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ON THE STRUCTURE OF GABOR AND SUPER GABOR
SPACES

LUIS DANIEL ABREU

Abstract: We study the structure of Gabor and super Gabor spaces as subspaces
of L2(R2d) and specialize the results to the case where the spaces are generated by
vectors of Hermite functions. We then show that such spaces are isometrically iso-
morphic to Fock spaces of polyanalytic functions and obtain structure theorems and
orthogonal projections for both spaces at once. In particular we recover a structure
result obtained by N. Vasilevskii using complex analysis and special functions. In
contrast, our methods use only time-frequency analysis, exploring a link between
time-frequency analysis and the theory of polyanalytic functions, provided by the
polyanalytic part of the Gabor transform with a Hermite window, the polyanalytic
Bargmann transform.
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1. Introduction

In [1] we have proved sharp results concerning sampling and interpolation
in polyanalytic Fock spaces, by relating the problem to vector valued (super)
Gabor frames and Riesz sequences with Hermite windows and applying du-
ality principles from time-frequency analysis. Motivated by the connection
between Gabor analysis and complex analysis of polyanalytic functions, we
have also introduced a vector valued version of the Gabor transform, a map

Vg : L2(Rd, Cn) → L2(R2d),

which provides the continuous counterpart of the theory of super Gabor
frames presented in [3] and developed in the case of Hermite functions in [8],
[9] and [6]. Such transform reduces to the Gabor transform when n = 1.

In this paper we will study the structure of the subspaces of L2(R2d) consti-
tuted by the images of H = L2(Rd, Cn) under Vg (Gabor super spaces). We
will find analogues of recent results obtained by Hutnik [10] in the context
of the scalar wavelet transform. Our first result provides a unitary mapping

U : L2(R2d) → H⊗H,
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such that

U (Vgf) = 〈f , g〉H .

Then we will compute the reproducing kernel of the Gabor superspaces by
relating them to the scalar case.

By specializing our results to the case where the window g is constituted by
the first n−1 Hermite functions, we obtain explicit results for the reproducing
kernel (here our approach diverges from that in [10], [11], since we use more
direct methods).

Finally, we show that the multiplier

M(z) = eπ |z|2

2 −iπxω

provides an isometric isomorphism between the Gabor spaces with Hermite
windows and the Fock spaces of polyanalytic functions, using some of the
results in [1]. This provides a method for the study of polyanalytic Fock
spaces by means of time-frequency analysis techniques. Using this method,
we recover a result of Vasilevskii [13] concerning the structure of polyanalytic
Fock spaces. Moreover, we obtain an explicit formula for the reproducing
kernel of the polyanalytic Fock space from where growth estimates can be
derived.

The organization of the paper is as follows. We have a background sec-
tion with the essential tools: the Gabor transform, the Bargmann transform
and the Hermite functions. Then, third section is devoted to the study of
Gabor and super Gabor spaces with general windows. We then specialize
the windows to be Hermite functions and we find a bit more of structure,
namely we are able to compute an explicit form of the reproducing kernel. In
the last section the polyanalytic Fock spaces are introduced. Combining the
results of the previous sections with some results obtained in [1], we obtain
the results for the polyanalytic Fock spaces.

2. Background

2.1. The Gabor transform. Fix a function g 6= 0. Then the Gabor (short-
time) Fourier transform of a function f with respect to the ”window” g is
defined, for every x, ω ∈ Rd as

Vgf(x, ω) = 2
d
4

∫

Rd

f(t)g(t− x)e−2πitωdt. (1)
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The Gabor transform provides an isometry

Vg : L2(Rd) → L2(R2d),

that is, if f, g ∈ L2(Rd), then

‖Vgf‖L2(R2d) = ‖f‖L2(Rd) ‖g‖L2(Rd) . (2)

The following relations are usually called the orthogonal relations for the

short-time Fourier transform. Let f1, f2, g1, g2 ∈ L2(Rd). Then Vg1
f1, Vg2

f2 ∈
L2(R2d) and

〈Vg1
f1, Vg2

f2〉L2(R2d) = 〈f1, f2〉L2(Rd) 〈g1, g2〉L2(Rd). (3)

For every x, ω ∈ R
d define the operators translation by x and modulation by

ω as

Txf(t) = f(t − x),

Mωf(t) = e2πiωtf(t).

Using these operators we can write (1) as

Vgf(x, ω) = 〈f, MωTxg〉L2(Rd) .

Using the Fourier transform

Ff(ω) =

∫

Rd

f(x)e−2πixωdx,

the operators translation by x and modulation by ω can be related in the
following way:

Txf = F−1 (M−x(Ff)) . (4)

2.2. The Bargmann transform. Here we will use multi-index notation,
z = (z1, ...zd), n = (n1,...nd) and |n| = n1 + ...+nd. The Bargmann transform
is defined by

(Bf)(z) = 2
d
4

∫

Rd

f(t)e2πtz−πz2−π
2 t2dt

It is an isomorphism
B : L2(Rd) → F(Cd)

where F(Cd) stands for the Bargmann-Fock space of analytic functions in
C

d with the norm

‖F‖2

L2(Cd,e−π|z|2)
=

∫

Cd

|F (z)|2 e−π|z|2dz. (5)
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The collection of the monomials of the form

en(z) =

(

π|n|

n!

)

1
2

zn =

d
∏

j=1

πnj

√

nj!
znj , n = (n1,...nd), (6)

with ni ≥ 0, constitutes an orthonormal basis of F(Cd). The reproducing
kernel of F(Cd) is the function

K(0)(z, w) = eπwz. (7)

A simple calculation shows that the Bargmann transform is related to the
Gabor transform with the Gaussian window ϕ(x) = 2

d
4e−πx2

by the formula

Vϕf(x,−ω) = eiπxωe−π |z|2

2 (Bf)(z), (8)

where z = x + iω.

2.3. The Hermite functions. The Hermite functions can be defined via
the so called Rodrigues Formula

hn(t) = cne
πt2
(

d

dt

)n
(

e−2πt2
)

.

where cn is choosen in such a way they can provide an orthonormal basis
of L2(R). Now let n = (n1,...nd) and x ∈ Rd. The d-dimensional Hermite

functions are

Φn(x) =
n
∏

j=1

hnj
(x).

They form a complete orthonormal system of L2(Rd).
A very important property of the Hermite functions is that they are mapped

into a basis of the Bargmann-Fock space via the Bargmann transform:

(BΦn)(z) = en(z). (9)

3. Gabor spaces and Gabor super spaces

3.1. Gabor spaces. Let Gg denote the subspace of L2(R2d) which is the
image of L2(Rd) under the Gabor transform with the window g,

Gg =
{

Vgf : f ∈ L2(Rd)
}

.
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The spaces Gg are called ”model spaces” in [2]. It is well known (see [5]) that
Gabor spaces have a reproducing kernel given by

k(x, ω, u, η) = 〈MωTxg, MηTug〉L2(Rd) (10)

For instance, if we consider the Gaussian window ϕ(x) = 2
d
4e−πx2

, a calcula-
tion (see [7, Lemma 1.5.2]) shows that the reproducing kernel of Gg is

k0(x, ω, u, η) = eπi(u+x)(ω−η)−π(u−x)2−π(η−ω)2

2 .

Using the notation z = x + iω and w = u + iη, this reproducing kernel can
be related with the reproducing kernel (7) of the Fock space in the following
way:

k0(z, w) = e−iπ(uη−xω)−π |z|2+|w|2

2 eπwz. (11)

In the remaining of the paper we will use repeatedly the following fact, valid
in any space H with a reproducing kernel K(z, w): if we can estimate the
diagonal function K(w, w), we automatically have estimates for the growth
of an arbitrary function F ∈ H, since

|F | = |〈F, K(., w)〉H | ≤ ‖F‖H ‖K(., w)‖H = ‖F‖H

√

K(w, w). (12)

As a simple example, observe that k(0)(z, z) = 1. As a result, elements in
Gg satisfy |F | ≤ ‖F‖Gg

.

3.2. Super Gabor spaces. Consider the Hilbert space H = L2(Rd, Cn),
consisting of vector-valued functions f = (f0, ..., fn−1) with the inner product

〈f , g〉H =
∑

0≤k≤n−1

〈fk, gk〉L2(Rd) . (13)

Observe that

H⊗H =L2(R2d).

The super Gabor transform of a function f with respect to the ”window”
g = (g0, ...gn−1) such that

〈gi, gj〉L2(Rd) = δi,j, (14)

is defined, for every x, ω ∈ Rd, as

Vgf(x, ω) = 〈f ,MωTxg〉H . (15)
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That is to say,

Vgf(x, ω) =
∑

0≤k≤n−1

Vgk
fk(x, ω).

This defines a map
Vgf :H →L2(R2d).

Since the vector g is extracted from an orthonormal sequence, most of the
properties of the scalar Gabor transform are kept. In particular, the isometric
property and orthogonality relations, extend to the vector valued case [1].

Proposition 1. Let f1, f2,∈ H. Then Vgf1,Vgf2 ∈ L2(R2d) and

〈Vgf1,Vgf2〉L2(R2d) = 〈f1, f2〉H . (16)

Therefore, Vgf is an isometry between Hilbert spaces.

Proof : First observe that, from (3) and (14),
〈

Vgk
fk, Vgj

fj

〉

L2(R2d)
= 〈fk, fj〉L2(Rd) 〈gk, gj〉L2(Rd) = δi,j. (17)

Then, using (14) and (3),

〈Vgf1,Vgf2〉L2(R2d) =
∑

0≤k≤n−1

〈Vgk
fk,Vgk

fk〉L2(Rd)

=
∑

0≤k≤n−1

〈f1,k, f2,k〉L2(R2d)

= 〈f1, f2〉H .

Of course,
‖Vgf‖L2(R2d) = ‖f‖H .

Now let Gg stand for the subspace of L2(R2d) constituted by the image of
H under the vector valued Gabor transform Vgf . We will call this the Gabor

super space associated with the window g:

Gg = {Vgf : f ∈ H} .

Since
Vgf =

∑

0≤k≤n−1

Vgk
fk

and
〈

Vgk
fk, Vgj

fj

〉

L2(R2d)
= δi,j.
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we know that every F ∈ Gg can be written in a unique way in the form

F = F0 + ... + Fn−1, Fk ∈ Ggk
(18)

That is to say,

Gg = Gg0 ⊕ ... ⊕ Ggn−1. (19)

In the next proposition, as well as in many other places along the text, we
identify (x, ω) with z = x + iω.

Proposition 2. The space Gg is a Hilbert space with reproducing kernel

given by

k(z, w) = 〈MωTxg, MηTug〉H (20)

Proof : Let F ∈ Gg. There exists f ∈ L2(R2d) such that F = Vgf . By
definition, k(z, .) = Vgf(MωTxg). Thus, using (16),

〈F,k(z, .)〉L2(R2d) = 〈Vgf ,Vgf(MωTxg)〉L2(R2d)

= 〈f ,MωTxg〉H
= Vgf(z)

= F(z).

3.3. Structure of Gabor and super Gabor spaces. In this section we
provide an operator description of the Gabor and super Gabor spaces, show-
ing, in the sense of [13],[14], [10], [11], how much room do such spaces occupy
inside L2(R2d).

For convenience write L2(R2d) = L2(Rd)⊗L2(Rd). Then define operators
U1 and U2,

U1,2 : L2(Rd)⊗L2(Rd) → L2(Rd)⊗L2(Rd)

with different actions on each variable in Rd: U1(F )(x, ω) = (F−1⊗I)(F )(x, ω)
and U2(F )(x, ω) = F (−x + ω, ω). Both operators are clearly unitary. In the
proof of the next result we will use the involution operator ∗ defined as

g∗(x) = g(−x). (21)

The next proposition is the analogue of Theorem 2.1 in [10]. It is essentially
the inverse of the representation of the Gabor transform given in lemma 3.1.2
in [7].
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Proposition 3. The operator U = U2U1 gives an isometrical isomorphism

of the space L2(R2d) into itself, under which the space of Gabor transforms

Gg is mapped onto L2(Rd)⊗L, where L is the one dimensional subspace of

L2(Rd) generated by g.

Proof : The operator U = U2U1 inherits the unitarity and linearity properties
from U2 and U1. Using the notation (21) for the involution operator, we can
write the Gabor transform (1) as the convolution product

Vgf(x, ω) = (Ff ∗ M−x(Fg)∗)(ω). (22)

Now, apply the operator U1 to a general element of Gg written in the form
(22). A calculation shows that F−1 ((Fg)∗) = g. Combining this with the
identity (4) and taking into account that F−1

[

L2(Rd)
]

= L2(Rd), we see
immediately that the image of the space Gg under U1 is the set of all functions

in L2(R2d) that can be written in the form F (x, ω) = f(ω)g(ω − x). Applying
U2, we see that the image of the space Gg under U is constituted by the

functions of the form F (x, ω) = f(ω)g(x).

Observe that
U [Vgf(x, ω)] = f(ω)g(x). (23)

The result for super Gabor spaces follows now easily.

Theorem 1. The operator U = U2U1 gives an isometrical isomorphism of

the space L2(R2d) into itself, under which the space of super Gabor transforms

Gg is mapped onto H⊗L, where L is the subspace of H generated by g.

Proof : From the linearity of U and (23),

U [Vgf(x, ω)] =
∑

0≤k≤n−1

U [Vgk
fk(x, ω)]

=
∑

0≤k≤n−1

fk(ω)gk(x).

= 〈f , g〉H .

4. Gabor and super Gabor spaces with Hermite windows

4.1. Structure. We will use the following notation for Gabor spaces with
Hermite windows.

Gn =
{

VΦn
f(x, ω) : f ∈ L2(Rd)

}

. (24)
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We can apply Proposition 3 to the spaces Gn(Rd).

Corollary 1. The operator U gives an isometrical isomorphism of the space

L2(R2d) into itself, under which the Gabor spaces with Hermite window Gn(Rd)
is mapped onto L2(Rd)⊗Ln, where Ln is the one dimensional subspace of

L2(Rd) generated by Φn(x).

Therefore, the image of the space Gn under U is constituted by the functions
of the form

F (x, ω) = f(ω)Φn(x),

where f ∈ L2(Rd).
The vector valued version is

Corollary 2. The operator U gives an isometrical isomorphism of the space

L2(R2d) into itself, under which the Gabor spaces with Hermite window Gn

is mapped onto H⊗Ln, where Ln is the subspace of H generated by Φn−1 =
(Φ0,..., Φn−1).

4.2. Reproducing kernel. Define the operator βζ on F(Cd) by

βζF (z) = eiπxω−π |ζ|2

2 eπζzF (z − ζ).

The operator βζ satisfies the intertwining property

βζB = BMωTx, z = x + iω. (25)

Theorem 2. The reproducing kernel of Gn is given by

kn(z, w) =
1

n!
eiπ(xω−uη)+π

2 (|w|2−|z|2)
(

d

dw

)n
[

eπzw−π|w|2(w − z)n
]

(26)

Proof : Using (10) and (25), we obtain

kn(z, w) = 〈MωTxΦn(x), MηTuΦn(x)〉L2(Rd)

= 〈βzBΦn(x), βwBΦn(x)〉F(Cd)

=
1

n!
πneiπ(xω−uη)−π

2 (|z|2+|w|2) 〈eπzζ(ζ − z)n, eπwζ(ζ − w)n
〉

F(Cd)
.

Now, diferentiating the reproducing kernel equation F (w) =
〈

F (ζ), eπwζ
〉

F(C)
,

gives
〈

F (ζ), ζn−keπwζ
〉

F(Cd)
= πk−nF (n−k)(w). (27)



10 LUÍS DANIEL ABREU

Therefore,

kn(z, w) =
1

n!
eiπ(xω−uη)−π

2 (|z|2+|w|2)
∑

0≤k≤n−1

(

n

k

)

(−w)k
〈

eπzζ(ζ − z)n, ζn−keπwζ
〉

=
1

n!
eiπ(xω−uη)−π

2 (|z|2+|w|2)
∑

0≤k≤n−1

(

n

k

)

(−wπ)k

(

d

dw

)n−k
[

eπzw(w − z)n
]

=
1

n!
eiπ(xω−uη)−π

2 (|z|2+|w|2)eπ|w|2
(

d

dw

)n
[

e−π|w|2eπzw(w − z)n
]

.

and the result follows.

Corollary 3. The functions in Gn satisfy the growth estimate

|f | ≤ 1√
n!

‖f‖G(n)(Rd)

Proof : From the representation of the reproducing kernel (26)

‖kn(., z)‖G(n) =
√

kn(z, z) =
1√
n!

.

and use (12).

Corollary 4. The orthogonal projection of L2(R2) over the space Gn is given

by the operator

(pnF )(w) =

∫

L2(R2)

f(z)kn(w, z)dz

Proof : This follows at once from the fact that kn(w, z) is the reproducing
kernel of Gn.

Remark 1. There are other ways of computing the reproducing kernel, for

instance, in the form of an double infinite sum, by using the series develop-

ment of the Hermite functions. We choose the above form because it becomes

easy to evaluate the diagonal required in corollary 5.

From (20) we see that the reproducing kernel of Gn is given as

kn(z, w) =
∑

0≤k≤n−1

eiπ(xω−uη)+π
2 (|w|2−|z|2)

k!

(

d

dw

)k
[

eπzw−π|w|2(w − z)k
]
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5. Polyanalytic Fock spaces

5.1. Definitions. We will use multi-index notation in such a way that there
will be little difference between the one and the d-dimensional case.

The Fock space of polyanalytic functions [4], Fn(Cd), consists on all func-
tions satisfying the equation

(

d

dz

)n

F (z) = 0, (28)

and such that
∫

Cd

|F (z)|2 e−π|z|2dz < ∞. (29)

Functions satisfying (28) are known as polyanalytic functions of order n.
Since (28) generalizes the Cauchy-Riemann equation

d

dz
F (z) = 0,

then the space Fn(Cd) is a generalization of the Bargmann-Fock space of
analytic functions, F(C) = F1(Cd), with the same inner product,

〈F, G〉
L2(Cd,e−π|z|2)

=

∫

Cd

F (z)G(z)e−π|z|2dz.

Observe also that this implies

〈F, G〉Fn(Cd) =

〈

eπ |z|2

2 F, eπ |z|2

2 G

〉

L2(R2d)

.

We will need some results from [1].
Proposition A. The set of functions {ek,m}0≤k≤n−1;...m≥0, where

ek,m(z) = (π|k|k!)−
1
2eπ|z|2

(

d

dz

)k
[

e−π|z|2em(z)
]

, (30)

is an orthogonal basis of Fn(Cd).

Definition 1. The true polyanalytic Fock space of order n is defined as

Fn(Cd) = Span
[

{en,m(z)}m≥0.

]

. (31)

The next proposition connects Gabor transforms with Hermite windows
with polyanalytic Bargmann transforms. For the proof see [1].
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Proposition B. The true polyanalytic Bargmann transform, defined by

the formula

(Bnf)(z) = (π|n|n!)−
1
2eπ|z|2

(

d

dz

)n
[

e−π|z|2F (z)
]

, (32)

where F (z) = (Bf)(z) is a polyanalytic function of order n + 1 on C
d. This

transform is an isometric isomorphism

Bn : L2(Rd) → Fn(Cd),

and if we write z = x + iω,it is related to the Gabor transform with Hermite

windows as follows:

VΦn
f(x, ω) = eiπxω−π |z|2

2 (Bnf)(z). (33)

5.2. The multiplier isomorphism. Consider the operator E such that

E : f → Mf ,

where

M(z) = eπ |z|2

2 −iπxω,

with z = x + iω.

Proposition 4. E is an isometric isomorphism,

E : Gn(Cd) → Fn(Cd),

and

E : Gn(Cd) → Fn(Cd).

Proof : Clearly, E is isometric. From (9) and (30) one can easily see that

ek,m(z) = (BkΦm)(z). (34)

Since {Φm}m≥0 is a basis of L2(Rd), then {VΦn
Φm}m≥0 is a basis of Gn. Since

E (VΦn
Φm) = eπ |z|2

2 −iπxωVΦn
Φm = Bn (Φm) = en,m(z),

then E is a unitary isomorphism Gn → Fn, since {en,m(z)}m≥0.is an orthogo-

nal basis of Fn(Cd). Now, applying (19) to Gn, we have the decomposition:

Gn = G0 ⊕ ... ⊕ Gn−1.
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On the other side, from proposition A and the definition of Fn(Cd), it is clear
that

Fn(Cd) = F0(Cd) ⊕ ... ⊕Fn−1(Cd).

Therefore, we also have an unitary isomorphism Gn → Fn(Cd).

This proposition allows the transference of results from Gn to Fn(Cd) and
from Gn to Fn(Cd).

5.3. Structure. Now, the operator U ∗ = E−1U gives an isometrical isomor-
phism

U ∗ : L2(Cd, e−π|z|2) → L2(Cd, e−π|z|2).

Thus we recover the results of theorem 2.1 and corollary 2.2 in [13].

Theorem 3. The operator U ∗ = E−1U maps the true polyanalytic Fock space

Fn(Cd) onto L2(Rd)⊗L, where L is the one dimensional subspace of L2(Rd)

generated by Φn(x).

Proof : Since E is unitary, given a function F ∈ Fn(Cd), we know that
E−1F ∈ Gn. By corollary 1, we know that (UE−1F )(x, w) = f(w)Φm(x)
and the result follows.

In a similar way, the next theorem follows from corollary 2.

Theorem 4. The polyanalytic Fock space Fn(Cd) is mapped by U ∗ onto

L2(Rd)⊗L, where L is the subspace of L2(Rd) generated by Φn−1 = (Φ0,..., Φn−1).

5.4. The reproducing kernel. As a further application of the multiplier
isomorphism E, we show that the space Fn(Cd) has a reproducing kernel
and compute it explicitly. We first relate it to the reproducing kernel of the
Gabor spaces with Hermite windows, providing a generalization of (11) (the
case n = 0).

Proposition 5. Let kn(z, w) be the reproducing kernel of the space Gn. The

space Fn(C) is a Hilbert space with a reproducing kernel, Kn(z, w) satisfying

Kn(z, w) = eiπ(uη−xω)+π |z|2+|w|2

2 kn(z, w). (35)

Proof : Given F ∈ Fn(Cd), there exists f ∈ Gn such that Ef = F , that is,

f(z) = eiπxω−π |z|2

2 F (z). Since Gn is a Hilbert space with reproducing kernel
kn(z, w), the reproducing property gives

f(z) = 〈f(w), kn(z, w)〉Gn ,
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or

eiπxω−π |z|2

2 F (z) =

〈

eiπuη−π |w|2

2 F (w), kn(z, w)

〉

Gn

=

〈

eiπuη+π |w|2

2 F (w), kn(z, w)

〉

Fn(Cd)

.

Therefore,

F (z) =

〈

F (w), eiπ(uη−xω)+π |z|2+|w|2

2 kn(z, w)

〉

Fn(Cd)

= 〈F (w), Kn(z, w)〉Fn(Cd)

and Kn(z, w) is the reproducing kernel of Fn(Cd).

Combining (35) and (26) gives:

Corollary 5. The reproducing kernel of Fn(Cd) is given by

Kn(z, w) =
1

n!
eπ|w|2

(

d

dw

)n
[

eπzw−π|w|2(w − z)n
]

Again, from the reproducing kernel we obtain an estimate for the modulus
of functions in Fn(Cd).

Corollary 6. The functions in Fn(Cd) satisfy

|F | ≤ 1

n!
‖F‖Fn(Cd) e

π
2 |w|2.

Proof : Since the norm of the reproducing kernel is

‖Kn‖Fn(Cd) =
√

Kn(z, z) =
e

π
2 |w|2

n!
.

the estimate follows at once from (12)

Another immediate consequence of the reproducing kernel is the orthogonal
projection over the true polyanalytic Fock spaces.

Corollary 7. The orthogonal projection of L2(Cd, e−π|z|2) over the space

Fn(Cd) is given by the operator

(P nF )(w) =

∫

Cd

F (z)Kn(w, z)e−π|z|2dz.

Proof : This follows immediately from the fact that Kn(w, z) is the reproduc-
ing kernel of Fn(Cd).
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We also see that the reproducing kernel of Gn is given as

Kn(z, w) =
∑

0≤k≤n−1

eπ|w|2

k!

(

d

dw

)k
[

eπzw−π|w|2(w − z)k
]

and that functions in Gn satisfy

|F| ≤
(

∑

0≤k≤n−1

1

k!

)1/2

‖F‖Fn(Cd) e
π
2 |w|2.

Remark 2. The corresponding estimates for the growth of functions in poly-

analytic Bergman spaces in the unit disk have been obtained in [12], using

direct computations and combinatorial arguments.

Remark 3. An alternative form of the reproducing kernel can be obtained

from the fact that, since {en,m(z)}m=0,1,... is a basis of Fn(Cd),

Kn(z, w) =
∞
∑

m=0

en,m(z)en,m(w).

This gives the curious identity
(

d

dw

)n
[

eπzw−π|w|2(w − z)n
]

=
∞
∑

m=0

eπ|z|2

πn

dn

dzn

[

e−π|z|2em(z)
] dn

dwn

[

e−π|w|2em(z)
]

.
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