BRANCHED COVERINGS OF LINKS WHOSE GEOMETRIC GRAPH CONTAINS ONE CYCLE

ANTÓNIO SALGUEIRO

Abstract: Let \(M, M' \) be compact, connected, oriented 3-manifolds and \(L' \) a link in \(M' \) with irreducible exterior \(E' \). We prove that if the geometric graph of \(E' \) has a single cycle then there exists at most one prime number \(d \) for which \(M \) is a cyclic covering of \(M' \), of order \(d \), branched over \(L' \).

Keywords: Group actions, cyclic branched coverings, orbifolds.
AMS Subject Classification (2000): 57M12, 57M25, 57M50.

1. Introduction

Let \(M, M' \) be compact connected oriented 3-manifolds. Thurston [3, Problem 3.16] asked for which manifolds \(M' \) every covering of \(M' \) by \(M \) has the same degree. Wang, Wu and Yu [4, 5] proved that the only 3-manifolds \(M' \) admitting a geometric decomposition that did not have this property are that those which are not covered by a product \((\text{surface}) \times S^1\) or by a torus bundle over \(S^1 \).

Now consider a link \(L' \) in \(M' \) and suppose that there are two finite groups \(G_1, G_2 \subset \text{Diff}^+(M) \), acting on \(M \), whose quotient is an orbifold with underlying space \(M' \), branched over \(L' \). We can similarly ask if the the degrees of \(G_1 \) and \(G_2 \) must be the same. There are explicit examples that show that these degrees can be different [1]. The simplest example is given by the cyclic rotations on \(S^3 \) around a trivial knot, whose quotients have the same topological type, and can have any degree. Similar examples occur for lens spaces. If we allow the degrees to be any integer we can exhibit several other examples for which these degrees are different. However, for prime degrees, we conjecture that this can only happen for lens spaces. In fact we have proved the following results [1, 2]:

Proposition 1.1. Let \(M \) and \(M' \) be compact orientable 3-manifolds and \(L' \) a link in \(M' \). If the geometric graph of the exterior of \(L' \) is a tree then there

Received August 7, 2009.
exists at most one prime number \(d \) for which \(M \) is a cyclic covering of \(M' \), of degree \(d \), branched over \(L' \).

Proposition 1.2. Let \(M \) and \(M' \) be compact orientable 3-manifolds and \(L' \) a link in \(M' \). If the geometric graph of the exterior of \(L' \) is complete then there exists at most one prime number \(d \) for which \(M \) is a cyclic covering of \(M' \), of degree \(d \), branched over \(L' \).

The trees and the complete graphs can be considered the extreme cases. In this paper we show that the degree is also determined in intermediate cases. More precisely, we consider the case where the geometric graph of the exterior of \(L' \) has one cycle. We prove the following result:

Proposition 1.3. Let \(M \) and \(M' \) be compact orientable 3-manifolds and \(L' \) a link in \(M' \). If the geometric graph of the exterior of \(L' \) has one cycle then there exists at most one prime number \(d \) for which \(M \) is a cyclic covering of \(M' \), of degree \(d \), branched over \(L' \).

The paper is organized as follows. In section 2 we review some results necessary to prove Proposition 1.3 and section 3 is devoted to the proof.

2. Preliminaries

Let \(M, M' \) be compact, connected, oriented 3-manifolds and \(L' \) a link in \(M' \) with irreducible exterior \(E' \). For \(i = 1, 2 \), let \(G_i = \langle g_i \rangle \) be two groups of orientation preserving diffeomorphisms of \(M \), of prime order \(d_i \), such that the quotient \(M/G_i \) induces a branched cyclic covering \(p_i : M \to O_i \) over an orbifold \(O_i \) of topological type \((M', L')\). Let \(\Gamma, \Gamma' \) be the geometric graphs of \(M \) and \(E' \). The actions of \(G_1, G_2 \) on \(M \) induce actions of the same degrees on \(\Gamma \) whose quotient is \(\Gamma' \) [1, 5].

We recall some results that we will be used in the proof of Proposition 1.3.

Proposition 2.1 ([1, Proposition 5.2]). If the graphs \(\Gamma \) and \(\Gamma' \) are isomorphic, then there exists at most a number \(d \) for which \(M \) is a covering of \((M', L')\) of degree \(d \).

We say that a covering \(p : M \to (M', L') \) is of type \((u, v)\) on a Seifert piece \(X \) of the geometric decomposition of \(M \) if each fiber of the quotient \(X/p \)
is covered by u fibers of the Seifert pieces of M and v is the degree of the restriction on the action on each regular fiber of X. Since we are considering prime degrees, if p has degree d, then on each Seifert piece, it is either of type $(1, d)$ or type $(d, 1)$.

Proposition 2.2 ([1, Proposition 5.3]). Let $p_i : M \to (M', L')$, $i = 1, 2$, be two cyclic branched coverings of prime degree. If p_1 and p_2 have the same type (u, v) for every Seifert piece of the geometric decomposition of M, then $d_1 = d_2$.

The following proposition on distances is essential to the proof of Proposition 1.3, since it allows to compare distances in Γ and Γ'.

Proposition 2.3 ([1, Lemma 5.6]). If a vertex v of Γ is G_i-invariant, then $d(v, w) = d(p_i(v), p_i(w))$, for every vertex w of Γ.

3. **Proof of Proposition 1.3.**

We begin the proof with the simplest case, that is, when Γ' is a cycle. This will be the base case for an argument by induction that will prove the general case.

Proposition 3.1. Let Γ' be a cycle. Then p_1 and p_2 have the same degree.

Proof. By Proposition 2.1, we can assume that Γ has vertices of degree greater than 2. Let S be the set of these vertices. Now suppose $d_1 < d_2$. Since d_1, d_2 are prime, then the degree of each vertex of S is $2d_1 = d_2 + 1$ and S has at least two such vertices. Since $d_1 < d_2$, then S has exactly two such vertices, whose images by each p_i are opposite vertices of Γ', which has necessarily even length. Then both actions are of type $(d_i, 1)$ on every vertex which contradicts Proposition 2.2. Therefore we conclude that $d_1 = d_2$. □

The induction step will consist in removing the terminal vertices. To do this we need the following lemma, which we will prove after showing how it implies the general case.
Lemma 3.2. If p_1 and p_2 have different degrees, then for each terminal vertex v' of Γ', $p_i^{-1}(v')$ has only terminal vertices, $i = 1, 2$.

Proposition 3.3. If Γ' contains only one cycle, then p_1 and p_2 have the same degree.

Proof. Let T' be the set of terminal vertices of Γ'. If $T' = \emptyset$, the result follows from Proposition 3.1. If T' is not empty, and the degrees are different, then, by the Lemma 3.2, $p_1^{-1}(T') = p_2^{-1}(T')$ are formed by the terminal vertices of Γ. Removing from T' from Γ and $p_1^{-1}(T') = p_2^{-1}(T')$ from Γ shows that there are two (eventually) branched coverings of distinct prime orders $p_1, p_2 : M_0 \to (M_0, L'_0)$. By induction (and eventually recurring to the unbranched case [5]), it follows that necessarily $d_1 = d_2$. \hfill \square

Now we prove Lemma 3.2, by considering several cases.

Proof of Lemma 3.2. Since the degree of the action is prime, $p_i^{-1}(v')$ cannot have more than one internal vertex. Suppose $p_i^{-1}(v')$ has a single internal vertex v, of degree d_i, and consider the G_i-invariant vertex w closest to v. Consider also a path γ' from v' to $p_i(w)$ of minimal length. This path lifts to d_i parallel paths γ_k from v to w. Let $C = \cup_k \gamma_k$.

Suppose $d_1 < d_2$. We will consider two cases according to whether $d_1 = 2$ or $d_1 > 2$.

Case 1: $2 < d_1 < d_2$

Let p_j be the other projection. If $d_j > d_i$ then clearly each edge incident on v is G_j-invariant. If $2 < d_j < d_i$, then, since d_i is prime, the edges incident on v project over at least three edges of Γ'. If $p_j(v) \neq p_j(w)$, then the d_i parallel paths connecting v and w would project to more than one cycle of Γ'. Therefore $p_j(v) = p_j(w)$ and $p_1(w)$ is also a terminal vertex of Γ'. Since $2 < d_i < d_j$, and Γ' has a single cycle, each $p_2(\gamma_k)$ is an arc of Γ'.

Let $S = p_2^{-1}(\cup_k p_2(\gamma_k))$. Suppose there is an arc ω connecting two vertices v_1, v_2 of S, outside of S. For one of the projections these two vertices have distinct images. Suppose without loss of generality that $p_1(v_1) \neq p_1(v_2)$. Then, the projection $p_1(S \cup_k g^k_2(\omega))$ of all the G_2-translates of $S \cup \omega$ contains distinct cycles. Therefore every connected component of $\Gamma - S$ is isomorphic
to a connected component of $\Gamma' - p_i(S)$ and G_i permutes cyclically these components. Since we are assuming that $d_1 \neq d_2$, this is absurd.

Therefore $p_i^{-1}(v')$ has only terminal vertices.

Case 2: $d_1 = 2$

Consider first the set $p_2^{-1}(v')$ and suppose it has an internal vertex.

If $p_1(v) = p_1(w)$ then $p_2(w)$ is also a terminal vertex of Γ'. If there was no arc ω connecting two vertices v_1, v_2 of distinct γ_k's, then G_2 would permute cyclically every vertex of $\Gamma - \{v, w\}$. Since p_1 can only identify pairs of vertices, a simple computation shows that this is impossible. We may thus consider such an arc ω. It follows that $p_1(S \cup g_k^b(\omega))$ contains distinct cycles, which is impossible.

Suppose now that $p_1(v) \neq p_1(w)$. If $d_2 > 3$, then, as in Case 1, the d_2 parallel paths connecting v and w would project to more than one cycle of Γ'. For $d_2 = 3$, it may happen that v, w are both G_1-invariant and G_2-invariant and the p_2-preimage of every terminal vertex distinct from v' has no internal vertices.

Consider a connected component X of $\Gamma - C$ connected to $C - \{w\}$. Since $p_1(C)$ is the only cycle of Γ', then X is connected to a single vertex of $C - w$ and it is a tree, isomorphic to a subgraph of $\Gamma' - p_1(C)$. Then $p_2^{-1}(p_1(C))$ is connected to w. Let D be the set of vertices of Γ at maximal distance from w. Since w is G_1-invariant, then, by Proposition 2.3, $p_1(D)$ is the set of vertices of Γ' at maximal distance from $p_i(w)$. These are, for both projections, the terminal vertices of Γ' and $p_1(v)$. We denote this set by D'. Removing D and D' from Γ and Γ' induces two (branched) coverings of distinct prime orders $p_1, p_2 : M_0 \to (M_0, L'_0)$, such that the JSJ graph of the exterior of the quotient is a tree. By Proposition 1.1 (or the unbranched case [5]), we conclude that $d_1 = d_2$.

Therefore $p_2^{-1}(v')$ has only terminal vertices.

Now suppose that $p_1^{-1}(v')$ has an internal vertex.

If $p_2(v) \neq p_2(w)$ then $p_2(C)$ is the cycle of Γ'. As before, $p_1^{-1}(p_2(C))$ is connected to w. Since $p_2(p_1^{-1}(p_2(C)))$ is a tree, $p_2(p_1^{-1}(p_2(v)))$ is a terminal vertex and $p_1^{-1}(p_2(v))$ is an interior vertex, which is impossible, as we have shown above.
If \(p_2(v) = p_2(w) \) then let \(S = p_1^{-1}(\cup_k p_1(\gamma_k)) \). Suppose there is an arc \(\omega \) connecting two vertices \(v_1, v_2 \) of \(S \), outside of \(S \) such that \(p_2(\omega \cup S) \) contains a cycle. Then \(p_1(S \cup_k g_2^k(\omega)) \) contains distinct cycles. Therefore the cycle \(O \) of \(\Gamma' \) is connected to a single vertex of \(p_1(C) \). Let \(z \) be the \(G_1 \)-invariant vertex of \(\Gamma \) closest from \(S \) and \(\omega_1, \omega_2 \) the arcs connecting \(z \) to \(S \). Then \(p_2(S \cup \omega_1 \cup \omega_2) \) contains the cycle of \(\Gamma' \). If \(z \) were not \(G_2 \)-invariant, then \(p_1^{-1}(O) \) would be permuted cyclically by \(G_2 \) and we would obtain a second cycle in \(\Gamma' \). Therefore \(z \) is both \(G_1 \)-invariant and \(G_2 \)-invariant. By a reasoning similar to the case \(d_2 = 3 \) we can remove the vertices at maximal distance from \(z \), \(p_1(z) \) and \(p_2(z) \) to obtain two (branched) coverings of distinct prime orders \(p_1, p_2 : M_0 \to (M_0, L'_0) \), such that the JSJ graph of the exterior of the quotient is a tree, contradiction.

References

António Salgueiro
Departamento de Matemática, Universidade de Coimbra, Portugal
E-mail address: ams@mat.uc.pt