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Universidade de Coimbra

Preprint Number 09–24

HYPERMAP OPERATIONS OF FINITE ORDER

GARETH A. JONES AND DANIEL PINTO

Abstract: Duality and chirality are examples of operations of order 2 on hyper-

maps. James showed that the groups of all operations on hypermaps and on ori-

ented hypermaps can be identified with the outer automorphism groups Out ∆ ∼=

PGL2(Z) and Out ∆+ ∼= GL2(Z) of the groups ∆ = C2 ∗C2 ∗C2 and ∆+ = F2. We

will consider the elements of finite order in these two groups, and the operations

they induce.

1. Operations on hypermaps

A hypermap can be regarded as a transitive permutation representation

∆ → Sym Φ of the group

∆ = 〈r0, r1, r2 | r2
0 = r2

1 = r2
2 = 1〉 ∼= C2 ∗ C2 ∗ C2,

the free product of three cyclic groups of order 2, on a set Φ representing its

flags; similarly an oriented hypermap (without boundary) can be regarded

as a transitive permutation representation of the subgroup

∆+ = 〈ρ0, ρ1, ρ2 | ρ0ρ1ρ2 = 1〉 = 〈ρ0, ρ2 | −〉 ∼= F2

of index 2 in ∆ (a free group of rank 2) consisting of the elements of even

word-length in the generators ri, where ρ0 = r1r2, ρ1 = r2r0 and ρ2 = r0r1.

In the first case the hypervertices, hyperedges and hyperfaces (i-dimensional

constituents for i = 0, 1, 2) are the orbits of the dihedral subgroups 〈r1, r2〉,

〈r2, r0〉 and 〈r0, r1〉, and in the second case they are the orbits of the cyclic

subgroups 〈ρ0〉, 〈ρ1〉 and 〈ρ2〉, with incidence given by nonempty intersection

in each case. The local orientation around each hypervertex, hyperedge or
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hyperface is given by the cyclic order within the corresponding cycle of ρ0, ρ1

or ρ2.

If H is a hypermap corresponding to a permutation representation θ :

∆ → Sym Φ, and if α is an automorphism of ∆, then α−1 ◦ θ : ∆ → Sym Φ

corresponds to a hypermap Hα. (We invert α so that the automorphism

α ◦ β, composed from left to right, sends H to (Hα)β and not (Hβ)α.) The

hypervertices of Hα are therefore the orbits of 〈rα
1 , rα

2 〉 on Ω, and similarly

for the hyperedges and hyperfaces. If α is an inner automorphism then

Hα ∼= H for all H, so we have an induced action of the outer automorphism

group Out ∆ = Aut ∆/Inn ∆ as a group Ω of operations on isomorphism

classes of hypermaps. James [6] has shown that this action is faithful, even

when restricted by finite hypermaps. The same remarks apply to oriented

hypermaps, with Out ∆+ acting as a group Ω+ of operations. In either case,

we will let ωα denote the operation on hypermaps (or oriented hypermaps)

induced by an automorphism α, or more precisely by the outer automorphism

class [α] containing α.

Example 1. For each 2-element subset {i, j} ⊂ {i, j, k} = {0, 1, 2}, let α

be the automorphism αij = αji of ∆ which transposes ri and rj and fixes rk.

Then ωα is the duality operation ωij = ωji on hypermaps which transposes

their i- and j-dimensional constituents while preserving their k-dimensional

constituents. More generally, the symmetric group S3 acts as a group of

automorphisms of ∆ by permuting the generators ri, giving a faithful action

of S3 on hypermaps; the images of a hypermap under this action are called

its associates. Note that because of the inversion mentioned in the preceding

paragraph, if α corresponds to the 3-cycle (0, 1, 2), acting on subscripts, then

the hypervertices of Hα are the hyperedges of H, and so on. An action of

S3 on oriented hypermaps has been described by Mach̀ı in [8]; see §6 for the

relationship between these two actions (which is not entirely straightforward).
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Example 2. Since ∆+ is a normal subgroup of ∆, conjugation by r1 induces

an automorphism

αr : ρ2 7→ ρ−1
2 , ρ0 7→ ρ−1

0

of ∆+. The corresponding operation ωr reflects each oriented hypermap, re-

versing its orientation. (It is, in fact, induced by conjugation by any element

of ∆ \ ∆+, since any two of them differ by an element of ∆+.) An oriented

hypermap is called reflexible or chiral as it is or is not invariant under ωr.

Example 3. It was shown by Hall [4] that the free group F2 has 19 normal

subgroups with quotient group A5, corresponding to the 19 orbits of AutA5 =

S5 on generating pairs for A5. It follows that there are 19 orientably regular

hypermaps with orientation-preserving automorphism group A5, and these

are described in [1]. Neumann and Neumann [10] have shown that AutF2 acts

as the group S9×S10 on these 19 normal subgroups, with two orbits of lengths

9 and 10, so Ω+ = Out ∆+ acts in the same way as a group of operations,

with orbits O1 and O2 of lengths 9 and 10 on the corresponding hypermaps.

Direct calculation (see Example 4 in §4) shows that O1 consists of three

sets of three associates; their types are the cyclic permutations of (5, 2, 5)

(corresponding to the great dodecahedron of genus 4), (5, 3, 3) of genus 5

and (5, 5, 3) of genus 9. The orbit O2 consists of three sets of associates of

size 6, 3 and 1, and their types are the cyclic permutations of (5, 2, 3) (the

isosahedron of genus 0), (5, 3, 3) of genus 9 and (5, 5, 5) of genus 13. The

hypermaps of type (5, 5, 3) in the orbits O1 and O2 represent ρ0 and ρ1 by 5-

cycles which are conjugate in S5 by odd and even permutations respectively.

See also [5],[12] for generalisations from A5 to various other finite groups.
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2. Automorphism groups of ∆ and ∆+

It is well known (see [7], for instance) that OutF2
∼= GL2(Z), this group

being represented faithfully on the abelianised group F ab
2

∼= Z2, so Ω+ =

Out ∆+ ∼= GL2(Z). We will choose this isomorphism so that GL2(Z) acts

on row vectors with respect to the ordered basis of (∆+)ab ∼= Z2 induced

by the generators ρ2 and ρ0 of ∆+. Similarly, James has shown in [Jam]

that Ω = Out ∆ ∼= PGL2(Z) = GL2(Z)/{±I}. In order to understand the

relationship between these two outer automorphism groups, and to find their

periodic elements, we will use the facts that GL2(Z) is generated by the

matrices

X =

(

0 −1

1 0

)

, Y =

(

0 −1

1 1

)

and T =

(

0 1

1 0

)

with defining relations

X2 = Y 3, X4 = T 2 = (XT )2 = (Y T )2 = I (2.1)

(see [3]), and that PGL2(Z) is generated by the images x = ±X, y = ±Y

and t = ±T of X, Y and T with defining relations

x2 = y3 = t2 = (xt)2 = (yt)2 = 1. (2.2)

Since ∆+ is the unique torsion-free subgroup of index 2 in ∆, it is a

characteristic subgroup, and hence each automorphism α of ∆ restricts to

an automorphism α+ of ∆+. This gives us a restriction homomorphism

θ : Aut ∆ → Aut ∆+, α 7→ α+.

Proposition 2.1. The restriction homomorphism θ : Aut ∆ → Aut ∆+ is

an isomorphism.

Proof. Suppose that α ∈ ker θ, so that α fixes ρ2 and ρ0. Since r1, acting

by conjugation, inverts these two elements, so does its image r1α under α.
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Thus r1(r1α)−1 fixes them, so it fixes ∆+. Since ∆+ has trivial centraliser in

∆, it follows that r1(r1α)−1 = 1, so r1α = r1 and hence α = 1. Thus θ is a

monomorphism.

Each inner automorphism of ∆+ extends, in the obvious way, to an inner

automorphism of ∆, so im θ contains Inn ∆+. In order to show that θ is

an epimorphism, it is therefore sufficient to show that each of the three

outer automorphism classes of ∆+ corresponding to a generator X, Y or T of

GL2(Z) contains an automorphism of ∆+ which extends to an automorphism

of ∆. In these three cases we can use the automorphisms

αX : ρ2 7→ ρ−1
0 , ρ0 7→ ρ2, which extends to

αx : r0 7→ r2, r1 7→ r1, r2 7→ r1r0r1,

αY : ρ2 7→ ρ−1
0 , ρ0 7→ ρ2ρ0, which extends to

αy : r0 7→ r2r1r2, r1 7→ r2, r2 7→ r2r0r2,

αT : ρ2 7→ ρ0, ρ0 7→ ρ2, which extends to

αt : r0 7→ r1r2r1, r1 7→ r1, r2 7→ r1r0r1.

Thus θ is an isomorphism.

It follows from Proposition 2.1 that each automorphism β of ∆+ extends

to a unique automorphism β∗ of ∆, so that θ−1 is given by β 7→ β∗. Un-

der this isomorphism, Inn ∆+ is identified with a characteristic subgroup of

Inn ∆, and thus a normal subgroup of Aut ∆. By Proposition 2.1, this in-

dex 2 inclusion of Inn ∆+ in Inn ∆ induces an epimorphism ε : Out ∆+ →
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Out ∆, [β] 7→ [β∗], corresponding under the isomorphisms Out ∆+ ∼= GL2(Z)

and Out ∆ ∼= PGL2(Z) to the natural epimorphism GL2(Z) → PGL2(Z). Its

kernel, which has order 2 and corresponds to the subgroup {±I} of GL2(Z),

is generated by the outer automorphism class [αr] of ∆+; here αr is the

automorphism of ∆+ defined in Example 2, which extends to an inner auto-

morphism of ∆. To summarise, we have:

Proposition 2.2. The extension mapping β 7→ β∗ induces an epimorphism

ε : Out ∆+ → Out ∆, [β] 7→ [β∗],

with ker ε = 〈[αr]〉 ∼= C2.

Corollary 2.1. If an oriented hypermap is reflexible, then so is its image

under any operation on oriented hypermaps.

Proof. This follows immediately from the fact that [αr] is in the centre of

Out ∆+, so that the corresponding reflection operation ωr is in the centre of

Ω+.

In fact, since [αr] is the only non-identity central element of Out ∆+, Corol-

lary 2.1 does not apply to any non-identity operation in Ω+ other than ωr.

Similarly, since the centre of Out ∆ is trivial, there is no analogous result for

operations on unoriented hypermaps.

3. Periodic elements of GL2(Z) and PGL2(Z).

The following result concerning periodic elements (those of finite order) is

well-known (see [9] for part (a)), but for completeness we will give a proof.
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Proposition 3.1. (a) The periodic elements of GL2(Z) consist of the iden-

tity, three conjugacy classes of involutions represented by the matrices

−I =

(

−1 0

0 −1

)

, T =

(

0 1

1 0

)

and XT =

(

−1 0

0 1

)

,

and one class each of elements of orders 3, 4 and 6 represented by

Y 2 =

(

−1 −1

1 0

)

, X =

(

0 −1

1 0

)

and Y =

(

0 −1

1 1

)

.

(b) The periodic elements of PGL2(Z) consist of the identity, three conjugacy

classes of involutions represented by the images x, t and xt of X, T and XT ,

and one conjugacy class of elements of order 3 represented by the image y of

Y .

Proof. (a) The presentation (2.1) shows that GL2(Z) is the free product of

two dihedral groups 〈X, T | X4 = T 2 = (XT )2 = 1〉 and 〈Y, T | Y 6 = T 2 =

(Y T )2 = 1〉 of order 8 and 12, amalgamating a Klein four-group generated

by X2 (= Y 3 = −I) and T . The torsion theorem for free products with

amalgamation [7] states that in such a group the periodic elements are the

conjugates of those in the factors. In our case, taking account of conjugacy

within the two dihedral groups, this implies that the periodic elements of

GL2(Z) are the conjugates of I, −I, T, XT, Y 2, X and Y . (Note that Y T ∼

Y 3T = X2T ∼ T .) These elements (and hence their conjugates) have orders

1, 2, 2, 2, 3, 4 and 6 respectively. The involutions −I, T and XT are mapped

to distinct elements in the abelianised group GL2(Z)ab ∼= C2 × C2, so they

lie in three different conjugacy classes. The remaining listed elements have

different orders, so they also lie in different classes.

(b) Since the natural epimorphism GL2(Z) → PGL2(Z) is finite-to-one,

the periodic elements of PGL2(Z) are the images of those in GL2(Z). Since
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conjugate elements of GL2(Z) have conjugate images in PGL2(Z), it is suf-

ficient to consider the images of I, −I, T, XT, Y 2, X and Y . The elements

±I map to the identity, while T, XT and X map to the involutions t, xt and

x in PGL2(Z). Since these have different images in PGL2(Z)ab ∼= C2 × C2,

they represent three different conjugacy classes. The elements Y and Y 2 map

to y and y2 = yt, giving a single conjugacy class of elements of order 3.

Remarks. 1. One can reverse the process in the proof of (b) to show how

the conjugacy classes of periodic elements in PGL2(Z) lift back to GL2(Z).

The class {1} lifts to the union of two classes {I} and {−I}. The classes

containing x, t and xt each lift to a single class containing X, T or XT , since

−X = X−1 = XT , −T = TX and −XT = (XT )X . The class containing y

lifts to the union of the two classes containing Y and Y 2, since −Y = Y −2 =

(Y 2)T .

2. One can also prove (b), independently of (a), by using the facts that

PSL2(Z), which has index 2 in PGL2(Z), is the free product of 〈x〉 ∼= C2

and 〈y〉 ∼= C3, or that PGL2(Z) is the free product of 〈x, t〉 ∼= C2 × C2 and

〈y, t〉 ∼= S3 amalgamating 〈t〉 ∼= C2.

3. Similar arguments show that the maximal finite subgroups of GL2(Z) are

the dihedral groups of order 8 and 12 conjugate to 〈X, T 〉 and 〈Y, T 〉, while

those of PGL2(Z) are their images, Klein four-groups conjugate to 〈x, t〉 and

dihedral groups of order 6 conjugate to 〈y, t〉.

The following result allows easy recognition of periodic elements in GL2(Z)

and PGL2(Z):

Proposition 3.2. (a) An element A ∈ GL2(Z) is periodic if and only if

(i)A = I or −I (in which cases A has order 1 or 2), or

(ii) A has determinant 1 and trace −1, 0 or 1 (in which cases A has order

3, 4 or 6), or
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(iii) A has determinant −1 and trace 0 (in which case A has order 2).

(b) An element a = ±A ∈ PGL2(Z) is periodic if and only if

(i)A = ±I (in which case a has order 1), or

(ii) A has determinant 1 and trace 0 or ±1 (in which cases a has order 2 or

3), or

(iii) A has determinant −1 and trace 0 (in which case a has order 2).

Proof. (a) By Proposition 3.1(a), any periodic element A is conjugate to ±I

(so that A = ±I) or to one of T, XT, Y 2, X or Y . Since determinant, trace

and order are invariant under conjugacy, it follows that in the last five cases

A satisfies (ii) or (iii). Conversely, if A satisfies (ii) or (iii) then by solving

the characteristic equation one sees that the eigenvalues of A are a pair of

distinct roots of unity of the stated order, so diagonalising A (over C) shows

that A also has this order.

(b) The proof for PGL2(Z) is similar, using Proposition 3.1(b).

This proof shows that in cases (ii) and (iii) of Proposition 3.2(a), the deter-

minant and trace of A determine its conjugacy class uniquely, except when

det A = −1 and tr A = 0, since in this case A could be conjugate to T or

XT . A similar phenomenon occurs in PGL2(Z), where the conjugacy classes

containing t and xt cannot be distinguished by determinant and trace. In

either case, the simplest way to determine the conjugacy class of an element

is to reduce its entries mod (2). The kernel of the natural epimorphism

GL2(Z) → GL2(Z/2Z), the principal congruence subgroup of level 2, con-

tains XT but not T , so A =
(

a b
c d

)

is conjugate to XT if b and c are even (so

a and d are odd), and otherwise A is conjugate to T . The same criterion

determines whether ±A ∈ PGL2(Z) is conjugate to xt or t.
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4. Periodic operations on oriented hypermaps

Using the isomorphism GL2(Z) ∼= Out ∆+ = Ω+ one can interpret the

elements of GL2(Z) as operations on oriented hypermaps. We will consider

the operation corresponding to a representative of each of the conjugacy

classes listed in Proposition 3.1(a). Unfortunately, the extension Aut ∆+ of

Inn ∆+ by Out ∆+ is not split, so there is no single subgroup of Aut ∆+ which

provides representatives of the required outer automorphism classes: instead,

one has to make arbitrary choices of representatives.

The automorphisms

αX : ρ2 7→ ρ−1
0 , ρ0 7→ ρ2 and αT : ρ2 7→ ρ0, ρ0 7→ ρ2

used in the proof of Proposition 2.1 satisfy the relations

α4
X = α2

T = (αXαT )2 = 1,

and generate a dihedral group of order 8 in Aut ∆+ which is mapped iso-

morphically into Out ∆+. We can therefore use the elements of this group

as representatives of the corresponding outer automorphism classes, and in

particular those classes corresponding to the periodic elements X,−I, T and

XT in Proposition 3.1(a).

As in the proof of Proposition 2.1, the outer automorphism class corre-

sponding to the matrix X is represented by the automorphism αX : ρ2 7→

ρ−1
0 , ρ0 7→ ρ2 of order 4; the corresponding operation ωX ∈ Ω+ transposes

hypervertices and hyperfaces, reversing the orientation around the latter.

This operation is conjugate (under ωT ) to its inverse, which also transposes

hypervertices and hyperfaces but reverses the orientation around the former.

The class corresponding to −I is represented by the automorphism α−I =

α2
X = αr of ∆+ inverting ρ2 and ρ0 (see Example 2). This is the restriction
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to ∆+ of the inner automorphism ιr1
of ∆ induced by r1, and the correspond-

ing operation ω−I = ω2
X = ωr on oriented hypermaps simply reverses their

orientation.

As in the proof of Proposition 2.1, the class corresponding to T is repre-

sented by the automorphism αT transposing α2 and α0. The corresponding

operation ωT ∈ Ω+ is duality, transposing hypervertices and hyperfaces while

preserving hyperedges and orientation; among its conjugates are the other

two dualities, transposing hyperedges with hypervertices or hyperfaces, and

the operation ω−T which transposes hypervertices and hyperfaces while re-

versing orientation (see §6 for a further discussion of duality).

The class corresponding to XT is represented by the automorphism αXT =

αXαT inverting ρ2 and fixing ρ0; this corresponds to a ‘twisting’ operation

ωXT = ωXωT which reverses the orientation around the hyperfaces but pre-

serves it around the hypervertices. This operation is one of six conjugate

twisting operations, each of which reverses the orientation around hyperver-

tices, hyperedges or hyperfaces, while preserving it around one other of these

three constituents of a hypermap. These twisting operations can change the

valencies of the third constituent, and therefore (like ωX) they can change

the type and the genus of a hypermap, whereas these are all preserved by

ω−I and ωT .

As in the preceding examples, the matrix Y 2 of order 3 can also be repre-

sented by an automorphism of the same order, namely

αY 2 : ρ2 7→ ρ−1
0 ρ−1

2 = ρ1, ρ0 7→ ρ2.

This permutes ρ2, ρ1 and ρ0 in a 3-cycle, thus inducing the triality operation

ωY 2 which permutes hyperfaces, hyperedges and hypervertices in a 3-cycle;

this operation is conjugate to its inverse.

In the case of the matrix Y of order 6, however, we cannot find a corre-

sponding automorphism of the same order since, as shown by Meskin [9], F2
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has no automorphisms of order 6. Instead, we must use an automorphism

αY ∈ Aut ∆+ of infinite order such that [αY ] has order 6 in Out ∆+: for

instance, we can choose the automorphism

αY : ρ2 7→ ρ−1
0 , ρ0 7→ ρ2ρ0 = ρ−1

1

appearing in the proof of Proposition 2.1, so that α2
Y = αY 2 ◦ ι−1

ρ1
, α3

Y =

α−I ◦ ι−1
ρ1

and α6
Y = ι−2

ρ1
where ιρ1

is the inner automorphism induced by ρ1.

The corresponding operation ωY sends hyperfaces and hypervertices to hy-

pervertices and hyperedges, reversing the orientation around each. Its powers

ω2
Y , ω3

Y and ω6
Y induce the operations ωY 2, ω−I and the identity operation ωI .

Example 4. The icosahedron, an orientably regular hypermap of type

(5, 2, 3), can be regarded as a permutation representation ∆+ → G = A5

such as

ρ0 7→ (1, 2, 3, 4, 5), ρ1 7→ (1, 2)(3, 4), ρ2 7→ (2, 5, 4).

Applying ωXT , we have ρ0 7→ (1, 2, 3, 4, 5) again but now ρ2 7→ (2, 5, 4)−1 =

(2, 4, 5), so ρ1 = ρ−1
0 ρ−1

2 7→ (1, 4, 3, 5, 2), giving an orientably regular hyper-

map of type (5, 5, 3). Repeated use of this type of calculation determines the

orbits O1 and O2 in Example 3.

This section has shown how the periodic elements of GL2(Z), such as X, Y

and T , induce operations on oriented hypermaps. Since these three elements

generate GL2(Z), this allows one to find the operation ωA corresponding to

any A ∈ GL2(Z): first one can use elementary row operations to express A

as a word in the generators X, Y and T (see §8), and then by replacing these

with αX , αY and αT , or with ωX , ωY and ωT , one can find an automorphism

αA of F2 acting as A on F ab
2 , together with the corresponding operation ωA

on oriented hypermaps. Of course, αA is not uniquely determined by A, but

any two such automorphisms differ by an inner automorphism of F2, so ωA

is unique.
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5. Periodic operations on all hypermaps

In a similar way, the isomorphism PGL2(Z) ∼= Out ∆ = Ω and Proposi-

tion 2.1(b) can be used to interpret the periodic elements of PGL2(Z) as

operations on all hypermaps, ignoring orientation if it exists. These oper-

ations are induced by automorphisms of ∆ which are the extensions of the

automorphisms of ∆+ used in the preceding section.

The involution x corresponds to the outer automorphism class of ∆ con-

taining the automorphism

αx : r0 7→ r2, r1 7→ r1, r2 7→ r1r0r1

used in the proof of Proposition 2.1. This restricts to the automorphism

αX of ∆+, and the corresponding operation ωx acts on all hypermaps as the

operation ωX described in §4, transposing hypervertices and hyperfaces, and

reversing orientation around the latter. Then α2
x is the inner automorphism

ιr1
, which induces the trivial operation on unoriented hypermaps though it

acts on oriented hypermaps as orientation-reversal ω−I .

The involution t is represented by the automorphism

αt : r0 7→ r1r2r1, r1 7→ r1, r2 7→ r1r0r1

of ∆, which restricts to αT on ∆+; this is the composition of transposing r0

and r2 with conjugation by r1, so the corresponding operation ωt is the duality

operation ω02 transposing hyperfaces and hypervertices (see Example 1).

The involution xt is represented by the automorphism

αxt : r0 7→ r1r0r1, r1 7→ r1, r2 7→ r2,

which restricts to αXT on ∆+; as before, this corresponds to a twisting op-

eration ωxt which preserves the hypervertices and reverses the orientation

around each hyperface.
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The element y is represented by the automorphism

αy : r0 7→ r2r1r2, r1 7→ r2, r2 7→ r2r0r2.

which restricts to αY on ∆+. This is the composition of the 3-cycle (r0, r1, r2)

with ιr2
, so the corresponding operation ωy acts on isomorphism classes of

hypermaps by permuting hypervertices, hyperedges and hyperfaces in a 3-

cycle (see Example 1).

The remarks at the end of §4 also apply here, with x, y and t replacing X, Y

and T , allowing one to determine an automorphism αa and the operation ωa

corresponding to any element a = ±A ∈ PGL2(Z).

6. Duality operations

The classical duality for maps transposes vertices and faces, and its most

obvious extension to oriented hypermaps is the operation ωT , induced by the

automorphism

αT : ρ2 7→ ρ0, ρ0 7→ ρ2

of ∆+ which sends ρ1 = ρ−1
0 ρ−1

2 to ρ−1
2 ρ−1

0 = ρ−1
2 ρ1ρ2. This operation is

conjugate in Ω+, under ωY and ω2
Y , to the other two dualities of oriented

hypermaps which transpose hyperedges with hypervertices or hyperfaces by

transposing ρ1 with ρ0 or ρ2.

Similarly, in the case of unoriented hypermaps, the natural definition of

duality is the operation ω02 induced by the automorphism

α02 : r0 7→ r2, r1 7→ r1, r2 7→ r0

of ∆ (see Example 1). This is conjugate in Ω to two other duality operations

ω01 and ω12 which transpose hyperedges with hypervertices or hyperfaces.



HYPERMAP OPERATIONS OF FINITE ORDER 15

However the restriction α+
02 of α02 to ∆+ is not αT but rather the automor-

phism

α−T = αT ◦ α−I = α−I ◦ αT : ρ2 → ρ−1
0 , ρ0 → ρ−1

2 ,

corresponding to the matrix −T , which inverts ρ1. This induces on ori-

ented hypermaps the operation ω−T = ωT ◦ ω−I = ω−I ◦ ωT which combines

the classical duality ωT with a reversal of orientation. Similarly the duality

operations ω01 and ω02, when restricted to oriented hypermaps, reverse the

orientation. (This problem does not arise in connection with the two tri-

ality operations corresponding to the 3-cycles in S3, since their restrictions

preserve orientation.)

The two duality operations ωT and ω−T on oriented hypermaps are distinct,

but since they are conjugate in Ω+ (under ωX , since TX = −T ) many of their

properties are similar: for instance, they give rise to the same generalised

chirality groups, as defined in §7. The same applies to the two other pairs

of duality operations on oriented hypermaps, transposing hyperedges with

hypervertices or hyperfaces: in each case the two operations differ by an

orientation-reversal, and are conjugate to each other in Ω+.

7. Generalised chirality groups

Let ω be an operation of order 2 on hypermaps or on oriented hypermaps,

induced by an automorphism α of a group Γ = ∆ or ∆+ respectively, so

that α is not inner but α2 is, and let H be a regular or orientably regular

hypermap corresponding to a normal subgroup H of Γ. Then Hω is the hy-

permap corresponding to the normal subgroup Hα, and since α transposes H

and Hα and preserves the normal subgroups HHα and H ∩Hα, the quotient

groups HHα/H, HHα/Hα, H/H ∩ Hα and Hα/H ∩ Hα are all isomorphic

to each other. We call this common quotient group the generalised chirality
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group χω(H) of H corresponding to ω; it is independent of the choice of an

automorphism α representing ω since any two of them differ by an inner au-

tomorphism of Γ. The order |χω(H)| of this group is the generalised chirality

index of H. Since HHα and H ∩ Hα correspond to the largest ω-invariant

regular quotient of H and the smallest ω-invariant regular covering of H,

both the generalised chirality group and the index are measures of the extent

to which H fails to be ω-invariant. In the cases where ω is the chirality or

duality operation ω−I or ωT on oriented hypermaps, χω(H) is respectively

the chirality group studied in [2] or the duality group studied in [11].

If ω and ω′ are operations induced by automorphisms α and α′ of Γ, and are

conjugate, say ω′ = τωτ−1 for some operation τ induced by an automorphism

β ∈ Aut Γ, then

χω′(H) ∼= HHα′

/H = HHβαβ−1

/H ∼= HβHβα/Hβ ∼= χω(Hτ ).

Thus the groups which can arise as generalised chirality groups for two con-

jugate operations are the same, so this set of groups depends only on the

conjugacy class of an operation. In particular, the three duality operations

ωij on hypermaps are conjugate to each other in Ω, so they give rise to the

same generalised chirality groups. The same applies to the six duality oper-

ations on oriented hypermaps (two for each pair i, j, preserving or reversing

orientation), since they are all conjugate to each other in Ω+, as shown in

§6.

For instance, it is shown in [2] that every finite abelian group can appear

as the chirality group χ−I(H) of a finite hypermap H; a similar argument in

[11] gives the corresponding result for the duality operation ωT , and hence

(by conjugacy) for all six duality operations on oriented hypermaps.

The notion of a generalised chirality group or index does not extend so

easily to the case where ω has order greater than 2. The natural analogues

of HHα and H∩Hα would then be the group H〈α〉 generated by all the images
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Hαi

of H under powers of α, and the group H〈α〉 which is the intersection

of those images. These correspond to the largest ω-invariant quotient of

H and the smallest ω-invariant covering of H. In general, the upper and

lower generalised chirality groups χω(H) = H〈α〉/H and χω(H) = H/H〈α〉

need not be isomorphic. For instance, for each prime p ≥ 5 the group L :=

L2(p) = PSL2(Z/pZ) is a simple quotient of the modular group PSL2(Z)

(by its principal congruence subgroup of level p), and hence of ∆+. The

corresponding kernel H is normal not only in ∆+ but also in ∆ since L

has an automorphism inverting both of its generators, so the corresponding

hypermap H is reflexible. (In fact, AutH ∼= L × C2 or PGL2(p) as p ≡ 1 or

p ≡ −1 mod (4).) If we take ω to be the triality operation ωy of order 3 then

since H has type (2, 3, p) the three hypermaps H, Hω and Hω2

are mutually

non-isomorphic. It follows from the simplicity of L that HHα = ∆+ and

∆+/H ∩ Hα ∼= L × L. Since L is non-abelian and simple the two direct

factors of L × L are its only normal subgroups with quotients isomorphic to

L, so Hα2

6≥ H ∩ Hα. Thus ∆+/H〈ω〉
∼= L × L × L and so χω(H) ∼= L × L

whereas χω(H) ∼= ∆+/H ∼= L. In this case, |χω(H)| > |χω(H)|, but on the

other hand, if we take K to be the hypermap corresponding to H ∩Hα then

χω(K) ∼= L and χω(K) ∼= L × L, so the inequality is reversed.

8. Canonical forms

Although we are mainly concerned here with operations of finite order, the

majority of operations in Ω or Ω+ have infinite order: in each case, for in-

stance, they form infinitely many conjugacy classes, whereas Proposition 3.1

shows that there are only finitely many conjugacy classes of operations of fi-

nite order. However, each of these groups is generated by operations of finite

order, for instance ωx, ωy, ωt and ωX , ωY , ωT respectively. We can use the free
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product structure of PSL2(Z) to give a unique expression, or canonical form,

for each element of Ω and Ω+ in terms of these generators.

The group PSL2(Z) is the free product of 〈x〉 ∼= C2 and 〈y〉 ∼= C3, so each

element a ∈ PSL2(Z) can be expressed as a unique reduced word

a = w(x, y) = xδ1yε1 . . . xδkyεk (8.1)

in x and y, where ‘reduced’ means that there is no internal cancellation, so

in this case δ1 = 0 or 1, δ2 = . . . = δk = 1, each ε1, . . . , εk−1 = 1 or −1,

and εk = 0, 1 or −1. Since PGL2(Z) is a semidirect product of PSL2(Z) by

〈t〉 ∼= C2, each element a ∈ PGL2(Z) \ PSL2(Z) has the form a = w(x, y)t

for a unique reduced word w(x, y). Thus each element a ∈ PGL2(Z) has the

unique form

a = w(x, y)tη (8.2)

where w(x, y) is a reduced word and η = 0 or 1; by the isomorphism a 7→ ωa

between PGL2(Z) and Ω, the same is true for each operation ωa ∈ Ω, with

ωx, ωy and ωt replacing x, y and t.

Similarly, if A ∈ GL2(Z) then its image a ∈ PGL2(Z) under the natural

epimorphism GL2(Z) → PGL2(Z) has a canonical form (8.2), so A has a

canonical form

A = ±w(X, Y )T η (8.3)

where again η = 0 or 1 and w is a reduced word in the sense defined above,

with the same restrictions on the exponents δi and εi. This gives a corre-

sponding canonical form for each operation ωA ∈ Ω+.

There is a simple algorithm for putting any element of GL2(Z) or PGL2(Z),

and hence any operation in Ω+ or Ω, into canonical form. If A ∈ GL2(Z)

then multiplying A on the left by suitable powers of the matrices
(

1 1

0 1

)

= −XY and

(

1 0

1 1

)

= XY −1
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corresponds to using row operations to reduce A to ±XδT η for some δ, η ∈

{0, 1}. This yields an equation of the form W (X, Y )A = ±T η for some

word W in X and Y , with η = 0 or 1, so A = ±W (X, Y )−1T η, and a finite

process converts this expression to the form (8.3) where w is a reduced word.

Essentially the same algorithm also puts any element a = ±A ∈ PGL2(Z)

into its canonical form (8.2).

Example 5. Let

A =

(

−2 −3

1 2

)

∈ GL2(Z).

The reduction process
(

1 1

0 1

)(

−2 −3

1 2

)

=

(

−1 −1

1 2

)

,

(

1 0

1 1

)(

−1 −1

1 2

)

=

(

−1 −1

0 1

)

,

(

1 1

0 1

)(

−1 −1

0 1

)

=

(

−1 0

0 1

)

gives

(−XY )(XY −1)(−XY )A = XT.

Hence

A = (−XY )−1(XY −1)−1(−XY )−1XT

= Y −1X−1Y X−1Y −1X−1XT = Y −1XY XY −1T

in canonical form (8.3), where we have twice replaced X−1 with −X. Re-

placing the generators X, Y and T with their corresponding operations gives

the canonical form for the operation ωA.

One can characterise the operations of finite order in Ω and in Ω+, and

determine their conjugacy classes, in terms of these canonical forms, though it

is notationally simpler to work with PGL2(Z) and GL2(Z). If a ∈ PSL2(Z),

so that η = 0 and a = w(x, y) in (8.2), then the torsion and conjugacy

theorems for free products [7] imply that a has finite order if and only if w



20 G. A. JONES AND DANIEL PINTO

can be cyclically reduced (by successively cancelling mutually inverse first

and last terms) to a power of x or y, in which case a is conjugate in PSL2(Z)

to that power. This is equivalent to w being the empty word (so that a = 1),

or to w having the form w1(x, y)zw1(x
−1, y−1) where z = x, y or y−1, with

w1 a reduced word not ending in a power of z, and w1 the reversed word of

w1. Of course, the conjugacy classes of y and y−1 in PSL2(Z) form a single

conjugacy class in PGL2(Z) since yt = y−1.

An element a = w(x, y)t ∈ PGL2(Z) \ PSL2(Z) has finite order if and

only if the element a2 ∈ PSL2(Z) has finite order. Now a2 = (wt)2 = wtw =

w(x, y−1)w(x, y), with even and zero exponent sums in x and y, so this cannot

be cyclically reduced to x, y or y−1. It follows that a has finite order if and

only if a2 can be cyclically reduced to 1, that is, a2 = 1. This equivalent to

w(x, y−1) = w(x, y)−1 = w(x−1, y−1) = w(x, y−1) where w is the reverse word

of w, and by the normal form theorem for free products [7] this happens if

and only if w = w, that is, w is a palindrome. By conjugating a with suitable

powers of x and y, and then putting the resulting elements in the canonical

form w′t with w′ ∈ PSL2(Z), one can reduce the wordlength to the unique

minimal cases where w′ = 1 or x: for instance, conjugating a = yt with

y−1 gives w′t = y.yt.y−1 = y2.yt = t. It follows that a is conjugate to xt if

the palindrome w has odd length with middle letter x, and otherwise a is

conjugate to t.

In the case of GL2(Z), an element A with canonical form (8.3) has finite

order if and only if its image a = ±A in PGL2(Z), with canonical form (8.2),

has finite order. The above criteria can be therefore applied to A by first

applying them to a and then using Remark 1 of §3 to deduce the conjugacy

class of A from that of a. The only possible ambiguity is when a is conjugate

to y; in this case A is conjugate to Y or Y 2 as A has canonical form w(X, Y )

or −w(X, Y ) in (8.3), since these elements have order 6 and 3 respectively.
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Example 6. If A is as in Example 5 then conjugating by y−1, then x, and

then y−1 gives

a = y−1xyxy−1t ∼ xyxy−1ty−1 = xyxy−1yt = xyxt ∼ yxtx = yx2t = yt ∼ y3t = t,

so A is conjugate to T (see also Proposition 3.2 and the remarks following

it) and hence ωA is conjugate to the duality operation ωT .
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