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Abstract: A one dimensional fractional diffusion model is considered, where the
usual second-order derivative gives place to a fractional derivative of order α, with
1 < α ≤ 2. We consider the Caputo derivative as the space derivative, which is a
form of representing the fractional derivative by an integral operator. The numerical
solution is derived using Crank-Nicolson method in time combined with a spline
approximation for the Caputo derivative in space. Consistency and convergence of
the method is examined and numerical results are presented.

1. Introduction

To derive numerical solutions for differential equations of integer order has
for a long time been a topic in computational sciences. Recently, a large
number of applied problems have been formulated on fractional differential
equations and there is still a lack of highly accurate numerical methods for
this type of equations. In this paper we are concerned with a fractional
diffusion model with a spatial derivative of fractional order α, 1 < α ≤
2. When this fractional derivative replaces the second order derivative in a
diffusion model it leads to enhanced diffusion, also called superdiffusion [8].
Recent work on numerical solutions for this particular problem can be found
in [11, 14].

Fractional diffusion equations account for the typical anomalous features
which are observed in many problems. A numerical approach to different
types of fractional diffusion models have been increasingly appearing in lit-
erature. A fractional diffusion equation describing subdiffusion is studied for
instance in [1, 15, 16]. In [3] additionally to the fractional order derivative
a nonlocal quadratic nonlinearity is considered. Several transport equations
include a fractional order diffusion derivative [4, 7, 13, 18]. Other models
consider also for advection a fractional derivative of order 0 < β ≤ 1 [6, 12].
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The numerical methods developed until now for fractional partial differential
equations which involves a derivative of order α, 1 < α ≤ 2 are mainly of or-
der one. A numerical method of order two can be found in [14], where a first
order approximation of the fractional derivative is derived and a Richardson’s
extrapolation is applied to achieve second-order accuracy.

In this work we present a second order approximation for the fractional
derivative of order α, 1 < α < 2. Additionally by doing an implicit discreti-
sation in time we present a numerical method with a full discretization of
second order.

Consider the one-dimensional fractional diffusion equation

∂u

∂t
(x, t) = d(x)

∂αu

∂xα
(x, t) + p(x, t) (1)

on a finite domain a < x < b, where 1 < α < 2 and d(x) > 0. We consider
the initial condition

u(x, 0) = f(x), a < x < b (2)

and Dirichlet boundary conditions

u(a, t) = ga(t) and u(b, t) = gb(t). (3)

The usual way of representing the fractional derivatives is by the Riemann-
Liouville formula. The Riemann-Liouville fractional derivative of order α, for
x ∈ [a, b], −∞ ≤ a < b ≤ ∞, is defined by

∂αu

∂xα
(x, t) =

1

Γ(n − α)

∂n

∂xn

∫ x

a

u(ξ, t)(x − ξ)n−α−1dξ, (n − 1 < α < n) (4)

where Γ(·) is the Gamma function and n = [α] + 1, with [α] denoting the
integer part of α. Another way to represent the fractional derivatives is by
the Grünwald-Letnikov formula, that is,

∂αu

∂xα
(x, t) = lim

∆x→0

1

∆xα

[x−a
∆x ]
∑

k=0

(−1)k

(

α
k

)

u(x − k∆x, t). (α > 0) (5)

The discrete approximations of the Grünwald-Letnikov fractional deriva-
tive present some limitations. First, numerical approximations based in this
formula very frequently originates unstable numerical methods and hence-
forth many times a shifted Grünwald-Letnikov formula is used. Another
disadvantage is that the order of accuracy of such approaches is never higher
than one.
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A different representation of the fractional derivative was proposed by Ca-
puto,

∂αu

∂xα
(x, t) =

1

Γ(n − α)

∫ x

a

∂nu

∂ξn
(ξ, t)(x − ξ)n−α−1dξ, (n − 1 < α < n) (6)

where n = [α] + 1. The Caputo representation has some advantages over the
Riemann-Liouville representation. The most well known is related with the
fact that very frequently the Laplace transform method is used for solving
fractional differential equations. The Laplace transform of the Riemann-
Liouville derivative leads to boundary conditions containing the limit values
of the Riemann-Liouville fractional derivatives at the lower terminal x = a.
In spite of the fact that mathematically such problems can be solved, there
is no physical interpretation for such type of conditions. On the other hand
the Laplace transform of the Caputo derivative imposes boundary conditions
involving integer-order derivatives at the lower point x = a which usually are
acceptable physical conditions. Another advantage is that the Caputo deriv-
ative of a constant is zero, whereas for the Riemann-Liouville is not. Prop-
erties about the fractional derivatives can be found for instance in [5, 9, 10].
We consider the Caputo representation to derive a numerical approximation
for the fractional derivative.

The plan of the paper is as follows. In section 2 we derive a linear spline
approximation for the Caputo derivative. The full discretisation of the frac-
tional diffusion equation is given in section 3, where we apply Crank-Nicolson
in time. In section 4 we prove the convergence of the numerical method by
showing it is consistent and C-stable and in the last section we present nu-
merical results which confirm the numerical method is second order accurate.

2. The spline approximation of the Caputo derivative

In this section we derive a numerical approximation to the Caputo deriva-
tive for a < x < b,

∂αu

∂xα
(x, t) =

1

Γ(2 − α)

∫ x

a

∂2u

∂ξ2
(ξ, t)(x − ξ)1−αdξ, 1 < α < 2. (7)

Let us define the mesh points

xj = a + j∆x, j = 0, 1 . . . , N

where ∆x denotes the uniform space step.
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For xj, j = 1, . . . , N − 1 we need to calculate

1

Γ(2 − α)

∫ xj

a

∂2u

∂ξ2
(ξ, t)(xj − ξ)1−αdξ, j = 1, . . . , N − 1. (8)

We compute these integrals by approximating the second order derivative
by a linear spline sj(ξ), whose nodes and knots are chosen at xk, k =
0, 1, 2, . . . , j, that is, an approximation to (8) becomes

Ij =
1

Γ(2 − α)

∫ xj

a

sj(ξ)(xj − ξ)1−αdξ. (9)

The spline sj(ξ) interpolates

∂2u

∂ξ2
(x0, t), . . . ,

∂2u

∂ξ2
(xj, t)

and is of the form

sj(ξ) =

j
∑

k=0

∂2u

∂ξ2
(xk, t)sj,k(ξ), (10)

with sj,k(ξ), in each interval [xk−1, xk+1], for 1 ≤ k ≤ j − 1, given by

sj,k(ξ) =



































ξ − xk−1

xk − xk−1
, xk−1 ≤ ξ ≤ xk

xk+1 − ξ

xk+1 − xk
, xk ≤ ξ ≤ xk+1

0 otherwise.

For k = 0 and k = j, sj,k(ξ) is of the form

sj,0(ξ) =















x1 − ξ

x1 − x0
, x0 ≤ ξ ≤ x1

0 otherwise

sj,j(ξ) =















ξ − xj−1

xj − xj−1
, xj−1 ≤ ξ ≤ xj

0 otherwise.

From (9) and (10), we have

Ij =
1

Γ(2 − α)

j
∑

k=0

∂2u

∂ξ2
(xk, t)

∫ xj

a

(xj − ξ)1−αsj,k(ξ)dξ,
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and after some calculations we obtain

Ij =
∆x2−α

Γ(4 − α)

j
∑

k=0

∂2u

∂ξ2
(xk, t)aj,k, (11)

where

aj,k =























(j − 1)3−α − j2−α(j − 3 + α), k = 0

(j − k + 1)3−α − 2(j − k)3−α + (j − k − 1)3−α 1 ≤ k ≤ j − 1

1 k = j.
(12)

Let us assume there are approximations Un := {Un
j } to the values u(xj, tn),

where tn = n∆t, n ≥ 0 and ∆t is the uniform time-step. For the mesh points
xk, k = 1, . . . , N − 1 the second order derivative of (11) can be approximated
by δ2Un

j /∆x2 where δ2 is the central second order differential operator

δ2Un
j = Un

j+1 − 2Un
j + Un

j−1.

Additionally, we also need to know the value of the second order derivative
at the boundary point x0. If we have a physical boundary condition of the
type

∂2u

∂x2
(x0, t) = b(t) (13)

we can consider the given value. Unfortunately this is not a usual physical
boundary condition. Therefore at x = x0 the second order derivative can be
approximated by δ0U0/∆x2 where δ0 is the operator

δ0U
n
j = 2Un

j − 5Un
j+1 + 4Un

j+2 − Un
j+3. (14)

A discrete approximation at a boundary point is usually called a numerical
boundary condition.

Finally, the approximation of Ij for t = tn can be written as

Ij ≃
∆x−α

Γ(4 − α)

{

aj,0δ0U
n
0 +

j
∑

k=1

aj,kδ
2Un

k

}

.

In this section we have considered a linear spline to approximate the inte-
gral representation of the Caputo derivative with the purpose of obtaining a
second order approximation. Nevertheless a higher order approximation can
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be achieved by using a quadratic or cubic spline, although we may not be
able to have explicit forms similar to (11), (12).

In the next section we describe the full discretisation of the differential
equation and write the matricial form of our numerical method.

3. The numerical scheme

We discretize the spatial α-order derivative following the steps of the previ-
ous section. The discretization in time consists of the Crank-Nicolson numer-
ical method. We consider the time discretization 0 ≤ tn ≤ T . Additionally,

let dj = d(xj) and p
n+1/2
j = p(xj, tn+1/2), where tn+1/2 = tn + (1/2)∆t. For

the uniform space step ∆x and time step ∆t, let

µα
j =

dj∆t

∆xα .

The fractional differential operator is defined as

δαUn
j =

1

Γ(4 − α)

{

aj,0δ0U
n
0 +

j
∑

k=1

aj,kδ
2Un

k

}

.

We have the following numerical method

Un+1
j − Un

j

∆t
=

dj

2∆xα

(

δαUn+1
j + δαUn

j

)

+ p
n+1/2
j , (15)

that is,
(

1 −
µα

j

2
δα

)

Un+1
j =

(

1 +
µα

j

2
δα

)

Un
j + p

n+1/2
j ∆t. (16)

The numerical method can be written in the matricial form

(I −Q)Un+1 = (I + Q)Un + bn+1 + bn + pn+1/2, (17)

where Un =
[

Un
1 . . . Un

N−1

]T
, pn+1/2 =

[

∆tp
n+1/2
1 . . .∆tp

n+1/2
N−1

]T

, bn contains

the boundary values and Q is related to the fractional operator. The matrix
Q has the following structure

Q = M + N,
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where the matrix M is related to the operator δ2 and the matrix N is related
to the operator δ0. The matrices M = [Mj,k] and N = [Nj,k] are of the form:

Mj,k =
µα

j

2Γ(4 − α)































−2a1,1, j = 1, k = 1
−2aj,1 + aj,2, 2 ≤ j ≤ N − 1, k = 1
aj,k−1 − 2aj,k + aj,k+1, k ≤ j − 1, k ≥ 2
aj,j−1 − 2aj,j, k = j, k ≥ 2
aj,j , k = j + 1, k ≥ 2
0, k > j + 1, k ≥ 2

and, for 1 ≤ j ≤ N − 1,

Nj,k =
µα

j

2Γ(4 − α)















−5aj,0, k = 1
4aj,0, k = 2
−aj,0, k = 3
0, k ≥ 4.

Finally the vector bn is given by

bn
j =

µα
j

2Γ(4 − α)

{

(2aj,0 + aj,1)U
n
0 , j = 1, . . . , N − 2

(2aj,0 + aj,1)U
n
0 + aj,jU

n
N , j = N − 1.

Note that Un
0 = ga(tn) and Un

N = gb(tn). Additionally, if we assume the
condition (13) is given, then we have Q = M.

4. Consistency and convergence of the numerical scheme

We first start to study the consistency of the numerical method and lastly
we present the convergence results. Let C3[a, b] be the linear space of real
valued functions on [a, b] that have continuous third order derivatives.

Theorem 1. Let un(x) be a function in C3[a, b] and 1 < α < 2. Consider
the discrete operator δα defined by

δαun(xj) =
1

Γ(4 − α)

(

aj,0δ0u
n(x0) +

j
∑

k=1

aj,kδ
2un(xk)

)

,

where δ0u
n(xk) = 2un(xk)−5un(xk+1)+4un(xk+2)−un(xk+3) and δ2un(xk) =

un(xk+1) − 2un(xk) + un(xk−1). Then

1

∆xα
δαun(xj) =

∂αun

∂xα
(xj) + ǫ1(xj) + ǫ2(xj)
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with

max
a≤xj≤b

|ǫp(xj)| ≤
(b − a)2−α

Γ(3 − α)
O(∆x2), p = 1, 2.

Proof : Considering the definition of the operator δα, we have

1

∆xα
δαun(xj) =

∆x−α

Γ(4 − α)

(

aj,0δ0u
n(x0) +

j
∑

k=1

aj,kδ
2un(xk)

)

.

Now, using Taylor expansion arguments it is easy to check that

1

∆x2
δ0u

n(x0) =
d2u

dx2
(x0) + O(∆x2);

1

∆x2
δ2un(xk) =

d2u

dx2
(xk) + O(∆x2).

Therefore

1

∆xα
δαun(xj) =

∆x2−α

Γ(4 − α)

j
∑

k=0

aj,k

(

d2un

dx2
(xk) + O(∆x2)

)

=
∆x2−α

Γ(4 − α)

j
∑

k=0

aj,k
d2un

dx2
(xk) + ǫ1(xj)

with

ǫ1(xj) =
∆x2−α

Γ(4 − α)

j
∑

k=0

aj,kO(∆x2) =
(xj − a)2−α

Γ(3 − α)
O(∆x2).

We can write

1

∆xα
δαun(xj) =

1

Γ(2 − α)

∫ xj

a

sj(ξ)(xj − ξ)1−αdξ + ǫ1(xj)

=
1

Γ(2 − α)

∫ xj

a

d2un

dx2
(ξ)(xj − ξ)1−αdξ + ǫ2(xj) + ǫ1(xj),

for

ǫ2(xj) =
1

Γ(2 − α)

∣

∣

∣

∣

∫ xj

a

sj(ξ)(xj − ξ)1−αdξ −

∫ xj

a

d2un

dx2
(ξ)(xj − ξ)1−αdξ

∣

∣

∣

∣

and henceforth

ǫ2(xj) ≤
1

Γ(2 − α)
max
a≤ξ≤b

∣

∣

∣

∣

d2un

dx2
(ξ) − sj(ξ)

∣

∣

∣

∣

∫ xj

a

(xj − ξ)1−αdξ.
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The function sj(ξ) is a piecewise linear approximation for
d2un

dx2
and it is

known that

max
a≤ξ≤b

∣

∣

∣

∣

d2un

dx2
(ξ) − sj(ξ)

∣

∣

∣

∣

= O(∆x2)

and therefore

ǫ2(xj) ≤
(xj − a)2−α

Γ(3 − α)
O(∆x2).

The next result shows the numerical scheme (16) is second order accurate.

Proposition 2. The numerical scheme (16) is of order O(∆x2) + O(∆t2).

Proof : Let u = u(x, t) be a solution to the fractional partial differential
equation (1) and note that the truncation error is given by

τn
j =

un+1
j − un

j

∆t
−

dj

2∆xα

(

δαun+1
j + δαun

j

)

− p
n+1/2
j .

Thus, taking in consideration the previous theorem, we have

τn
j =

(

∂u

∂t

)n+1/2

j

+ O(∆t2) − dj

(

∂αu

∂xα

)n+1/2

j

+ O(∆x2) + O(∆t2) − p
n+1/2
j

=

(

∂u

∂t

)n+1/2

j

− dj

(

∂αu

∂xα

)n+1/2

j

− p
n+1/2
j + O(∆t2) + O(∆x2),

and therefore
τn
j = O(∆t2) + O(∆x2).

To prove the convergence of the numerical scheme we apply the following
theorem ([17], pg. 304 ).

Theorem 3. Suppose that the full discretization is consistent and the inte-
gration method is C-stable. Then the full discretization is convergent.

To prove the convergence of the numerical method, since we have already
proved the discretization is consistent, we need to prove the integration
method is C-stable.
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We start to define C-stability. Let Un and Ũn be two solutions of the
numerical method (16).

Definition 1.([2]) Let || · || be a norm on IRm. The integration method
is called C-stable with respect to this norm if a positive real number ∆t0 =
∆t0(∆x) and a real constant C0 independent of ∆t and ∆x exist, such that
for ∆t ∈ (0, ∆t0] and each Ũn, Un ∈ IRm

||Ũn+1 − Un+1|| ≤ (1 + C0∆t)||Ũn − Un||.

To prove the numerical method is C-stable we consider the infinity norm
||·||∞. Therefore, firstly we derive bounds for the infinity norm of the matrices
M and Q that appear in the numerical method (17).

Proposition 4. Let ||µα||∞ = max
1≤j≤N−1

µα
j .

(a) Let 3 ≤ mmax(α) ≤ 4. The infinity norm of the matrix M is bounded
by

||M||∞ ≤
||µα||∞

2Γ(4 − α)
mmax(α). (18)

(b) The infinity norm of the matrix Q is bounded by

||Q||∞ ≤
||µα||∞

2Γ(4 − α)
qmax(α), (19)

for

qmax(α) =

{

10(2 − α) + 3, 1 < α ≤ α∗

33−α + 5(23−α) + 42−α(−9α + 3) + 6, α∗ ≤ α < 2

where α∗ is the intersection point between the two curves. The value of α∗ is
approximately 1.9118.

Proof : (a) Let us define M∗ = [M∗
j,k], such that

M∗
1,1 = −2a1,1, M∗

j,1 = −2aj,1 + aj,2, 2 ≤ j ≤ N − 1

and for 1 ≤ j ≤ N − 1, k ≥ 2

M∗
j,k =















aj,k−1 − 2aj,k + aj,k+1, k ≤ j − 1
aj,j−1 − 2aj,j, k = j
aj,j , k = j + 1
0, k > j + 1.
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For M = [Mj,k], we have

Mj,k =
1

2Γ(4 − α)
µα

j M∗
j,k.

and

||M||∞ ≤
||µα||∞

2Γ(4 − α)
||M∗||∞.

Since M∗
j,k = 0, for k ≥ j + 1, then

||M∗||∞ = max
1≤j≤N−1

[

N−1
∑

k=1

|M∗
j,k|

]

= max
1≤j≤N−1

[

j+1
∑

k=1

|M∗
j,k|

]

= max
1≤j≤N−1

M∗
j ,

with

M∗
j =

j+1
∑

k=1

|M∗
j,k|.

We evaluate separately M∗
1 , M∗

2 , M∗
3 , M∗

4 and M∗
j for j ≥ 5. We obtain

M∗
1 = 3; M∗

2 =

{

a2,1 + 2a2,2, 1 < α ≤ 4 − ln2(5)
−3a2,1 + 4a2,2, 4 − ln2(5) ≤ α < 2.

For α1 and α2 such that 33−α1−4(23−α1)+6 = 0 and 2(33−α2)−5(23−α2)+4 = 0
we have 1 < α1 < α2 < 2 and M∗

3 given by

M∗
3 =







a3,1 + 2a3,3, 1 < α ≤ α1

3a3,1 − 4a3,2 + 4a3,3, α1 ≤ α ≤ α2

−a3,1 − 2a3,2 + 4a3,3, α2 ≤ α < 2.

Note that α1 ≃ 1.5545 and α2 ≃ 1.7606. We also have

M∗
4 =

{

3a4,1 − 4a4,2 + 2a4,3 + 2a4,4, 1 < α ≤ α1

3a4,1 − 2a4,2 − 2a4,3 + 4a4,4, α1 ≤ α < 2

and for j ≥ 5

M∗
j =

{

3aj,1 − 2aj,2 − 2aj,j−2 + 2aj,j−1 + 2aj,j, 1 < α ≤ α1

3aj,1 − 2aj,2 − 2aj,j−1 + 4aj,j , α1 ≤ α < 2.

After some calculations it is easy to check that for all j and for all 1 < α < 2,

3 ≤ M∗
j ≤ 4.

Therefore ||M∗||∞ ≤ mmax(α) for 3 ≤ mmax(α) ≤ 4.
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(b) Let Q∗ = M∗ + N∗, where N∗ = [N∗
j,k] is given by

N∗
j,k =















−5aj,0, k = 1
4aj,0, k = 2
−aj,0, k = 3
0, k ≥ 4.

For Q = [qj,k] and Q∗ = [q∗j,k], we have

qj,k =
1

2Γ(4 − α)
µα

j q∗j,k.

Therefore

||Q||∞ ≤
||µα||∞

2Γ(4 − α)
||Q∗||∞.

Since q∗j,k = 0, for k ≥ j + 1, then

||Q∗||∞ = max
1≤j≤N−1

[

N−1
∑

k=1

|q∗j,k|

]

= max
1≤j≤N−1

[

j+1
∑

k=1

|q∗j,k|

]

= max
1≤j≤N−1

Q∗
j ,

where

Q∗
j =

j+1
∑

k=1

|q∗j,k| =

j+1
∑

k=1

|M∗
j,k + N∗

j,k| =

3
∑

k=1

|M∗
j,k + N∗

j,k| +

j+1
∑

k=4

|M∗
j,k|.

After some algebraic calculations we obtain

Q∗
1 = 10(2 − α) + 3; Q∗

2 =







8a2,0 + 3a2,1 − 2a2,2, 1 < α ≤ 3/2
−2a2,0 + a2,1 + 2a2,2, 3/2 ≤ α ≤ 9/5
−10a2,0 − 3a2,1 + 4a2,2, 9/5 ≤ α < 2

Q∗
3 = 10a3,0 + 3a3,1 − 4a3,2 + 4a3,3.

For α3 and α4 such that −4(23−α3) + 42−α3(1− α3) + 6 = 0 and −4(33−α4) +
6(23−α4) + 52−α4(2 + α4) − 4 = 0 we have

Q∗
4 =

{

10a4,0 + 3a4,1 − 4a4,2 + 2a4,3 + 2a4,4, 1 < α ≤ α3

9a4,0 + 3a4,1 − 2a4,2 − 2a4,3 + 4a4,4, α3 ≤ α < 2

Q∗
5 =







8a5,0 − 3a5,1 + 2a5,2 + 2a5,5, 1 < α ≤ α4

−10a5,0 − 3a5,1 + 4a5,2 − 4a5,3 + 2a5,4 + 2a5,5, α4 ≤ α ≤ α1

−10a5,0 − 3a5,1 + 4a5,2 − 2a5,4 + 4a5,5, α1 ≤ α < 2.
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The values of α3 and α4 are approximately given by α3 ≃ 1.6105 and α4 ≃
1.4835. For j ≥ 6, Q∗

j becomes

Q∗
j =

{

−3aj,1 − 2aj,3 − 2aj,j−2 + 2aj,j−1 + 2aj,j, 1 < α ≤ α1

−3aj,1 − 2aj,3 − 2aj,j−1 + 4aj,j , α1 ≤ α < 2.

We conclude that ||Q∗||∞ = Q∗
1 = 10(α − 2) + 3 for 1 < α ≤ α∗ and

||Q∗||∞ = Q∗
4 = 33−α + 523−α + 42−α(−9α + 3) + 6 for α∗ ≤ α < 2, where α∗

is such that Q∗
1 = Q∗

4, that is, α∗ ≃ 1.9118.

Remark: From (18) of the previous proposition we can conclude that

||Q∗||∞ ≤ ||M∗||∞ + ||N∗||∞ ≤ 4 + 10 max
1≤j≤N−1

|aj,0|. (20)

Since ||N∗||∞ ≥ 10|a1,0| = 10(2 − α), the inequality (20) leads to a larger
upper bound than the one given by (19).

Additionally, if the diffusive coefficient of equation (1) is constant, such
that, d(x) = d, then

||Q||∞ =
||µα||∞

2Γ(4 − α)
qmax(α).

The following theorem proves the numerical method is C-stable and from
Theorem 3 we can conclude the method converges.

Theorem 5. Let ||d||∞ = max
1≤j≤N−1

d(xj). If ∆t <
2Γ(4 − α)∆xα

||d||∞qmax(α)
, then the

numerical method (16) is C-stable.

Proof : Let Un and Ũn be two solutions of the numerical method (16) and
consider en = Ũn − Un. We have

en+1(I − Q) = (I + Q)en,

that is,

en+1 = en + Q(en+1 + en).

Therefore,

||en+1||∞ ≤ ||en||∞ + ||Q||∞ (||en+1||∞ + ||en||∞)

leading to

(1 − ||Q||∞) ||en+1||∞ ≤ (1 + ||Q||∞) ||en||∞.
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Hence, by the previous proposition,

||en+1||∞ ≤
1 + ∆tC(α)

1 − ∆tC(α)
||en||∞,

for C(α) =
qmax(α)

2Γ(4 − α)

||d||∞
∆xα

. We can therefore conclude the numerical method

is C-stable.

Remark: If the physical boundary (13) is given, then ||Q||∞ = ||M||∞
and the condition of the previous theorem becomes

∆t <
Γ(4 − α)∆xα

2||d||∞
.

Many times the eigenvalue condition is used to prove the stability of a nu-
merical scheme although it does not give reliable conditions. The eigenvalue
condition is only a necessary condition for stability when we have an itera-
tive matrix which is non-normal. In our case the iterative matrix is given by
(I −Q)−1(I + Q).

5. Numerical results

We consider the same test problem presented in [14] for α = 1.8 on a finite
domain 0 < x < 1, with the diffusion coefficient d(x) = Γ(2.2)x2.8/6 and
source function p(x, t) = −(1 + x)e−tx3. The initial condition is

u(x, 0) = x3, for 0 < x < 1

and the boundary conditions

u(0, t) = 0, u(1, t) = e−t for t > 0.

The exact solution of the problem is of the form

u(x, t) = e−tx3, (21)

and is displayed in Figure 1.
In this section additionally to our numerical method we present results

for the numerical method with the discrete approximation in space for the
fractional derivative of order α defined from the shifted Grünwald-Letnikov
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Figure 1. Exact solution (21) for t = 0 (− · −) and t = 1 (−).

formula
(

∂αu

∂xα

)n

j

≃
1

∆xα

N+j+1
∑

k=0

(−1)k

(

α
k

)

Un
j+1−k. (22)

The time discretisation is still the Crank-Nicolson method, that is, for

δgl
α =

1

∆xα

N+j+1
∑

k=0

(−1)k

(

α
k

)

Un
j+1−k,

we have the numerical method
(

1 −
µα

j

2
δgl
α

)

Un+1
j =

(

1 +
µα

j

2
δgl
α

)

Un
j + p

n+1/2
j ∆t. (23)

The approximation (22), for α = 2, is the second order central difference
operator δ2 and therefore the numerical method (22) is second order. Un-
fortunately, as reported in [14] and as can be seen in Table 1, this numerical
method gives first order approximations when 1 < α < 2.

Consider the vectors Uapp = (U(x0, t), . . . , U(xN , t)), where U is the ap-
proximated solution and uex = (u(x0, t), . . . , u(xN , t)), where u is the exact
solution. The error is defined by

||uex(∆x) − Uapp(∆x)||∞, (24)

where || · ||∞ is the l∞ norm.



16 E. SOUSA

The results in Table 1 for the numerical method (16) were obtained by
considering the numerical boundary condition (14) since we did not consider
a physical boundary of the form (13).

∆x Grünwald Rate Caputo Rate
Method (22) Method (16)

1/10 0.1822× 10−4 0.1813× 10−5

1/15 0.1168× 10−4 1.09 0.7983× 10−6 2.02
1/20 0.8648× 10−5 1.04 0.4523× 10−6 1.97
1/25 0.6849× 10−5 1.04 0.2888× 10−6 2.01

Table 1. Global l∞ error (24) of time converged solution for
four mesh resolutions at t = 1 for α = 1.8 and its rate of conver-
gence.

We observe the numerical method presented is second order accurate.
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