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Abstract: In this paper we study the numerical behavior of a diffusive-reactive
system with a control source point. The idea was to first consider the problem with
a fixed source point and then, according to the numerical results obtained, estimate
the objective function adjusting a special class of functions using least squares.
With this procedure, we study the behavior of a nonlinear system in a easy way.
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1. Introduction

In [1] the authors studied the behavior of an optimal solution of a diffu-
sive equation with a discrete source term. Here, the goal is to obtain the
optimal solution in a more general framework. Now the problem is a system
of diffusive-reactive nonlinear partial differential equations with a discrete
source term, which the position we want to control. In other words, our aim
is to localize the source in order to maximize a certain objective function. In
Section 2 we start by considering the differential problem that describes the
physical phenomena with the assumption that the source term has a fixed
position. We discretize the problem using a full discrete finite difference
scheme and establish sufficient conditions for the convergence of the numeri-
cal solution to the exact one. In Section 3 a procedure to obtain the optimal
position of the source term is presented. The procedure may be divided in
two phases. Based on numerical experiments made for a fixed source point,
we first introduce a family of curves, depending on a small set of parameters,
that approximate the solution of the differential system. The parameters
that identify the curves are obtained by least squares. We must note that
the position of the source point is fixed but that position has influence on
the value of the adjusted parameters. In the second phase the parameters
are obtained in function of the position of the source. The optimal solution
is obtained by injecting the parameters in the objective function.
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2. Fixed source point

2.1. The problem. We are concerned with a partial differential diffusion-
reaction system with a source term written in the form [3]






∂u

∂t
= α1

∂2u

∂x2
− βuv + q(t)δ(x − η), x ∈]0, L[, t ∈]0, T ],

∂v

∂t
= α2

∂2v

∂x2
− βuv, x ∈]0, L[, t ∈]0, T ],

∂w

∂t
= α3

∂2w

∂x2
+ βuv, x ∈]0, L[, t ∈]0, T ],

(1)

where L and T are two positive real constants and δ is the Dirac delta
function. The dependent variables u, v and w could be interpreted as the
concentration of a given substance, αi > 0, i = 1, 2, 3, its diffusion coefficient
(u and v are the reagent and w the product of the reaction), and β the
velocity of the reaction. The function q(t) indicates how much u is added to
the system at point x = η.

In order to define the numerical method, we first replace the Dirac delta
function in (1) by a suitable discrete delta function dǫ using the mollifier
ideas [2], [4]. One possibility, consists in choosing the Peskin’s discrete delta
function, or “hat function”, with support ] − ǫ, ǫ[

dǫ(x) =

{
(ǫ − |x|)/ǫ2, |x| ≤ ǫ,
0, otherwise,

obtaining the approximate problem




∂u

∂t
= α1

∂2u

∂x2
− βuv + q(t)dǫ(x − η), x ∈]0, L[, t ∈]0, T ],

∂v

∂t
= α2

∂2v

∂x2
− βuv, x ∈]0, L[, t ∈]0, T ],

∂w

∂t
= α3

∂2w

∂x2
+ βuv, x ∈]0, L[, t ∈]0, T ].

(2)

Let us now consider the boundary conditions

u(0, t) = c1
0 and

∂u

∂x
(L, t) = 0, t ∈ [0, T ], (3)

v(0, t) = c2
0 and

∂v

∂x
(L, t) = 0, t ∈ [0, T ], (4)
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w(0, t) = c3
0 and

∂w

∂x
(L, t) = 0, t ∈ [0, T ], (5)

as well as the initial condition

u(x, 0) = 0, v(x, 0) = 0, w(x, 0) = 0, ∀x ∈]0, L[. (6)

Note that, from equations (2)–(6) it is possible to compute u, v and w as
function of q and c1

0, c2
0, and c3

0.

2.2. Discrete solution. Convergence. In order to study the finite dif-
ference scheme which discretize the initial boundary value problem (IBVP)
(2)–(6) we consider the approach suggested by Verwer and Sanz-Serna [6].
To prove the convergence of the discretized solution to the exact solution
we need to establish the consistency and stability of both spatial and time
discretization.

2.2.1. Spatial discretization. Let us consider the space discretization on the
equidistant grid

Ωh = {x0 = 0, xj = xj−1 + h, j = 2, ..., M − 1, xM = L, h =
L

M
},

for a given integer M ≥ 2. Consider now the standard second order fi-
nite differences for discretizing the second order derivatives and represent by
Uj(t), Vj(t) and Wj(t) the resulting approximations for u(xj, t), v(xj, t) and
w(xj, t), j = 1, ..., M . The semi-discrete, continuous in time approximation
to the IBVP (2)–(6) is given by, j = 1, ..., M ,




d

dt
Uj = α1h

−2(Uj+1 − 2Uj + Uj−1) − βUjVj + q(t)δh(xj − η), t ∈]0, T ],

d

dt
Vj = α2h

−2(Vj+1 − 2Vj + Vj−1) − βUjVj, t ∈]0, T ],

d

dt
Wj = α3h

−2(Wj+1 − 2Wj + Wj−1) + βUjVj, t ∈]0, T ],

(7)
where U0 = c1

0, V0 = c2
0, W0 = c3

0 and UM+1 = UM−1, VM+1 = VM−1 and
WM+1 = WM−1, according to the boundary conditions. The source point η
should be one of the discretization points, for instance, η = xp, p ∈ {1, ..., M}.
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Let Yj = [Uj, Vj, Wj]
T and Y = [Y T

1 , ..., Y T
M ]T . Then, the system (7) may

be written in the form

d

dt
Y = F (t, Y ) = (K + βG(Y ))Y + Q(t) + c̄0, (8)

where K is the block tridiagonal matrix

K = h−2




−2A A
A −2A A

. . . . . . . . .
A −2A A

2A −2A




, A =




α1

α2

α3


 ,

and

G(Y ) = diag (G1(Y1), ..., GM(YM)) , Gj(Yj) =




−Vj 0 0
0 −Uj 0
Vj 0 0


 , j = 1, .., M,

Q(t) is the vector of all components equal to zero except the one that corre-

sponds to the position of Up where it is equal to q(t)
h

and c̄0 = [c1
0, c

2
0, c

3
0, 0, . . . , 0]T .

Let us prove the convergence of Y to yh = [uh, vh, wh]
T in the maximum

norm ‖ · ‖∞, where yh(t) = Rhy(x, t), Rh is the natural restriction operator
to the spatial grid and y = [u, v, w]T is the exact solution of the IBVP (2)–(6)
written in the form




∂y

∂t
= A

∂2y

∂x2
+ βg(y)y + q(t)dh(x − η), x ∈]0, L[, t ∈]0, T ],

y(0, t) = c0,
∂y

∂x
(L, t) = 0, t ∈]0, T ],

y(x, 0) = 0, x ∈]0, L[,

(9)

where c0 = [c1
0, c

2
0, c

3
0]

T , q̄(t) = [q(t), 0, 0]T and g(y)y = [−uv,−uv, uv]T .
Following Verwer and Sanz-Serna [6], let us consider the logarithmic norm

µ∞[·] associated to the maximum norm, which is defined, for a real square
matrix B by

µ∞[B] = max
i

(bii −
∑

j 6=i

|bij|).

Let

Sh(t) = {ξ : ξ = (1 − θ)yh(t) + θY (t)}
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and µmax defined by

µmax ≥ max
ξ∈Sh(t)

µ∞[F ′(t, ξ)], t ∈ [0, T ],

where

F ′(t, Y ) = K + βdiag(Gj), Gj =




−V j −U j 0
−V j −U j 0
V j U j 0


 , j = 1, .., N,

represents the Jacobian matrix of F and Y is in the segment Sh(t). If such
µmax exists then we may conclude that

‖yh(t) − Y (t)‖∞ ≤ C(t, µmax)‖Th(t)‖∞, t ∈ [0, T ],

where

C(t, µmax) =
eµmax − 1

µmax

depends only on t and µmax and Th(t) is the local truncation error defined by

Th(t) = F (t, yh(t)) −
d

dt
yh(t).

So, if µmax exists and the discretization is consistent, i.e., ‖Th(t)‖∞ → 0 as
h → 0 uniformly in t, then ‖yh(t) − Y (t)‖∞ → 0.

If the solution Y of (7) has fourth order piecewise continuous derivatives
and since we define our grid in order to contain the injection points, we obtain
a second order approximation in the form (see [2], [4])

d

dt
Yj(t) = Aδ2Yj(t) + O(h2), j ∈ {1, . . . , M}\{p},

d

dt
Yp(t) = Aδ2Yp(t) +

q(t)

h
+ O(h2),

where δ2 represents the second order centered finite difference operator and
p is such that xp = η.

We will now prove the stability of the spatial discretization by proving the
existence of µmax. Let Y be a point in the segment Sh(t). Since µ∞[K] = 0,
we have

µ∞[F ′(t, Y )] ≤ βµ∞[diag(Gj)] ≤ β max
j

(U j + V j),

which proves the existence of a µmax independent of h.
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2.2.2. Time discretization. Let us consider the explicit Euler scheme to
perform the time integration. Then, the approximations to the solution of
(8) on the uniform grid defined in [0, T ] with step size ∆t, i.e., t0 = 0, tN = T ,
and ∆t = tn − tn−1, n = 1, . . . , N , are given by

Y n+1 = Y n + ∆tF (tn, Y n), n = 0, ..., N − 1. (10)

Since the method is consistent, to prove the convergence we must prove that
the method is C-stable with respect to the maximum norm. The method is
C-stable if a positive real number ∆t0 = ∆t0(h) and a real constant C0,
independent of ∆t and h exists, such that, for each ∆t ∈]0, ∆t0] and each

two solutions of the method Y and Ỹ

‖Y n+1 − Ỹ n+1‖∞ ≤ (1 + C0∆t)‖Y n − Ỹ n‖∞.

In our case,

Y n+1 − Ỹ n+1 = (I + ∆tF ′(tn, ξ))(Y n − Ỹ n),

where ξ = θY n + (1 − θ)Ỹ n, θ ∈ [0, 1], and I is the identity matrix. Then

‖Y n+1 − Ỹ n+1‖∞ = ‖I + ∆tF ′(tn, ξ)‖∞‖Y n − Ỹ n‖∞.

If

∆t ≤
h2

2α
, α = max

i=1,2,3
{αi}, (11)

we may easily conclude that C0 = µmax and so the method is C-stable. We
proved the following result.

Theorem 1. Let us consider y the solution of the differential system (9) and
Y the numerical approximation given by the numerical method

Y n+1 = Y n + ∆t ((K + βG(Y n))Y n + Qn + c̄0) , n = 0, ..., N − 1, (12)

where Qn = Q(tn), n = 0, ..., N . If the stability condition (11) holds, the
method is convergent, i.e,

lim
h,∆t→0

‖y(ti, xj) − Y j
i ‖∞ = 0.
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2.3. Numerical results. Let us consider the problem (9) with L = 5,
T = 1, α = [2, 1, 2]T , β = 0.5, c0 = [40, 100, 0]T and q(t) = 40, for t ∈ [0, 1].
Using the numerical scheme (12) with h = 1/10 and ∆t = 1/1000 we obtain
its numerical solution. We plot in Figure 1 the variation of u, v and w
concentration for x ∈ [0, 5], t ∈ [0, 1] and η = 2.

To illustrate the influence of the source point location, η, into the concen-
tration of u, v and w, we apply the method for two different values of η and
t = 1. The results obtained are plotted in Figure 2.

Figure 1. Spatial and time variation of u, v and w concentra-
tion (η = 2)

3. Optimized source point

3.1. Objective function. Consider now the problem (2)–(6) being y(x, t̄; η)
its exact solution at time t̄ ∈]0, T ]. An approximation to this solution can be



8 A. ARAÚJO, F. PATRÍCIO AND J. L. SANTOS

found using directly the method (12), t̄ ∈]0, T ]. Let η be the control variable,
which can be calculated solving the optimization problem defined by

max
η∈[0,L]

f(u, v, w, η) =

∫ L

0

w(x, t̄)dx, t̄ ∈]0, T ], (13)

and subjected to (2)–(6). This corresponds to maximize the total amount of
substance w produced at time t̄.
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Figure 2. u, v and w concentration at time t = 1, for different
locations of the source point

Using (12) and a discretization of (13) we can obtain an aproximation to
the optimal value for η. This procedure requires a large computational effort
to find the optimal value, since both time and space discretizations origin
a huge number of variables (3MN + 1) which do not allow an acceptable
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precision. Our aim is to follow a new strategy that reduce the computational
costs.

3.2. The algorithm. In order to solve the problem (2)–(6), (13) we first dis-
cretize the differential system (2)–(6) as explained in Section 2 and compute
the solution Y n, n = 1, ..., M , from (12). Next, we aproximate the function f
in order to obtain an explicit expression to be optimized. With this purpose,
we considered a family of parameterized functions that are well fitted to the
numerical results obtained with fixed η. The parameters, depending on η,
can be computed using the least squares technique. Then, with several values
for η, we obtain curves that approximate the parameters as function of η.
In this way we obtain a function, depending only on η, that approximates
f and which can be easily optimized using numerical methods [5], reducing
significantly the computational effort.

The steps mentioned before define the algorithm that we propose for the
solving problem (2)–(6), (13) and can be easily implemented.

The choice of a suitable family of functions is essential for a correct fitting.
In the present case, and according to the numerical results obtained in the
last section, we propose the family of functions

ȳ(x; η) := [ū(x; η), v̄(x; η), w̄(x; η)]T = [c1
0e

−b1x, c2
0e

−b2x, (a3x + c3
0)e

−b3x]T ,
(14)

to approximates y(x, t̄; η). The parameters b1, b2, b3 and a3 depend on η but
can be computed using the least squares technique. The problem can now
be solved with a great reduction of calculations.

As shown in Figure 3, where, for t̄ = 1 and η = 2.0, the exact solution
y(x, t̄; η) as well as the corresponding numerical solution ȳ(x; η) are plotted,
the family of functions (14) is a good choice. The parameters b1, b2, b3 and
a3, for η = 2.0, were obtained by the least squares technique. For a more
detailed study of the error see Table 1, which also contains the error for
η = 0.1. Here, ‖ · ‖ is the euclidian norm and ȳh = [ūh, v̄h, w̄h]

T = Rhȳ(x; η),
where Rh is the restriction operator to the mesh points and UN , V N , WN

are the components of Y N .
In conclusion, the optimal value for η may be obtained by solving

max
η∈[0,L]

f(ȳ(x; η)) (15)
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Figure 3. Least squares approximation of y(x, 1; 2) by curves
of the type yfit := ȳ(x; 2).

||UN − ūh|| ||V N − v̄h|| ||W N − w̄h||

η = 0.1 0.1418 0.3985 0.1328
η = 2.0 0.2038 0.3709 0.1330

Table 1. Error for the fitted solution obtained by the least
squares method on the mesh points.

where ȳ(x; η) is the fitted function of Y n obtained by (12). So, replacing (14)
in (15) we obtain a funtion that depend only on η and will be denoted by

f̄(η) := f(ȳ(x; η)) =

∫ L

0

w̄(x; η)dx = a(η)(1 − e−b(η)L(1 + b(η)L))/(b(η)2).

(16)
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η 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

a(η) 95.609 95.435 94.752 94.235 94.019 94.000 94.059 94.127 94.173
b(η) 1.4206 1.4118 1.4052 1.4039 1.4066 1.4108 1.4146 1.4174 1.4191

||W N − w̄h|| 0.1312 0.1287 0.1304 0.1330 0.1343 0.1345 0.1342 0.1338 0.1335

Table 2. Variation of a and b, obtained by the least squares
procedure with η and the respective error in w.

η 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

f̄(η) 47.094 47.537 47.581 47.431 47.203 46.960 46.733 46.540 46.391
Iw̄(0, L) 47.059 47.547 47.646 47.469 47.182 46.902 46.682 46.532 46.450
Iw(0, L) 48.612 49.037 49.119 48.969 48.721 48.468 48.262 48.117 48.035

Table 3. Approximations of the objective function f : f̄ , exact

value of
∫ L

0 w̄(x; η)dx; Iw̄(0, L), approximation of
∫ L

0 w̄(x; η)dx by

the rectangular rule; Iw(0, L), approximation of
∫ L

0 w(x; t̄, η)dx
by the rectangular rule.

Here, a(η) and b(η) are the fitting coefficients for each η.

3.3. Numerical results. Let us return to the problem (2)–(6), where L, T ,
α, β, c0 and q(t) assume the same values as in Section 2.3. In that section we
obtained an approximation for the solution of the considered problem fixing
some values of η. Now we will obtain the optimal value of η by using the
described algorithm.

In what concern the parameters a(η) and b(η), for different values of η, we
obtained the values in Table 2. We note that the variation of the discrete
functions a(η) and b(η) are small.

In order to optimize (15), we need explicit formulae for a(η) and b(η)
which can be obtained by fitting the values in Table 2 by curves of type
µ1e

−µ2η + µ3η + µ4. Then we obtain an explicit expression of the objective
function f̄ .

Solving (15) we conclude that the best location for the source point is giving
by η = 1.317422 and the value of the objective function is f̄(η) = 47.595661.
These values are in agreement with the values in Table 3.
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4. Conclusion

In this paper we propose a method to approximate the solution an opti-
mal control problem which is difficult to solve. The procedure is based on
the synergy between the numerical methods and optimization. In short, the
numerical methods are used to deal with the differential equation and pro-
vide the data to approximate the objective function, using the least squares
method, which will be at last optimized.

Some numerical results are also present. The specific example considered
in this work can be interpreted in terms of chemical reactions [3].
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