ A is ab-central.
Again using that B is bigger than AbA we see that u�v : V Ñ A is a b-central
extension (cf. Lemma 3.1.3 below).

Proposition 2.22. Let A be a semi-abelian category with enough project-
ives and B a Birkhoff subcategory of A that contains AbA. Then in Prop-
osition 1.11, condition 4 implies condition 1. Hence a b-central extension
u : U Ñ A is universal if and only if its domain U is b-perfect and projective
with respect to all b-central extensions.

Proof : Suppose that u : U Ñ A is a universal b-central extension; we have to
prove that every b-central extension of U splits. By Theorem 2.15, U admits
a universal b-central extension v : V Ñ U . It suffices to prove that this v is a
split epimorphism. By Lemma 2.21, the composite u�v is b-central. The weak
b-universality of u now yields a morphism s : U Ñ V such that u�v�s � u. But
also u�1U � u, so that v�s � 1U by the b-universality of u, and the universal
b-central extension v splits. The result follows.

Theorem 2.23. Let A be a semi-abelian category with enough projectives
and B a Birkhoff subcategory of A that contains AbA. A b-central extension
u : U Ñ A is universal if and only if H1pU, bq and H2pU, bq are zero.

Proof : ñ If u : U Ñ A is a universal b-central extension then by Proposi-
tion 2.22 we have H1pU, bq � bU � 0 and U is projective with respect to
all b-central extensions. This implies that 1U : U Ñ U is a universal b-central
extension of U . Theorem 2.15 now tells us that H2pU, bq � 0.
ð The object U is b-perfect because bU � H1pU, bq � 0; since H2pU, bq

is also zero, the universal b-central extension ub
U : UpU, bq Ñ U of U induced

by Theorem 2.15 is an isomorphism. Proposition 2.22 now implies that U �
UpU, bq is projective with respect to all b-central extensions. Another applica-
tion of Proposition 2.22 shows that u is also a universal b-central extension.

Proposition 2.24. Let A be a semi-abelian category with enough projectives
and B a Birkhoff subcategory of A that contains AbA. Let f : B Ñ A and
g : C Ñ B be b-central extensions. Then the composite f �g is a universal b-
central extension if and only if g is.
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Proof : First note that when g is a universal b-central extension then f �g is
b-central by Lemma 2.21. The central extensions f �g and g have the same
domain, and by Proposition 2.22 their universality only depends on a property
of this domain.

3. Nested Birkhoff subcategories
We now consider the situation where a Birkhoff subcategory B of a semi-

abelian category A has a further Birkhoff subcategory C so that they form a
chain of nested semi-abelian categories with enough projectives, C � B � A.
(For instance, C could be AbA as in Theorem 2.23. In fact, in Proposition 3.3
we shall assume the weaker condition AbA � C � B � A.) Then there is a
commutative triangle of left adjoint functors (all right adjoints are inclusions):

A b ,2

cb
�$????????????? B

c

z��������������

C
Since the objects and morphisms of B are also objects and morphisms of A, it is
natural to compare the notions of c-centrality, c-perfect object, homology with
respect to c, etc. with that of cb-centrality, cb-perfect object or the homology
with respect to cb. We obtain a short exact sequence which relates the two
induced types of universal central extension.

Lemma 3.1. Under the given circumstances:
(1) an object of B is c-perfect if and only if it is cb-perfect;
(2) an extension in B is c-central if and only if it is cb-central;
(3) an extension of A is b-central as soon as it is cb-central.

Proof : If B is an object of B then cB � cbB, which proves the first statement.
As for the second statement, an extension f : B Ñ A in B is c-central if and
only if the square in the diagram

Rrf s
f0 ,2

ηc
Rrfs

��

B
f

,2

ηc
B

��

A

cRrf s
cf0

,2 cB
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is a pullback. Now the inclusion of B into A preserves and reflects all limits
and moreover cf0 � cbf0, so that f being c-central is equivalent to f being
cb-central. The third statement follows form the fact that c preserves the
pullback

Rrf s
f0 ,2

ηc
Rrfs

��

B

ηc
B

��
cbRrf s

cbf0

,2 cbB

for any cb-central extension f .

Lemma 3.2. For any object B of B, the adjunction (A) restricts to an ad-
junction

CentrcbB
b ,2
K CentrcB.
�

lr

Hence the functor b preserves universal central extensions:

b
�
ucb
B : UpB, cbq Ñ B

�
�

�
uc
B : UpB, cq Ñ B

�
,

for any c-perfect object B.

Proof : By Lemma 3.1, CentrcB is a subcategory of CentrcbB.
Suppose that g : C Ñ B is a cb-central extension. Applying the functor b,

we obtain the extension bg � g�ηb
C : bC Ñ B, which is cb-central as a quotient

of g. Being an extension in B, bg is c-central by Lemma 3.1.
Finally, as any left adjoint functor, b preserves initial objects.

Proposition 3.3. Suppose that AbA � C � B � A is a chain of inclusions of
Birkhoff subcategories of a semi-abelian category A. If B is a c-perfect object
of B then we have the exact sequence

0 ,2 H2pUpB, cq, cbq
� ,2 ,2 H2pB, cbq

� ,2 H2pB, cq ,2 0.

Moreover,
rUpB, cbq,UpB, cbqsb � H2pUpB, cq, cbq,

and ucb
B � uc

B if and only if H2pB, cbq � H2pB, cq.
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Proof : By Lemma 3.2 and Theorem 2.15, when B is a c-perfect object of B then
the comparison morphism between the induced universal central extensions
gives rise to the following 3� 3 diagram with short exact rows.

0

��

0

��

H2pUpB, cq, cbq_��

��

H2pUpB, cq, cbq_��

��

� ,2 0_��

��

0 ,2 H2pB, cbq

_��

� ,2 ,2 UpB, cbq

ηb
UpB,cbq _��

ucb
B � ,2 B ,2 0

0 ,2 H2pB, cq
� ,2 ,2

��

UpB, cq
uc
B

� ,2

��

B ,2

��

0

0 0 0

The middle column is also exact, by Theorem 2.15: indeed, in view of Re-
mark 2.4, the extension ηb

UpB,cbq is cb-central as a subobject of ucb
B ; hence Prop-

osition 2.24 implies that it is a universal cb-central extension of UpB, cq. The
result now follows from the 3� 3 Lemma.

4. Examples
In this final section of the text we illustrate the theory with some classical

and contemporary examples. All categories we shall be considering here are
(equivalent to) varieties of Ω-groups, and as such are semi-abelian with enough
projectives. As an illustration of Section 3, we shall consider the categories
Gp of groups and Ab of abelian groups; LeibK, LieK and VectK of Leibniz alge-
bras, Lie algebras and vector spaces over a field K; and the categories PXMod,
XMod and AbXMod of precrossed modules, crossed modules and abelian crossed
modules. Then, in Subsection 4.7, we consider a counterexample for Proposi-
tion 2.22 and Theorem 2.23.

4.1. Groups and abelian groups. The case of groups and abelian groups is
well-known and entirely classical, but we think it is worth repeating. The left
adjoint ab : GpÑ Ab to the inclusion of Ab in Gp is called the abelianisation
functor; it sends a group G to its abelianisation G{rG,Gs. A surjective group
homomorphism f : B Ñ A is a central extension if and only if the commutator
rKrf s, Bsab � rKrf s, Bs is trivial; given a group G and a normal subgroup N
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of G, their commutator rN,Gs is the normal subgroup of G generated by the
elements rn, gs � ngn�1g�1 for all n P N and g P G. Equivalently f is central
if and only if the kernel Krf s is contained in the centre

ZB � tz P B | rz, bs � 1 for all b P Bu

of B. A group G is perfect when G is equal to its commutator subgroup rG,Gs.
Computing the second integral homology group H2pG,Zq � H2pG, abq of a
perfect group G is particularly simple: take the universal central extension

uab
G : UpG, abq Ñ G;

its kernel Kruab
G s is H2pG,Zq.

4.2. Leibniz algebras, Lie algebras and vector spaces. Recall [32, 33]
that a Leibniz algebra g is a vector space over a field K equipped with a
bilinear operation r�, �s : g� gÑ g that satisfies

rx, ry, zss � rrx, ys, zs � rrx, zs, ys

(the Leibniz identity) for all x, y, z P g. When rx, xs � 0 for all x P g then
the bracket is skew-symmetric and the Leibniz identity is the Jacobi identity,
so g is a Lie algebra.
Here there are three inclusions of Birkhoff subcategories, of which the left

adjoints form the following commutative triangle.

LeibK
p�qLie ,2

vect�p�qLie
�$????????????

LieK

vect
z�������������

VectK

The left adjoint p�qLie : LeibK Ñ LieK (which is usually called the Liesation
functor) takes a Leibniz algebra g and maps it to the quotient g{gAnn, where
gAnn is the two-sided ideal (i.e., normal subalgebra) of g generated by all ele-
ments rx, xs for x P g. The category VectK may be considered as a subvariety
of LieK by equipping a vector space with the trivial Lie bracket; the left ad-
joint vect : LieK Ñ VectK to the inclusion VectK � LieK takes a Lie algebra g
and maps it to the quotient g{rg, gs, where rg, gs is generated by the elements
rx, ys P g for all x, y P g.
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The notion of central extension obtained in the case of LieK vs. VectK is the
ordinary notion of central extension of Lie algebras, where the kernel Krf s
of f : bÑ a should be included in the centre of b, i.e., in

Zb � tz P b | rz, bs � 0 for all b P bu.

Examples of universal VectK-central extensions of Leibniz algebras over a field
K may be found in [11]; in this case, the notion of perfect object is the classical
one.
On the other hand, a Leibniz algebra g is perfect with respect to LieK if and

only if g � gAnn. Moreover, given a Leibniz algebra g, we may consider the
two-sided ideal generated by

tz P g | rg, zs � �rz, gs for all g P gu;

we call it the LieK-centre of g and denote it by ZLiepgq. When K is a field of
characteristic different from 2 then this relative centre allows us to characterise
the p�qLie-central extensions of Leibniz algebras over K.

Proposition 4.3. Suppose K is a field of characteristic different from 2. For
an extension f : bÑ a of Leibniz algebras over K, the following three conditions
are equivalent:

(1) f : bÑ a is central with respect to LieK;
(2) Rrf sAnn � bAnn;
(3) Krf s ¤ ZLiepbq.

Proof : Condition 1 is equivalent to 2 by definition. Now suppose that 2 holds
and consider k P Krf s and b P b. Then both rpk, 0q, pk, 0qs � prk, ks, r0, 0sq and
rpb� k, bq, pb� k, bqs � prb� k, b� ks, rb, bsq are in Rrf sAnn, which implies that
rk, ks � r0, 0s � 0 and rb�k, b�ks � rb, bs. Thus we see that rb, ks�rk, bs � 0,
which implies that condition 3 holds.
Conversely, consider rpb�k, bq, pb�k, bqs in Rrf sAnn^Krf1s, where f1 denotes

the second projection of the kernel pair of f . Then k is an element of the kernel
of f and

0 � f1rpb� k, bq, pb� k, bqs � f1prb� k, b� ks, rb, bsq � rb, bs.

Now 3 implies that rk, ks � rk, ks � 0, so that rk, ks � 0, since charpKq � 2.
Furthermore, rb, ks � rk, bs � 0, which implies that

rb� k, b� ks � rb, bs � rb, ks � rk, bs � rk, ks � 0.

Hence Rrf sAnn^Krf1s is zero, so that Rrf sAnn � bAnn and condition 2 holds.
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Given a Leibniz algebra g, the homology vector space H2pg, vect�p�qLieq is the
Leibniz homology developed in [34]; see also [12, 37]. As far as we know, the
homology Lie algebra H2pg, p�qLieq has not been studied before, but certainly
the theories referred to in Remark 2.10 apply to it. If g is a Lie algebra then the
vector space H2pg, vectq is the classical Chevalley–Eilenberg homology. If we
interpret Proposition 3.3 in the present situation then we recover Corollary 2.7
from [20], but in the special case where K is a field:

Proposition 4.4. If g is a perfect Lie algebra then H2pUpg, vectq, vect�p�qLieq
is the kernel of H2pg, vect�p�qLieq Ñ H2pg, vectq. Moreover, the equality

rUpg, vect�p�qLieq,Upg, vect�p�qLieqsp�qLie
� H2pUpg, vectq, vect�p�qLieq

holds.

4.5. Precrossed modules, crossed modules and abelian crossed mod-
ules. Recall that a precrossed module pT,G, Bq is a group homomorph-
ism B : T Ñ G together with an action of G on T , denoted gt for g P G and
t P T , satisfying Bpgtq � gBptqg�1 for all g P G and t P T . If in addition
it verifies the Peiffer identity Bptqt1 � tt1t�1 for all t, t1 P T then we say
that pT,G, Bq is a crossed module. A morphism of (pre)crossed modules
pf1, f0q : pT,G, Bq Ñ pT 1, G1, B1q consists of group homomorphisms f1 : T Ñ T 1

and f0 : GÑ G1 such that B1�f1 � f0�B and the action is preserved. The cate-
gories PXMod and XMod are equivalent to varieties of Ω-groups; see, e.g., [29],
[30] or [31]. The category AbXMod consists of abelian crossed modules, i.e.,
pT,G, Bq such that T and G are abelian groups and the action of G on T is
trivial.
As in the previous example, we obtain a commutative triangle of left adjoint

functors.

PXMod
p�qPeiff ,2

ab�p�qPeiff
�$????????????? XMod

ab
z��������������

AbXMod

Given two normal precrossed submodules pM,H, Bq and pN,K, Bq of a pre-
crossed module pT,G, Bq, the Peiffer commutator xM,Ny is the normal
subgroup of T generated by the Peiffer elements

xm,ny � mnm�1pBpmqnq�1 and xn,my � nmn�1pBpnqmq�1
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for m P M , n P N [13]. We denote by xpM,H, Bq, pN,K, Bqy the precrossed
module pxM,Ny, 0, 0q; it may be considered as a normal precrossed submodule
of pT,G, Bq. The precrossed module

xpT,G, Bq, pT,G, Bqy � pxT, T y, 0, 0q

is the smallest one that makes the quotient pT,G, Bq{xpT,G, Bq, pT,G, Bqy a
crossed module. This defines a functor p�qPeiff : PXModÑ XMod, left adjoint
to the inclusion of XMod in PXMod.
A precrossed module pT,G, Bq is p�qPeiff-perfect when

pT,G, Bq � xpT,G, Bq, pT,G, Bqy.

In particular, then G � 0; hence xT, T y � rT, T s, so that pT,G, Bq is perfect
with respect to XMod exactly when T is perfect with respect to Ab and G is
trivial.
The results of [15, Section 9.5] imply that an extension of precrossed modules

f : B Ñ A is central with respect to XMod if and only if xKrf s, By � 1; the
following characterisation may also be shown analogously to Proposition 4.3.
Given a precrossed module pT,G, Bq, its XMod-centre ZXModpT,G, Bq is the
normal precrossed submodule pZXModT,G, Bq of pT,G, Bq where

ZXModT � tt P T | xt, t1y � 1 � xt1, ty for all t1 P T u.

Proposition 4.6. For an extension pf1, f0q : pT,G, Bq Ñ pT 1, G1, B1q of pre-
crossed modules, the following conditions are equivalent:

(1) pf1, f0q is central with respect to XMod;
(2) xpRrf1s,Rrf0s, B � Bq, pRrf1s,Rrf0s, B � Bqy � xpT,G, Bq, pT,G, Bqy;
(3) xRrf1s,Rrf1sy � xT, T y;
(4) Krf1s ¤ ZXModT ;
(5) Krpf1, f0qs ¤ ZXModpT,G, Bq.

We now focus on the further adjunction to AbXMod. Given a precrossed mod-
ule pT,G, Bq, the commutator rG, T s is the normal subgroup of T generated by
the elements gtt�1 for g P G and t P T . The left adjoint ab : XModÑ AbXMod
takes a crossed module pT,G, Bq and maps it to

abpT,G, Bq � pT {rG, T s, G{rG,Gs, Bq,

where B is the induced group homomorphism. The functor

ab�p�qPeiff : PXModÑ AbXMod

maps a precrossed module pT,G, Bq to pT {rT, T srG, T s, G{rG,Gs, Bq.
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As shown in [7], an extension of crossed modules is central with respect
to AbXMod exactly when it is central in the sense of [22]. An extension of
precrossed modules is central with respect to AbXMod if and only if it is central
in the sense of [1, 2]. In this case, the notions of perfect object obtained are
classical. The article [1] gives several non-trivial examples of universal central
extensions of (pre)crossed modules, relative to AbXMod.
The homology crossed module H2ppT,G, Bq, ab�p�qPeiffq was studied in [3],

while H2ppT,G, Bq, abq was considered in [9]. For a precrossed module pT,G, Bq,
the relative H2ppT,G, Bq, p�qPeiffq was characterised in [15]. If we interpret
Proposition 3.3 in this situation then we regain [1, Theorem 5].

4.7. A counterexample for Proposition 2.22 and Theorem 2.23. The
following example was offered to us by George Peschke. It describes a univer-
sal b-central extension u : U Ñ A which does not have H2pU, bq trivial—and
indeed one of the assumptions of Theorem 2.23 is violated, as the Birkhoff sub-
category B of the (semi-)abelian category A we shall consider is strictly smaller
than AbA.

Example 4.8. Let C be the infinite cyclic group (with its generator written
c P C) and R � ZrCs the integral group-ring over C. We take A to be the
(abelian) category RMod of modules over R, so that AbA � A. We consider its
full subcategory B of all R-modules with a trivial C-action; it is clearly Birkhoff
in A, and its reflector is determined by tensoring with the trivial R-module Z,
so that bM � ZbRM for any R-module M .
Now consider a prime number p � 2 and let M be the R-module

�
k¥1Mk,

where Mk for k ¥ 1 is the abelian group Zpk � Z{pkZ equipped with the
C-action

c �m � p1� pq �m.

Note that a natural inclusion of R-modules Mk ÑMk�1 is given by

pl � pkZq ÞÑ pp � l � pk�1
Zq.

Then it may be checked that H2pM, bq � H2pC,Mq � Zp � 0, while M is
b-perfect, and

u : M ÑM : m ÞÑ p �m

is a universal b-central extension.
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