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Abstract: In this note we study the limit as p(x) →∞ of solutions to −∆p(x)u = 0
in a domain Ω, with Dirichlet boundary conditions. Our approach consists in con-
sidering sequences of variable exponents converging uniformly to +∞ and analyzing
how the corresponding solutions of the problem converge and what equation is sat-
isfied by the limit.
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1. Introduction
Our goal in this note is to look for the limit, as the exponent p(x) → ∞,

of solutions to {
−∆p(x)u(x) = 0, x ∈ Ω ⊂ RN ,

u(x) = f(x), x ∈ ∂Ω,
(1.1)

where ∆p(x)u(x) := div
(
|∇u(x)|p(x)−2∇u(x)

)
is the p(x)-Laplacian operator

with a variable exponent p(x).
When p is constant in Ω, the limit of (1.1) as p→∞ has been extensively

studied in the literature (see [4] and the survey [2]) and leads naturally to
the infinity Laplacian

∆∞u :=
(
D2u∇u

)
· ∇u =

N∑
i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xixj
.

Infinity harmonic functions (solutions to −∆∞u = 0) solve the optimal Lip-
schitz extension problem (see [1] and the survey paper [2]) and find applica-
tions in optimal transportation, image processing and tug-of-war games (see,
e.g., [8], [9], [5], [13], [14] and the references therein). On the other hand,
problems related to PDEs involving variable exponents became popular a few
years ago due to applications in elasticity and the modeling of electrorheolog-
ical fluids. Meanwhile, the underlying functional analytical tools have been
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extensively developed (cf. [10] and [7]) and new applications to image pro-
cessing have kept the subject as the focus of an intensive research activity.
Although a natural extension of the theory, the problem addressed here is a
follow-up from a recent paper of the authors [12], where the case of a variable
exponent that equals infinity in a subdomain of Ω is treated. Closely related
to this work is [11], where the authors prove existence and uniqueness (via
a comparison principle), as well as the validity of a Harnack inequality, for
solutions of our limit problem.

The approach in this paper is based on considering sequences pn(x) of
variable exponents converging uniformly to +∞ and analyzing how the cor-
responding solutions of the problem converge and what equation is satisfied
by the limit. Before introducing our main result, let us state the assumptions
on the data that will be assumed from now on.

• Ω ⊂ RN is a bounded smooth domain.

• f is a Lipschitz continuous function with Lipschitz constant less or
equal than one.

• pn(x) is a sequence of C1 functions in Ω such that

pn(x) → +∞, uniformly in Ω; (1.2)

pn(x) ≥ α, for all x ∈ Ω; (1.3)

∇ ln pn(x) −→ ξ(x), uniformly in Ω, (1.4)

for a constant α > N and a function ξ ∈ C(Ω).

We now present some examples of possible sequences pn(x). In each case,
some smoothness assumptions have to be added, as well as conditions that
guarantee that (1.3) holds. We are primarily interested in understanding
(1.4) and hope the examples shed some light on the meaning of this assump-
tion.

(1) pn(x) = n; we have ξ = 0.

(2) pn(x) = p(x) + n; we get again ξ = 0.
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(3) pn(x) = np(x); we get a nontrivial vector field

ξ(x) = ∇(ln(p(x))).

This example is what motivates the study of the limit equation in [11].

(4) pn(x) = nap(x/n) [scaling in x]; in this case, we have

∇(ln pn(x)) =
∇p
p

(x/n)
1

n
−→ 0

and so ξ = 0. This also happens for pn(x) = n+ p(x/n).

(5) pn(x) = nap(nx); we get

∇(ln pn(x)) = n
∇p
p

(nx),

which does not have a limit as n → ∞. The same happens with
pn(x) = n+ p(nx), for which

∇(ln pn(x)) =
n∇p(nx)
n+ p(nx)

that does not have a uniform limit (although it is bounded).

(6) We can modify the previous example to get a nontrivial limit. Assume
that q(x) is a function of the angular variable and that 0 6∈ Ω; then
consider pn(x) = n+ q(nx) to obtain

∇(ln pn(x)) = n
∇q(θ)

n+ q(nx)
−→ ∇q(θ).

(7) Finally, we can combine examples (3) and (6). Let pn(x) = np(x) +
q(nx), with q and Ω as in (6). We get

∇(ln pn(x)) =
n∇p(x) + n∇q(θ)
np(x) + q(nx)

−→ ∇p(x) +∇q(θ)
p(x)

.

The following is the main result of this paper. We prove, under the above
assumptions, that the limit of solutions of (1.1) with p(x) = pn(x) exists
and can be characterized as the unique viscosity solution of a PDE that
involves the ∞−Laplacian and an extra term in which the vector field ξ(x) =
limn∇ ln pn(x) appears.
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Theorem 1.1. Let un be the solution of (1.1) with p(x) = pn(x). Then

un −→ u, uniformly in Ω, (1.5)

where u is the unique viscosity solution of the problem{
−∆∞u− |∇u|2 ln |∇u| 〈ξ,∇u〉 = 0, in Ω,

u = f, on ∂Ω.
(1.6)

Remark 1.2. Uniqueness of solutions to the limit problem (1.6) is a conse-
quence of the results of [11]. See also [3].

Remark 1.3. Notice that we are taking F (0) = 0 for F (s) = s2 ln(s), hence
(1.6) makes sense when evaluated at a test function with vanishing gradient.

Remark 1.4. In dimension one, we get as the limit problem{
u′′(x) + ln |u′(x)| 〈ξ(x), u′(x)〉 = 0, x ∈ (0, 1),

u(0) = f(0), u(1) = f(1),
(1.7)

which is uniquely and explicitly solvable. We just have to observe that we can
assume, without loss of generality, that f(0) = 0 (just consider v = u−f(0))
and f(1) > 0. Then we solve the equation as follows:

u′′(x) + ln |u′(x)| 〈ξ(x), u′(x)〉 = 0, x ∈ (0, 1)

is equivalent to ∫ t

0

u′′(x)

ln |u′(x)|u′(x)
dx = −

∫ t

0
ξ(x)dx,

that is, ∫ u′(t)

C

1

ln(z)z
dz = −

∫ t

0
ξ(x)dx = −H(t).

This gives
ln(ln(u′(t))) = (C −H(t))

and thus

u(x) =

∫ x

0
exp(exp(C −H(t)))dt.

Finally, we only have to choose C such that

f(1) =

∫ 1

0
exp(exp(C −H(t)))dt.
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The rest of the paper is organized as follows: in Section 2 we collect some
properties of the approximate problems and in Section 3 we prove our main
result, Theorem 1.1.

2. The approximate problem
We first consider the problem corresponding to (1.1) when p(x) is replaced

by pn(x). For convenience, we refer to this problem as (1.1)n.

Lemma 2.1. There exists a unique weak solution un to (1.1)n, which is the
unique minimizer of the functional

Fn(u) =

∫
Ω

|∇u|pn(x)

pn(x)
dx (2.1)

in the set

Sn =
{
u ∈ W 1,pn(·)(Ω) : u|∂Ω = f

}
. (2.2)

Proof : Functions in the variable exponent Sobolev space W 1,pn(·)(Ω) are nec-
essarily continuous thanks to the assumption pn(x) ≥ α > N . Indeed, the
continuous embedding in

W 1,pn(·)(Ω) ↪→ W 1,α(Ω) ⊂ C
(
Ω

)
(2.3)

follows from [10, Theorem 2.8 and (3.2)].
We can then take the boundary condition u|∂Ω = f in the classical sense

(recall that f is assumed to be Lipschitz) and the unique solvability is stan-
dard in view of the regularity of the variable exponent.

It is also standard that the minimizer of Fn in Sn is the unique weak solution
of (1.1)n, i.e., un = f on ∂Ω and∫

Ω
|∇un|pn(x)−2∇un · ∇ϕdx = 0, ∀ ϕ ∈ C∞

0 (Ω). (2.4)

Let us now recall the definition of viscosity solution (cf. [6]) for a problem
like (1.1) or (1.6). Assume we are given a continuous functions

F : Ω× RN × SN×N → R.

Definition 2.2. Consider the problem

F (x,∇u,D2u) = 0 in Ω (2.5)
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with a boundary condition

u = f on ∂Ω. (2.6)

A lower semi-continuous function u is a viscosity supersolution of (2.5)–(2.6)
if u ≥ f on ∂Ω and for every φ ∈ C2(Ω) such that u−φ has a strict minimum
at the point x0 ∈ Ω, with u(x0) = φ(x0), we have

F (x0,∇φ(x0), D
2φ(x0)) ≥ 0.

An upper semi-continuous function u is a viscosity subsolution of (2.5)–(2.6)
if u ≤ f on ∂Ω and for every ψ ∈ C2(Ω) such that u−ψ has a strict maximum
at the point x0 ∈ Ω, with u(x0) = ψ(x0), we have

F (x0,∇ψ(x0), D
2ψ(x0)) ≤ 0.

Finally, u is a viscosity solution if it is both a viscosity supersolution and a
viscosity subsolution.

In the sequel, we will use the notation as in the definition: φ will always
stand for a test function touching the graph of u from below and ψ for a test
function touching the graph of u from above.

Proposition 2.3. Let un be a continuous weak solution of (1.1)n. Then un

is a viscosity solution of (1.1)n in the sense of Definition 2.2.

Proof : The proof is contained in the proof of Proposition 2.4 in [12]. We
reproduce it here for the sake of completeness and readability.

We omit the subscript n in this proof. Let x0 ∈ Ω and a let φ be a test
function such that u(x0) = φ(x0) and u− φ has a strict minimum at x0. We
want to show that

−∆p(x0)φ(x0) = −|∇φ(x0)|p(x0)−2∆φ(x0)

−(p(x0)− 2)|∇φ(x0)|p(x0)−4∆∞φ(x0)

−|∇φ(x0)|p(x0)−2 ln(|∇φ|)(x0) 〈∇φ(x0),∇p(x0)〉
≥ 0.
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Assume, ad contrarium, that this is not the case; then there exists a radius
r > 0 such that B(x0, r) ⊂ Ω and

−∆p(x)φ(x) = −|∇φ(x)|p(x)−2∆φ(x)

−(p(x)− 2)|∇φ(x)|p(x)−4∆∞φ(x)

−|∇φ(x)|p(x)−2 ln(|∇φ|)(x)〈∇φ(x),∇p(x)〉
< 0,

for every x ∈ B(x0, r). Set

m = inf
|x−x0|=r

(u− φ)(x)

and let Φ(x) = φ(x) +m/2. This function Φ verifies Φ(x0) > u(x0) and

−∆p(x)Φ = −div(|∇Φ|p(x)−2∇Φ) < 0 in B(x0, r). (2.7)

Multiplying (2.7) by (Φ− u)+, which vanishes on the boundary of B(x0, r),
we get ∫

B(x0,r)∩{Φ>u}
|∇Φ|p(x)−2∇Φ · ∇(Φ− u) dx < 0.

On the other hand, taking (Φ − u)+, extended by zero outside B(x0, r), as
test function in the weak formulation of (1.1)n, we obtain∫

B(x0,r)∩{Φ>u}
|∇u|p(x)−2∇u · ∇(Φ− u) dx = 0.

Upon subtraction and using a well know inequality, we conclude

0 >

∫
B(x0,r)∩{Φ>u}

(
|∇Φ|p(x)−2∇Φ− |∇u|p(x)−2∇u

)
· ∇(Φ− u) dx

≥ c

∫
B(x0,r)∩{Φ>u}

|∇Φ−∇u|p(x) dx,

a contradiction.
This proves that u is a viscosity supersolution. The proof that u is a

viscosity subsolution runs as above and we omit the details.

We next obtain uniform estimates (independent of n) for the sequence
(un)n.
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Proposition 2.4. The minimizer of Fn in Sn, un, satisfies

Fn(un) =

∫
Ω

|∇un|pn(x)

pn(x)
dx ≤ |Ω|.

Hence, the sequence (Fn(un))n is uniformly bounded and the sequence (un)n

is uniformly bounded in W 1,α(Ω) and equicontinuous.

Proof : Note that, since f has a Lipschitz constant less or equal than one, the
set

S =
{
u ∈ W 1,∞(Ω) : ‖∇u‖L∞(Ω) ≤ 1 and u|∂Ω = f

}
(2.8)

is nonempty. Recalling (2.2), the definition of Sn, observe that S ⊂ Sn, for
every n. Since un is a minimizer, we have

Fn(un) ≤ Fn(v), ∀ v ∈ S.

Hence, picking an element v ∈ S 6= ∅,

Fn(un) =

∫
Ω

|∇un|pn(x)

pn(x)
dx ≤

∫
Ω

|∇v|pn(x)

pn(x)
dx ≤ |Ω|.

In order to estimate the Sobolev norm, we first use Poincaré inequality and
the boundary data, to obtain

‖un‖W 1,α(Ω) ≤ ‖un − f‖W 1,α
0 (Ω) + ‖f‖W 1,α(Ω)

≤ C ‖∇(un − f)‖Lα(Ω) + ‖f‖W 1,∞(Ω)

≤ C ‖∇un‖Lα(Ω) + (C + 1)‖f‖W 1,∞(Ω).

We proceed, using Hölder inequality and elementary computations, to obtain

‖∇un‖Lα(Ω) =

(∫
Ω
|∇un|α dx

)1/α

≤ |Ω|
1
α−

1

p−n

(∫
Ω
|∇un|p

−
n dx

)1/p−n

≤ (1 + |Ω|)

{
|Ω|+

(
p+

n

∫
Ω

|∇un|pn(x)

pn(x)
dx

)1/p−n
}

≤ (1 + |Ω|)
{
|Ω|+

(
p+

nFn(un)
)1/p−n

}
≤ (1 + |Ω|) |Ω|

{
1 +

(
p+

n

)1/p−n
}
≤ C,
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since we have the bound (
p+

n

)1/p−n ≤ C (2.9)

due to assumption (1.4).
Indeed, one can prove a Harnack inequality for a nonnegative function ψ

such that∇ lnψ is bounded. For completeness, we include here the argument.
Suppose ψ ≥ 0 and |∇ lnψ| ≤ K in Ω, and take arbitrary points x, y ∈ Ω.
By the mean value theorem,

ln
ψ(x)

ψ(y)
≤ |lnψ(x)− lnψ(y)| ≤ K|x− y|

and thus
ψ(x)

ψ(y)
≤ eK|x−y|.

Since Ω is bounded,

ψ(x) ≤ eK|x−y| ψ(y) = C ψ(y).

Applying this reasoning to each pn, (2.9) follows from the uniform bound-
edness of |∇ ln pn|.

We conclude that (un)n is uniformly bounded in W 1,α(Ω) and, recalling the
embedding in (2.3), that it is equicontinuous.

Remark 2.5. If f has Lipschitz constant greater than one then Fn(un) is
unbounded, see [12].

3. Passing to the limit: proof of theorem 1.1
Owing to Proposition 2.4, it follows from Ascoli’s theorem, extracting a

subsequence if necessary, that

un −→ u, uniformly in Ω,

for a certain continuous function u. Since un = f on ∂Ω we have that u = f
on ∂Ω.

To prove that u is a viscosity supersolution of (1.6), let φ be such that
u−φ has a strict local minimum at x0 ∈ Ω, with φ(x0) = u(x0). We want to
prove that

−∆∞φ(x0)− |∇φ(x0)|2 ln |∇φ(x0)|〈ξ(x0),∇φ(x0)〉 ≥ 0. (3.1)

Since un → u uniformly, there is a sequence (xn)n such that xn → x0 and
un − φ has a local minimum at xn. As un is a viscosity solution of (1.1)n (cf.
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Proposition 2.3), we have

− |∇φ(xn)|2∆φ(xn)

pn(xn)− 2
−∆∞φ(xn)

−|∇φ(xn)|2 ln |∇φ(xn)|
〈
∇φ(xn),

∇pn(x)

pn(xn)− 2

〉
≥ 0.

Using the fact that xn → x0 and the assumptions (1.2) and (1.4), we obtain

|∇φ(xn)|2∆φ(xn)

pn(xn)− 2
−→ 0,

∆∞φ(xn) −→ ∆∞φ(x0),

|∇φ(xn)|2 ln(|∇φ(xn)|) −→ |∇φ(x0)|2 ln(|∇φ(x0)|),〈
∇φ(xn),

∇pn(x)

pn(xn)− 2

〉
−→ 〈∇φ(x0), ξ(x0)〉

and (3.1) follows.
This proves that u is a viscosity supersolution; the fact that it is also a

viscosity subsolution follows analogously. �
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