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ABSTRACT: A class of Fourier series based plug-in bandwidth selectors for kernel
density estimation is considered in this paper. The proposed data-dependent
bandwidths are simple to obtain, easy to interpret and consistent for a wide class
of compact supported distributions. Some of them present good finite sample
comparative performances against the classical two-stage direct plug-in method
or the least squares cross-validation method, being good alternatives to these
classical methods. Finally, we argue that the flexibility of the proposed class of
bandwidths makes it suitable for the family approach to density estimation.
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1. Introduction

The kernel estimator for probability density functions introduced by
Rosenblatt [29] and Parzen [26], known as Parzen-Rosenblatt estimator,
is given, for z € R, by

) = = 3 Kile = X0),

where X1, ..., X,, are independent real-valued random variables with com-
mon density function f, K,(-) = K(-/h)/h, for h > 0, K is a kernel on
R, i.e., an integrable function such that [, K(u)du =1, and h = h,, is a
sequence of strictly positive real numbers converging to zero as n — oc.
In the definition of f,,, the kernel K and the bandwidth A enter as un-
specified parameters. For a fixed kernel the bandwidth is usually chosen
on the basis of the data and this choice is crucial to the performance of
the estimator. Too small an h leads to an estimator with large variability
which produces noisy estimates that present some features not shared by
f whereas too large an h leads to a high biased estimator that does not
revel some interesting characteristics of f (see Devroye and Gyorfi [7] and
Bosq and Lecoutre [2] for some of the most important properties of f,, as
an estimator of f). Due to its relevancy, the selection of the bandwidth
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is one of the most studied topics in kernel density estimation and several
approaches have been proposed for choosing h. A quite complete overview
of the variety of methods appeared in the literature since the late seventies
can be found in Wand and Jones [38] (Cap. 3), Jones et al. [17] and Chiu
[5]. For some important comments on bandwidth selection see also Loader
[21] and Sheather [33].

The reference distribution method and the direct plug-in method whose
ideas go back to Deheuvels [6] and Woodroofe [39], respectively, are very
simple data-dependent methods for choosing the bandwidth. They are
based on asymptotic approximations for the bandwidth hg that minimizes
the mean integrated square error MISE(f;n, h) = E||f,, — f||3, where || - ||2
denotes the Lo distance:

ho = argmin MISE(f;n, h)
h>0

(see Chacon et al. [4] for the existence and asymptotic behaviour of hyg).
If we take for K a symmetric probability density function it is well known
that, under some moment and regularity conditions on K and f, respec-
tively, two asymptotic approximations to the optimal bandwidth hy are
given by

hy = e k|| )52 0P (1)
and
ho = e k|| 1120 Y = co |l £ 17115 P,
where
B 92/5 1 _ 6/5
cvie = oK) PRI, e = o pa(B) ™ (K| K1y

and p;(K) = [w/K(u)du for j = 1,2,... (cf. Hall and Marron [11, 12]).
These asymptotic approximations to hy depend on the unknown functionals
|f”||2 and ||f"]||]2 that need to be estimated from the data. The reference
distribution and direct plug-in methods differ on the way such quantities
are estimated. In the former case a parametric estimator based on some
reference distribution family is used (usually the normal one). In the latter
one these unknown quantities are replaced by consistent estimators.

The problem of estimating || f("||2, for some 7 = 0,1, ..., has been stud-
ied by authors like Levit [20], Hall and Marron [11, 12|, Bickel and Ritov
[1], Jones and Sheather [18], Efromovich [8] and Laurent [19], and several
estimators have been proposed by these authors. The class of kernel es-
timators proposed by Hall and Marron [11] and Jones and Sheather [18]
is widely used in practice leading to some well-known bandwidth selec-
tion methods like those introduced by Sheather and Jones [34] (multistage
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solve-the-equation bandwidth selector), and Jones and Sheather [18] and
Wand and Jones [38] (multistage direct plug-in bandwidth selector). To
our knowledge, much less attention have been payed to the Fourier series
based estimators studied by Efromovich [8] and Laurent [19].

It is the main purpose of this paper to introduce easy to use Fourier se-
ries based reference distribution and plug-in bandwidth selectors for kernel
density estimation. Their finite sample behaviour mainly depends on the
maximum number of terms used to model the underlying density through
a truncated Fourier series which makes the considered class of bandwidth
selectors quite flexible and of easy interpretation. Since the finite sample
behaviour of the proposed methods for each one of the previous asymptotic
approximations to hy was found very similar we restrict our attention to
the methods based on the asymptotic approximation h;. Moreover, only
the kernel density setting is considered in this paper. However, the same
approach might be used to the histogram estimator, the kernel distribution
function estimator or the boundary kernel density or distribution function
estimators (see Tenreiro [37]). For all these cases the asymptotic opti-
mal bandwidth depends on some functionals of the form || f|,, for some
r=0,1,...

This paper is organized as follows: The Fourier series reference distri-
bution method and the direct plug-in Fourier series based method are in-
troduced in Sections 2 and 3, respectively. In Section 3 we also establish
the consistency of the plug-in bandwidth for a wide class of compact sup-
ported distributions. In Section 4 the finite sample performance of the
Fourier series based plug-in method is studied and compared with other
well known data-based methods for choosing the bandwidth like the least
squares cross-validation method introduced by Rudemo [28] and Bowman
[3] (some attractive asymptotic properties are described in Hall [10], Stone
[35] and Hall and Marron [11]) and the two-stage direct plug-in method
proposed by Wand and Jones [38] (p. 72) (for large sample asymptotics
see Hall et al. [13], Fan and Marron [9] and Tenreiro [36]). The band-
widths obtained by selecting a small or a large number of Fourier terms
present good finite sample comparative performances against the two-stage
direct plug-in method and the least squares cross-validation method, re-
spectively, being good and simple alternatives to these classical methods.
For an intermediate number of Fourier terms the proposed bandwidths
present intermediate properties which makes this class of Fourier series
based bandwidth selectors suitable for the family approach to density esti-
mation recommended by several authors like Scott [31] p. 161, Marron and
Chung [24] and Sheather [33], that advised looking at a family of density
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estimates based on a family of smoothing parameters. This procedure is
illustrated in Section 5 for sets of simulated and real data. Finally, in Sec-
tion 6 we provide some overall conclusions. All the proofs are postponed
to Section 7. The simulations and plots in this paper were obtained using
the R software [27].

2. The Fourier series reference distribution method

If the support of f is known to be on the finite interval [a,b] and f is
continuous in [a, b] it is well known that the density f can be expanded in
Fourier series (uniformly and in Ly in [a, b))

() = 7=+ S (@nnle) + b)),
k=1

with
km
qbk(x):\/bfacos <b_a(2x—a—b)>,
km
Yr(x) = bfasin(b_a(Qx—a—bO,
b
ak:/ or(x) f(x)dx
and

b
bk:/ Ur(x) f(x)dx

for k£ € N (see Sansone [30]). Therefore, for a fixed nonnegative integer
N it is natural to take for reference distribution family the family Fy of
probability density functions f over the interval [a, b] that take the form

N
f@) = 5+ (4(2) + bt (@),
k=1

for x € [a, b] with ay # 0 or by # 0.
For f € Fy we have

N

1674
171 = gy 2 ke

k=1
with

2 2 2
Cr. = ak+bk,
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and, following Hart [15] an unbiased estimator of ¢} is given by

G = a2+ D= Z {00 (Xi)or(X5) + Un(Xo)w(X) 1. (2)

1<Z<]<TL

Consequently, the reference distribution method based on the family Fy
and on the asymptotic approximation hy to hy given by (1) leads to the
data-driven bandwidth

hiy = Lty "n,
where
- 167 SN~
¢N = m Z ]C4Cz. (3)
k=1

Taking into account that @@N is a nondegenerate U-statistic we easily
conclude (cf. Hoeffding [16], p. 305) that the bandwidth relative error
hy n/h1 — 1 is asymptotically normal and

iLl,N/hl - Op <n1/2> s

whenever f belongs to Fj; for some M < N. This rate of convergence
is usually shared by a reference distribution bandwidth in relation to its
reference distribution model. This is the case of the well known normal
reference bandwidth method (cf. Deheuvels [6] and Silverman [32]). How-
ever, when the reference distribution family is Fy the practical interest
of this property is stressed by the fact that a general continuous density
f with support on [a, b] can be approximated (uniformly and in Ly) by a
density in Fy for some large value of N. This feature, which is not shared
by the usually considered reference distribution models, is on the basis of
the direct plug-in Fourier series based method introduced in the following.

3. A direct plug-in Fourier series based method

The finite sample performance of @@N, and therefore the one of fALLN,
strongly depends on the choice of N. If we do not have any relevante
information about f that could guide the choice of the parametric model
dimension NV, it is natural to try to develop a data-based method for choos-
ing N. We show in this section that if Nisa possibly random sequence of
positive integers, N=N (X1,...,X,), satisfying some general conditions,
the associated data-based bandwidth given by

.7 =1/5 _—1/5
hi=h g =cirdy n=?,
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is consistent for a wide class of probability distributions. Contrary to
each one of the bandwidths iLL N, h is in fact a plug-in bandwidth since its
consistency is not confined to the distributions of each one of the parametric
models Fi,..., Fn.

When N = N (n) is a deterministic sequence converging to infinity, &N
is the estimator of ||f”||3 considered in Efromovich [8] and Laurent [19]
which optimal rates of convergence are obtained for f belonging to some
Lipschitz class of order s + a > 2. However, since for a non-deterministic
sequence N the statistic @@ & has no longer a U-statistic structure, the rates
of convergence we present in the following are suboptimal (although close
to the optimal ones).

We shall denote by L£(s+ «), where s > 0 is an integer and « €0, 1], the
set of all densities f with support on [a, b] which are s-times differentiable
in [a,b] with f©(a) = fOOb) for £ = 0,1,...,s, and f© satisfies the
Lipschitz condition

[P @) = [P < Cle—yl*,  xy € [a,b], (4)
where C' is a positive number.

Remark that if f € Fy; for some M € N, then f € L(s+«) for all s > 0
and « €10, 1].

Theorem 1. Assume that f belongs to L(v) for somev = s+a > 2+1/2.
(i) If N is such that N > +o00 and n~'/"N = 0,(1) then
h/hy —1=0,(1).
(ii)) If v <5 and
P (C n@v=5)/Wr-2) < N < Dnl/@”)) 1

Y

for some positive constants C, D, we have
by — 1= 0 (s
(iii) If v =5 and
P (Cn1/12 <N < Dn1/10> 1,
for some positive constants C, D, we have
h/hy —1=0, (n‘”ﬂogn) :
(iv) If v > 5 and
P <0n1/(4u—2) <N < Dnl/w) 1
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for some positive constants C, D, we have
h/hy —1= O, (n_1/2> :
(v) If f € Fur, for some M € N, and
p (M <N< Dnl/m) 1
for some positive constant D, we have

h/hy—1= O, (n_1/2> :

A simple data-based method for choosing N can be based on the natural
connection between estimating the dimension of the parametric reference
model and the estimation of the truncation point of a Fourier series density
estimator. Hart [15] proposed to take for N the value N that minimizes
H(N) over the set {1,...,M,} where M,, € N converges to infinity and

N

~ 2N n—+1
AHN)=—— 7,2 =%"2
(V) n(b— a) T — I 5)

where -, usually taken equal to 1, is a sequence of strictly positive real
numbers converging to some strictly positive number v > 0. If ¢4, > 0 for
some M € N, which is in particular true if f € F,;, we can prove that
P(N > M) — 1 as n tends to infinity (see Hart [15] p. 116). Therefore,
if (M,,) is such that M, < Dn!'/ for some positive constant D, the con-
sistency (and rate of convergence) of the plug-in bandwidth associated to
N for f € Fy follows from part (v) of Theorem 1. Otherwise, if f € £(v)
for some v = s+ a > 2+ 1/2, and f ¢ Fy for all N € N, we conclude
that N - +o0. Therefore, if (M,) is such that n~*/5M, = o(1) the con-
sistency of the plug-in bandwidth associated to N for such distributions
follows from part (i) of Theorem 1. Additionally, if the minimization of
}AI(N) is restricted to a set of positive integers {L,, L, + 1,...,M,}, the
conditions imposed to N in parts (ii) (iv) of Theorem 1 are fulfilled for
suitable choices of the sequences L, and M, which enables us to obtain
rates of convergence for the relative error h /h1 — 1 where h is the plug-in
bandwidth associated to N.

4. A simulation study

A simulation study that includes some of the distributions considered by
Marron and Wand [23] is undertaken in this section to analyze the finite
sample behaviour of the Fourier series based plug-in bandwidth selector
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FIGURE 1. Densities used in the simulation study.

introduced in the previous section. The considered distributions are shown
in Figure 1 where we keep the numeration used in Marron and Wand [23].

Taking into account that M, is the maximum number of Fourier terms
to be considered to model f through a truncated Fourier series, it is nat-
ural to expect that small values of M,, could be appropriate for densities
#1, 2, 5, 6, 7, 8, 9 (easy-to-estimate densities) whereas large values of
M,, could be adequate for densities #3, 4, 10, 12, 14 (hard-to-estimate
densities: strongly multimodal, strongly asymmetric or strongly kurtotic).
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Some preliminary simulation results confirm this expectable behaviour but
also revealed that the choice 7, = 1 in (5) does not prevent us against
getting very large values for N whenever f € Fg for some small value K.
In practice this problem can be overcame by considering a smaller value for
Yo If fact, in the limit case 7, — 0, we have P(N < K)—1asn — oo,
whenever f € Fx. In the rest of the paper we have considered v, = 0.75.
Moreover, the low rates of convergence to infinity prescribed in Theorem
1 for the sequences L, and M,,, lead us to consider the choices L,, = 1 and
M, =M with M = 2,3,5,7,10, 15. The associated plug-in bandwidth h is
therefore denoted by ha.

A~

In the rest of the paper two minor modifications of the estimators a7 and
b% given by (2) are considered. Firstly, in order to avoid negative estimates
to the nonnegative quantities az and b2, they will be replaced by maX(aA,%, 0)
and max(l;%, 0), respectively. Additionally, if the modified estimate of H 113

is equal to zero, it will be replaced by (a;)* + (bl) , where @; and b; are
the natural unbiased estimators of a; and by, respectively. This way, the
considered estimator ¢ of || f”||3 is strictly positive. Finally, since the pre-

vious distributions do not have compact support we have evaluated h by
considering a = max(Min, Q; —1.5xIQR) and b = min(Max, Q3+ 1.5xIQR),
where Min, Max, Q1, Q3 and IQR are the sample minimum, maximum, first
quartile, third quartile and interquartile range, respectively. The quartiles
were evaluated using the R function quantile(-,type=7).

From each distribution we generated 100 samples of sizes n = 100, 200, 400
and a comparative analysis of the different methods behaviour is made by
displaying the sample distribution of ISE(f; h)/ISE(f; ho) where the stan-
dard normal density was used as the kernel function and we have followed
Marron and Wand [23] in the evaluation of ISE(f; k) and hy. For compar-
ative proposes we have taken the least squares cross-validation bandwidth
hev and the two- stages plug-in bandwidth hPI2 As remarked by Park
and Marron [25], Jones et al. [17] and by other authors, the least squares
cross-validation suffers from a great deal of sample variability and its per-
formance has been often disappointing. However, as reported by Jones et
al. [17], the distribution of hov appears to have mean near hy. For compar-
ative proposes this is particularly important for hard-to-estimate densities
where fALPIQ fail completely the target. The observed results are shown in
Figure 2.

For easy-to-estimate densities the best results are obtained by 32, hs
and BPIZ, and these last two bandwidths show a similar performance for all
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FIGURE 2. (cont.) Empirical distribution of the relative errors
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the considered distributions. Therefore, ng appears to be a good alternative
to the commonly used two-stage direct plug-in bandwidth. Also remark
the exceptional good comparative results obtained by hy for some of these
distributions and particularly for large sample sizes.

For easy-to-estimate densities the best results are obtained by iLQ, hs and
BPIQ, and these last two bandwidths show a similar performance for all the
considered distributions. Therefore, iLg appears to be a good alternative
to the commonly used two-stage direct plug-in bandwidth. Also remark
the exceptional good comparative results obtained by hy for some of these
distributions and particularly for large sample sizes. However, the per-
formance of these bandwidths for the considered set of hard-to-estimate
distributions is in general very poor. For these densities the best perfor-
mance is achieved by hio and hys and slightly inferior results were obtained
by hov. Taking into account the results observed for all the considered den-
sities, illo seems to be a better choice than the least squares cross-validation
bandwidth. For intermediate values of M the bandwidth &y is in general
better than h3 and worse than h10 for hard-to-estimate densities but worse
than h3 and better than hw for easy-to-estimate densities. Although the
high variability shown by these bandwidths for the set of easy-to-estimate
densities, if no information about the underlying density is available that
enables us to classify it as an easy-to-estimate density, m appear to be
the best of the considered data-based methods for choosing the bandwidth
since its distribution appears to have median near hy.

5. The family approach: some examples

In practice the choice of the maximum number of terms used to model
the underlying density through a truncated Fourier series could be a hard
task in particular if there is no available information about the underlying
density that enables us to classify it as an easy-to-estimate or hard-to-
estimate density. As stressed by Sheather [33] pp. 593-594, several authors
like Scott [31] p. 161, and Marron and Chung [24] recommended the family
approach to density estimation. They suggested that density estimates
should be drawn with more than one value of the bandwidth. Taking
into account the finite sample properties previously described, the family
of bandwidth selectors introduced in this paper seems to be suitable to
achieve this goal by considering the recommended bandwidth h1o but also
the bandwidths / x for some values of N between 1 and 15 (say). We
expect that this set of estimates could give a more accurate picture about
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Datasets
1 2 3 4 5

=
I
=

hin/N
02796 /1 0.2192 /1 0.2561 /1 0.0980 /1 0.1527 /1
0.2336 /2 0.1417 /2 0.1923 /2 0.0695 /2 0.1527 / 1
0.2336 /2 0.1075 /3 0.1332 /3 0.0603 /3 0.1527 / 1
0.2336 /2 0.0906 /4 0.1164 /4 0.0540 /3 0.1527 / 1
0.1670 /2 0.0864 /5 0.1060 /5 0.0540 /3 0.1527 / 1
0.1519 /2 0.0762 /6 0.0975 /6 0.0367 /3 0.1527 / 1
0.1519 /2 0.0635 /7 0.0862 /7 0.0362 /3 0.1527 / 1
0.1519 /2 0.0580 /8 0.0783 /8 0.0339 /3 0.0584 /1
9 0.0914 /2 0.0571 /8 0.0747 /8 0.0244 /3 0.0584 / 1
10 0.0734 /2 0.0549 / 10 0.0747 /8 0.0223 /3 0.0584 / 1
11 0.0620 /2 0.0526 / 11 0.0747 /8 0.0218 /3 0.0584 / 1
12 0.0620 /2 0.0475 /12 0.0747 /8 0.0218 /3 0.0584 / 1
13 0.0620 /2 0.0462 / 12 0.0747 /8 0.0218 /3 0.0584 / 1
14 0.0620 /2 0.0453 /12 0.0533 /8 0.0208 /3 0.0321 / 1
15 0.0620 /2 0.0438 /12 0.0523 /8 0.0208 /3 0.0296 / 1

0 O U= Wi+~

}\LPIQ
0.2525 0.1201 0.1655 0.0759 0.1597

hev
0.2867 0.0543 0.1026 0.0443 0.1906

TABLE 1. Bandwidths ﬁl, ~ and data dependent Fourier model
dimension N for the considered datasets.

the underlying density function than the single density estimate associated
to iLlO-

This procedure is illustrated in this section by considering simulated sam-
ples from distributions #2 and #3 of sizes 200 (dataset 1) and 500 (dataset
2), respectively, and a widely used dataset in density estimation literature
that consists of eruption durations (in minutes) of the Old Faithful geyser
(dataset 3). This set comes from Hérdle [14] and is composed by 272 obser-
vations. Finally, the last two datasets we consider are obtained by splitting
the eruption duration observations in two sets of short (dataset 4) and long
(dataset 5) duration eruptions with sizes 97 and 195, respectively.

For each one of these datasets we glve in Table 1 the bandwidths h1 N

for N =1,...,15, and the values of N for M =1,...,15. Since hM = hLN

and N < M, from Table 1 we easily obtain hy for M = 1,...,15. For
comparative proposes we also give the bandwidths BPIQ and BCV. For some
values of N the corresponding kernel density estimates are displayed in
Figures 3-7. The solid line always represent the density estimate based on
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FIGURE 3. Kernel density estimates for a sample of size 200
from distribution #2 for the bandwidths h; xy with N =2,5,7,
9. The solid line corresponds to the estimate based on hqg.
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FIGURE 4. Kernel density estimates for a sample of size 500
from distribution #3 for the bandwidths Ay y for N = 2,5, 10,

15. The solid line corresponds to the estimate based on hqy.
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FIGURE 5. Kernel density estimates for the Old Faithful
dataset for the bandwidths h; x for N = 2,5,8,15. The solid

line corresponds to the estimate based on izlo.
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FIGURE 6. Kernel density estimates for the Old Faithful
dataset (short duration eruptions) for the bandwidths h y for
N =1,2,3,6. The solid line corresponds to the estimate based
on hl().
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FIGURE 7. Kernel density estimates for the Old Faithful
dataset (long duration eruptions) for the bandwidths h; x for
N =1,8,14. The solid line corresponds to the estimate based
on hl().

;Llo- Taking into account these plots it appears that the density estimate
based on hig gives a good account of the underlying probability structure
for all the considered datasets. Even for dataset 2 we cannot say that 1o
is a less successful choice since it stresses an important feature of f and,
as a byproduct, leads to a very local noisy estimate at the right support of
the distribution. This is the price to pay for choosing a kernel estimator
with a global bandwidth.

6. Conclusions

The class of Fourier series based plug-in bandwidth selectors for kernel
density estimation proposed in this paper gives us a set of simple to use and
large sample consistent data-dependent bandwidths. Their finite sample
behaviour is easy to understand since it mainly depends on the maximum
number of terms used to model the underlying density through a truncated
Fourier series which makes the considered class of bandwidth selectors quite
flexible and suitable to the family approach to density estimation. Addi-
tionally, the undertaken finite sample analysis gives us some additional
inside about behaviour of the least squares cross-validation and the di-
rect two-stage plug-in approaches to bandwidth selection. The two-stage
plug-in bandwidth seems to behave like a reference distribution bandwidth
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based on a lower dimensional model. It behaves very well for densities close
to the model but it cannot capture density features that are not taken into
account by it. The least squares cross-validation bandwidth appears to
behave like a true nonparametric procedure. In consequence, it presents
large variability from sample to sample but it can manage with a wide set
of distributional characteristics.

7. Proof of Theorem 1

Let f be such that f € L(s+ «a) for some integer s > 2 and oz E]O, 1].
From the continuity of f” in [a,b] and the fact that f(a) = f(b), for
¢ =0,1, we have

f(x) = - z) + bii(x))

in a Ly sense in [a, b] (see Sansone [30] p. 46) and

1115 = 4Zk4 (ay + bi). (6)

Therefore

N
by =15 =Co ) k(e — i) — Co Z ke,
k=1

k=N+1

where Cy = 167% /(b — a)* and CA,% and ¢? have been defined in Section 2.

If L,, and M,, are sequences of natural numbers such that L, < N <M,
we get

B — 11711 \<002k4\ck—ck\+co >

k=L,+1

and consequently for
T = (B = 1171B) 1(Ln < N < M)

we have

E|Tn|:0<2k4\/ar 2 Z ke ) (7)

k=1 k=L,+1

The following lemmas will be useful to control each one of the previous
terms. The positive number C' is the Lipschitz constant of f in (4).
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Lemma 1. For f € L(s+ «) we have
Ch Cy

Var(cz) S nk2s+2a + ﬁ’
with Cy = 32C% ((b— a)/(2m))* ™ and Cy = 32/(b — a)?.

Proof. This result follows from the standard technique for the calculation

of the variance of the U-statistic c% and the following upper bound for the
Fourier coefficients of f (see Sansone [30] p. 53)

b a)s+a+1/2 1

21 ksta’

max(|az|, |bx|) < 2071/ <

U
Lemma 2 (Lorentz’s Inequality). For f € L(s + a) and m € N we have

[ee]
C
2s 2 3

k=m+1
where C3 = 2C%(b — a)?T29T1 /((27) %4 (4% — 1)).

This lemma is proved in Devroye and Gyérfi [7] (pp. 304-308).

From (7) and the previous lemmas we get

M,

E |Tn| -0 <n1/2 Z k—(s—i—a—él) + n—le + Ln2(s+a2)> :
k=1

and the announced probability rates of convergence for the relative error

h/hy — 1 in parts (i) to (iv) follow for suitable choices of the sequences L,

and M,. Finally, if f € Fjy; for some M € N, the part (v) of the theorem

follows from the equality

E[T,| =0 (n1/2 + nlMg) ,

which is a consequence of (7) by choosing L, = M and of Lemma 1 by
taking s + a > 5.
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