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Abstract: Given a density f we pose the problem of estimating the density
functional ψr =

∫

f (r)f making use of kernel methods. This is a well-known
problem but some of its features remained unexplored. We focus on the prob-
lem of bandwidth selection. Whereas all the previous studies concentrate on an
asymptotically optimal bandwidth here we study the properties of exact, non-
asymptotic ones, and relate them with the former. Our main conclusion is that,
despite being asymptotically equivalent, for realistic sample sizes much is lost by
using the asymptotically optimal bandwidth. In contrast, as a target for data-
driven selectors we propose another bandwidth which retains the small sample
performance of the exact one.
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1. Introduction

Given a sample X1, . . . , Xn of independent and identically distributed
real random variables with unknown density function f : R → R, in this
paper we focus on the problem of estimating the functional

ψr =

∫

f (r)(x)f(x)dx (1)

for even r whenever it makes sense and is finite, where f (r) denotes the rth
derivative of f . Notice that for such a functional to be finite it suffices, for
instance, that both f and f (r) be square integrable.

There exists a wide variety of estimates of these functionals. For instance,
van Es (1992) proposes an estimator of ψ0 based on the spacings of the
order statistics and Laurent (1997) and Prakasa Rao (1999), respectively,
describe series and wavelet estimates for the problem. However, here we
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will concentrate on kernel estimators,

ψ̂r(g) =
1

n2

n
∑

i,j=1

L(r)
g (Xi −Xj), (2)

where L is the kernel function, g > 0 is the bandwidth and L
(r)
g represents

the rth derivative of the function Lg(x) = L(x/g)/g, that is, L
(r)
g (x) =

L(r)(x/g)/gr+1. The motivation for this precise type of kernel estimator
can be found, for instance, in Wand and Jones (1995).

This problem is also addressed in many other papers. For instance, the
case r = 0 (estimation of the integral of a squared density) is closely related
with the study of rank-based nonparametric statistics, since it appears in
the asymptotic variance of the Wilcoxon signed-rank statistic and in the
Pitman asymptotic efficiency of the Wilcoxon test relative to the t-test
(see Hettmansperger, 1984). The first kernel estimators of ψ0 date back to
at least Bhattacharya and Roussas (1969), Dmitriev and Tarasenko (1973,
1975) and Schuster (1974), but see also Prakasa Rao (1983), Sheather,
Hettmansperger and Donald (1994), and references therein. A recent paper
on the topic is Giné and Nickl (2008).

The quantities ψ2, ψ4 and ψ6 appear in the expression of the asymp-
totically optimal bandwidths for histogram, frequency polygon and kernel
density estimators (see Scott, 1992). The first papers analyzing the kernel-
type estimates of ψr for arbitrary r, as a particular case of a more general
nonlinear functional, are Dmitriev and Tarasenko (1973) and Levit (1978),
but the problem of bandwidth selection for the kernel estimator is consid-
ered in Hall and Marron (1987) for the first time, although there the kernel

estimate is defined as n(n−1)−1
{

ψ̂r(g)−n
−1L

(r)
g (0)

}

, in order to delete the

non-stochastic terms in ψ̂r(g). However, Jones and Sheather (1991) show

that indeed the estimator ψ̂r(g) has improved rates of convergence over the
one proposed by Hall and Marron when the bandwidth g is properly cho-
sen. On the other hand, Bickel and Ritov (1988) discuss the information
bounds for this nonparametric problem and propose an efficient estimator.
References dealing with adaptive kernel procedures include Wu (1995) and
Giné and Mason (2008), among others. Multistep kernel estimators are
investigated in Aldershof (1991) and also more recently in Tenreiro (2003)
and Chacón and Tenreiro (2008).

As usual for real-valued parameters, we will measure the accuracy of
the estimator ψ̂r(g) through its mean squared error (MSE), defined as

MSE(g) = E[{ψ̂r(g) − ψr}
2]. In this sense, the optimal bandwidth can be

defined to be gMSE = argming>0 MSE(g). However, it is not clear at all from



KERNEL ESTIMATION OF DENSITY FUNCTIONALS 3

its definition that such a minimizer exists, and well-experienced researchers
in the field take good care not to refer to this bandwidth, but to its asymp-
totic counterpart (see Jones and Sheather, 1991, or Wand and Jones, 1995).
In fact, the typical approach to bandwidth selection starts from considering
an asymptotic expansion of the MSE function, say AMSE(g), and consid-
ering the asymptotically optimal bandwidth g0 = argming>0 AMSE(g) as
a surrogate for gMSE, which is the exact (i.e., non-asymptotic) one. The
study of the asymptotically optimal bandwidth presents no doubts about
its existence, and even an explicit formula for it is available. But then
another question may be raised: how well does g0 approximate gMSE? The
study of this question leads to the identification of a new bandwidth gBA

that annihilates the exact bias of ψ̂r(g). How well does this new bandwidth
approximate gMSE is another question that arises naturally. Therefore, the
main purposes of this paper are to present a set of sufficient conditions
to the existence of an exact optimal bandwidth and to examine, from an
asymptotic and finite sample size point of view, the quality of g0 and gBA

as approximations of the exact optimal bandwidth.
The rest of the paper is organized as follows. In Section 2 we provide

mild conditions on the kernel and the density that ensure the existence of
an exact optimal bandwidth gMSE and a bias-annihilating bandwidth gBA.
In Section 3 we study the asymptotic properties of these bandwidths. In
Section 4 we obtain the relative rates of convergence of g0 and gBA to gMSE

and so we quantify the order of these asymptotic approximations. We also
establish the order of convergence for MSE(g0)−MSE(gBA) which enables
us to compare g0 and gBA in the sense of the mean squared error. As
the results in Section 4 are asymptotic in nature, to assess the quality of
the approximations Section 5 contains the case-study of normal mixture
densities, for which small- and moderate-sample-size comparisons are made
between the three different bandwidths. We will see that for small and
moderate sample sizes MSE(gBA) seems to be much closer to MSE(gMSE)
than MSE(g0). In view of these finite sample size results we conclude that
bandwidth selectors oriented to gBA should be preferred to the usual ones,
which are designed to estimate g0. All the proofs are deferred to Section 6.

2. Existence of an exact optimal bandwidth

Recall the definitions of ψr and ψ̂r(g) from (1) and (2) in Section 1. The

mean squared error (MSE) of the estimator ψ̂r(g) can be decomposed as
MSE(g) = B2(g) + V (g), where B(g) and V (g) are the bias and variance

of ψ̂r(g). If we denote
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RL,r,g(f) = EL(r)
g (X1 −X2)

=

∫∫

L(r)
g (x− y)f(x)f(y)dxdy =

∫

(L(r)
g ∗ f)(x)f(x)dx,

with ∗ standing for the convolution operator, then it is clear that

B(g) = Eψ̂r(g) − ψr = n−1g−r−1L(r)(0) + (1 − n−1)RL,r,g(f) − ψr. (3)

Moreover, using standard U -statistics theory we get that V (g) = Var ψ̂r(g)
can be written as

V (g) = 4(n− 2)(n− 1)n−3ξ1 + 2(n− 1)n−3ξ2 − (4n− 6)(n− 1)n−3ξ0, (4)

where ξ0 = E[L
(r)
g (X1 − X2)]

2, ξ1 = E[L
(r)
g (X1 − X2)L

(r)
g (X1 − X3)] and

ξ2 = E[L
(r)
g (X1 −X2)

2]. If we denote

SL,r,g(f) =

∫∫∫

L(r)
g (x− y)L(r)

g (x− z)f(x)f(y)f(z)dxdydz

=

∫

(L(r)
g ∗ f)(x)2f(x)dx,

we just have ξ1 = SL,r,g(f). Besides, clearly ξ0 = RL,r,g(f)2 and, us-

ing the fact that L
(r)
g (x)2 = g−2r−1[(L(r))2]g, we can also express ξ2 =

g−2r−1R(L(r))2,0,g(f).
Combining (3) and (4) with the former representations for ξ0, ξ1, ξ2, we

obtain an exact formula for the MSE of the estimator ψ̂r(g),

MSE(g) =
{

n−1g−r−1L(r)(0) + (1 − n−1)RL,r,g(f) − ψr
}2

(5)

+ 4(n− 2)(n− 1)n−3SL,r,g(f) + 2(n− 1)n−3g−2r−1R(L(r))2,0,g(f)

− (4n− 6)(n− 1)n−3RL,r,g(f)2.

This exact error formula is analogue of formula (2.2) in Marron and Wand
(1992) for kernel density estimators, and will be useful to explore the exis-
tence and limit behavior of the optimal bandwidth as well as for the results
in Section 5.

In the following we will make the following assumptions on the kernel
and the density:

(L1) L is a symmetric kernel with bounded and square integrable deriva-
tives up to order r such that L(r) is continuous at zero with
(−1)r/2L(r)(0) > 0.

(D1) The density f has bounded and square integrable derivatives up to
order r.
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The next result shows that under these mild conditions there is always
an exact optimal bandwidth, that is, a bandwidth which minimizes the
exact MSE of the kernel estimator. In this sense, it can be considered
as the analogue of Theorem 1 in Chacón et al. (2007) for kernel density
estimators.

Theorem 1. Under assumptions (L1) and (D1), there exists gMSE =
gMSE,r,n(f) such that MSE(gMSE) ≤ MSE(g), for all g > 0.

Notice that the previous result says nothing about the uniqueness of the
optimal bandwidth. Presumably, as in the examples in Marron and Wand
(1992) it could be possible to find a situation where the optimal bandwidth
is not unique, however we do not pursue this further in this paper.

From an asymptotic point of view, however, it is well-known that the
choice of g can be made on the basis of annihilation of the dominant part of
the bias (see Section 4 below). We show next that, in fact, for every density

f there is a choice of g = gBA that makes the estimator ψ̂r(g) unbiased, that
is, that annihilates the exact bias, rather than its asymptotic counterpart.

Theorem 2. Under assumptions (L1) and (D1), there exists gBA = gBA,r,n(f)
such that B(gBA) = 0.

The existence of global bandwidths that make the kernel density estimate
unbiased at every point has been shown in Chacón et al. (2007). In fact,
strictly speaking we cannot consider it an unbiased estimator since such
bandwidths depend on the unknown f , but at least we could say that there
exists an ‘unbiased oracle estimator’. However, only a very special class
of density functions allows for this situation, namely the class of densities
whose characteristic function has bounded support.

In contrast, in the previous result we show that unbiased oracle kernel
estimates of ψr (not only asymptotical unbiased) exist under the same
mild conditions needed for the existence of the optimal bandwidth. This
is a key difference between the problems of estimating the density and the
functionals ψr.

3. Limit behavior of exact bandwidths

From formula (5) and Lemma 1 in Section 6 below it readily follows that
MSE(g) → 0 for any bandwidth sequence g = gn such that g → 0 and
ngr+1 → ∞ as n → ∞. Therefore, conditions g → 0 and ngr+1 → ∞ are
sufficient for ψ̂r(g) to be consistent. It is natural, then, to wonder if the
bandwidths gMSE and gBA also fulfill the previous consistency conditions.
We will see that that the second condition holds quite generally but the
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same is not necessarily true for the first one. This is similar to the situation
with the optimal bandwidth for kernel density estimation, as shown in
Chacón et al. (2007).

Theorem 3. Under assumptions (L1) and (D1), both ngr+1
MSE → ∞ and

ngr+1
BA → ∞ as n → ∞.

For the analysis of the limit behaviour of the sequences gMSE and gBA

we use the notation ϕF (t) =
∫

eitxF (x)dx, t ∈ R, for the characteristic
function of an integrable real function F , and for every density f and
every symmetric kernel L, we denote

Cf = sup{r ≥ 0 : ϕf(t) 6= 0 a.e. for t ∈ [0, r]},

Df = sup{t ≥ 0 : ϕf(t) 6= 0},

SL = inf{t ≥ 0 : ϕL(t) 6= 1},

TL = inf{r ≥ 0 : ϕL(t) 6= 1 a.e. for t ≥ r}

A detailed discussion about these quantities is presented in Chacón et al.
(2007). In particular, we remark that all these exist, with Cf , Df possibly
being infinite, SL, TL ∈ [0,∞), Cf ≤ Df and SL ≤ TL. Notice that, by
definition, SL > 0 for superkernels (see Chacón, Montanero and Nogales,
2007).

In the following we show that both the exact optimal bandwidth gMSE

and the exact bias-annihilating bandwidth gBA converge to zero under very
general conditions. In particular, if L is a kernel of finite order (that is,
|mν |(L) =

∫

|uνL(u)|du < ∞ and mν(L) =
∫

uνL(u)du 6= 0 for some even
number ν), the convergence to zero takes place with no additional condi-
tions on f other than (D1). The same property occurs in the superkernel
case whenever the characteristic function of f has unbounded support.

Theorem 4. Assume conditions (L1) and (D1). If SL = 0 or Df = ∞ we
have both gMSE → 0 and gBA → 0 as n→ ∞.

In the remaining case SL > 0 and Df < ∞ non-zero limits may occur.
In the next example we show that if we use a superkernel and the charac-
teristic function of the density has finite support then any positive number
is a possible limit for gMSE or gBA.

Example 1. As in Chacón et al. (2007), consider the trapezoidal superk-
ernel given by L(x) = (πx2)−1[cosx−cos(2x)] for x 6= 0 and L(0) = 3/(2π),
whose characteristic function is ϕL(t) = I[0,1)(|t|) + (2 − |t|) I[1,2)(|t|), with
IA(t) standing for the indicator function of the set A, so that SL = TL =
1. This kernel is symmetric, differentiable of any order, with bounded
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Figure 1. Fejér-de la Vallée-Poussin density (left) and the
convolution with itself (right).

square integrable derivatives, and such that L(r)(0) = (−1)r/2[π(r+ 1)(r+
2)]−1(2r+2 − 1), so that it fulfils condition (L1).

Consider also the Fejér-de la Vallée-Poussin density, defined as f(x) =
(πx2)−1(1 − cosx) for x 6= 0 and f(0) = 1/(2π), and let fa(x) = f(x/a)/a
for any a > 0; see Figure 1. This density is differentiable of any order,
with bounded square integrable derivatives. The characteristic function of
fa is ϕfa

(t) = (1 − a|t|) I[−1/a,1/a](t), so that Cfa
= Dfa

= 1/a. Besides, we

easily obtain ψr = (−1)r/22[πar+1(r + 1)(r + 2)(r + 3)]−1.
From (13) in Section 6 below we know that lim sup g ≤ a for both g =

gMSE and g = gBA. Also, using the formulas for the MSE in the Fourier
domain given in Section 6 it is not hard to show that, in this case, for
g ∈ (0, SL/Dfa

] = (0, a] we have

B(g) = n−1g−r−1L(r)(0) − n−1ψr,

V (g) = 2(n− 1)n−3g−2r−1R(L(r))2,0,g(fa) +A,

where A ∈ R is a constant depending on L, f, r and n, but not on g.
With the formulas for L(r)(0) and ψr given above, it is clear that B(g) 6= 0

for g ∈ (0, a], so that it should be gBA ≥ a for every n ∈ N and this, together
with the upper bound for the limsup, implies that gBA → a as n→ ∞.

On the other hand, it can be shown that f ∗ f(x) = 2(πx3)−1(x− sin x)
for x 6= 0 and f ∗f(0) = 1/(3π), so that f ∗f is a symmetric and decreasing
density for x > 0, and the same is true for fa ∗ fa. Therefore the function
g 7→ R(L(r))2,0,g(fa) is decreasing since from (9) in Section 6 we can write

R(L(r))2,0,g(fa) = 2
∫ ∞

0 L(r)(u)2(fa∗fa)(gu)du. This implies that for g ∈ (0, a]
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the function MSE(g) = B2(g) + V (g) is decreasing and so, that gMSE ≥ a
for every n ∈ N, leading to gMSE → a as n → ∞.

4. The asymptotically optimal bandwidth

It is well known that the finite sample performance of ψ̂r(g) depends
strongly on the choice of the bandwidth g. In practice, this choice is usually
based on the so called asymptotically optimal bandwidth, g0, that is, the
bandwidth that minimizes the main terms of an asymptotic expansion of
MSE(g) when g tends to zero (see Jones and Sheather, 1991). In order
to present such an expansion, some additional conditions on the density f
and on the kernel L are needed.

(L2) L is a kernel of finite order ν (even); that is, ν = min{j ∈ N, j ≥
1: mj(L) 6= 0}, so that mj(L) = 0 for j = 1, 2, . . . , ν − 1. Besides,
(−1)ν/2mν(L) < 0.

(D2) The density f has bounded and continuous derivatives up to order
r + ν.

Under conditions (L1), (L2), (D1) and (D2), if g → 0 the bias and variance

of ψ̂r(g) given by (3) and (4), respectively, admit the asymptotic expansions

B(g) = n−1g−r−1L(r)(0) + gνψr+νmν(L)/ν!− n−1ψr + o(gν) (6)

and

V (g) = 4n−1Varf (r)(X1) + O(n−1gν + n−2g−2r−1).

Therefore,

MSE(g) = 4n−1Varf (r)(X1) + (n−1g−r−1L(r)(0) + gνψr+νmν(L)/ν!)2 (7)

+ o(n−2g−2r−2 + n−1gν−r−1 + g2ν),

and the asymptotically optimal bandwidth corresponds to the value of g
that makes the dominant term of the bias vanish, that is,

g0 =

(

−
ν!L(r)(0)

mν(L)ψr+νn

)1/(r+ν+1)

. (8)

Notice that the term inside the parenthesis is positive with our assump-
tions, since we have (−1)r/2L(r)(0) > 0, (−1)(r+ν)/2ψr+ν > 0 and
(−1)ν/2mν(L) < 0.

As the practical choice of g is usually based on this asymptotically opti-
mal bandwidth, g0, it is natural to wonder if g0 is a good approximation of
the exact optimal bandwidth, gMSE. In the following theorem we establish
the asymptotic equivalence between g0, gBA and gMSE, and also the order
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of convergence to zero of the relative error g0/gMSE − 1, gBA/gMSE − 1 and
g0/gBA − 1.

Theorem 5. Under assumptions (L1), (L2), (D1) and (D2) we have:

a) The bandwidths gMSE, gBA and g0 are all of the same order; that is,

0 < lim inf n1/(r+ν+1)gMSE ≤ lim sup n1/(r+ν+1)gMSE <∞,

0 < lim inf n1/(r+ν+1)gBA ≤ lim sup n1/(r+ν+1)gBA <∞.

b) Additionally, if
∫

|u|L(r)(u)2du <∞ then

g0/gMSE → 1 and gBA/gMSE → 1.

c) Moreover, if |mν+2|(L) < ∞ and f has bounded continuous deriva-
tives up to order r + ν + 2, then there exist constants C, D and E
such that

g0/gMSE − 1 = C n−1/(r+ν+1)(1 + o(1)),

gBA/gMSE − 1 = Dn−1/(r+ν+1)(1 + o(1)),

g0/gBA − 1 = E n−min{r+1,2}/(r+ν+1)(1 + o(1)).

From the previous result we see that asymptotically g0 and gBA approxi-
mate gMSE at the same rate. Using a simple Taylor expansion we can prove
that MSE(g0) and MSE(gBA) also approximate MSE(gMSE) at the same
rate. In fact, for g = g0 and g = gBA we have MSE(g) − MSE(gMSE) =
O(n−(2ν+2)/(r+ν+1)). In the next result we restrict our attention to the order
of convergence to zero of MSE(g0)−MSE(gBA) which enables us to compare
the bandwidths g0 and gBA in the sense of the mean squared error.

Theorem 6. Under assumptions (L1), (L2) and (D1), if f has bounded
and continuous derivatives up to order r + ν + 2, |mν+2|(L) < ∞ and
∫

|u|3L(r)(u)2du <∞, then there exists a constant Λ such that

MSE(g0) − MSE(gBA) = ΛE n−min{r+2ν+2,2ν+3}/(r+ν+1)(1 + o(1)),

where E is the constant appearing in Theorem 5.

Explicit formulas for the constants C, D, E and Λ appearing in Theorems
5 and 6 are given in Section 6. From them we see that C = D < 0 and
Λ < 0 for all densities f whenever r ≥ 2, and also E < 0 if the kernel
L is such that (−1)ν/2mν+2(L) < 0 (which is in particular true for the
Gaussian-based kernel L to be used in the next section). Consequently,
from an asymptotic point of view we conclude that gBA is not only a better
approximation to gMSE than g0 but is also a better bandwidth than g0 in
the MSE sense because in this case the constant ΛE appearing in Theorem
6 is strictly positive. As we will see in the next section, even for small and
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moderate sample sizes MSE(gBA) seems to be much closer to MSE(gMSE)
than MSE(g0).

A different situation may occur when r = 0. When the kernel L is of
order ν, for all densities f satisfying

∫

f (ν)f 2/
∫

f (ν)f −
∫

f 2 > 0 (which
seems to be true for all sufficiently regular densities although we were
not able to prove it) the constants C and D remain negative but in this
case C is always bigger than D which implies that E > 0. Hence, the
asymptotically optimal bandwidth g0 is a better asymptotic approximation
for gMSE than gBA. Also, we can prove that Λ < 0, so that in the MSE
sense it follows that asymptotically g0 is better than gBA too. Although
this is valid asymptotically, we will see in next section that for small and
moderate sample sizes gBA may still be preferable to g0 in some cases.

5. Case study: normal mixture densities

Our goal in this section is to compare the performance of the three
bandwidths, gMSE, gBA and g0, in a non-asymptotic way. To this end
we work with the exact MSE formula within the class of normal mix-
ture densities, that is, the class of densities f that can be written as
f(x) =

∑k
ℓ=1wℓφσℓ

(x − µℓ), where φ(x) = (2π)−1/2e−x
2/2 for any x ∈ R.

This class is very rich, containing densities with a wide variety of features,
such as kurtosis, skewness, multimodality, etc, and has been previously
used for computing exact errors in the context of kernel density estimation
(see Marron and Wand, 1992).

We are going to find an explicit formula for the MSE given in (5) in the
case where f is the aforementioned normal mixture density and L is the
Gaussian-based kernel of even order ν considered in Wand and Schucany

(1990), given by L(x) =
∑ν/2−1

s=0 (−1)s(2ss!)−1 φ(2s)(x). Note that we only
need to obtain explicit formulas for L(r)(0), RL,r,g(f), ψr, SL,r,g(f) and
R(L(r))2,0,g(f).

For any even r1, r2 ∈ N, µ1, µ2, µ3 ∈ R and σ1 > 0, σ2 > 0, σ3 > 0, write

µ̃ =
{

σ−2
1 σ−2

2 (µ1 − µ2)
2 + σ−2

1 σ−2
3 (µ1 − µ3)

2 + σ−2
2 σ−2

3 (µ2 − µ3)
2
}1/2

,

σ̃ =
{

σ−2
1 + σ−2

2 + σ−2
3

}1/2

, ˜̃µ = σ̃−2
{

σ−2
1 µ1 + σ−2

2 µ2 + σ−2
3 µ3

}

.

and µ†k = µk − ˜̃µ. Then, for µ = (µ1, µ2, µ3) and σ = (σ1, σ2, σ3) let us
denote
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Ir1,r2(µ; σ) = (2π)−1/2φσ̃(µ̃)(σ1σ2σ3)
−1

r1
∑

j1=0

r2
∑

j2=0

OF(j1 + j2)

×

(

r1
j1

)(

r2
j2

)

Hr1−j1(σ
−1
1 µ†1)Hr2−j2(σ

−1
2 µ†2)σ

−r1−j1
1 σ−r2−j2

2 σ̃−j1−j2,

where for any p ∈ N we write OF(2p) = (2p − 1)(2p − 3) · · · 3 · 1 =
(2p)!(2pp!)−1, OF(2p + 1) = 0 and Hp(x) the pth Hermite polynomial,
defined by Hp(x) = (−1)pφ(p)(x)/φ(x).

Theorem 7. For L(x) =
∑ν/2−1

s=0 (−1)s(2ss!)−1 φ(2s)(x) and f(x) =
∑k

ℓ=1wℓ
φσℓ

(x− µℓ) we have

B(g) = (−1)r/2n−1g−r−1(2π)−1/2

ν/2−1
∑

s=0

(−1)s(2ss!)−1OF(2s+ r)

+

k
∑

ℓ,ℓ′=1

wℓwℓ′
{

(1 − n−1)

ν/2−1
∑

s=0

(−1)s(2ss!)−1φ
(2s+r)
σℓℓ′(g)

(µℓℓ′) − φ(r)
σℓℓ′

(µℓℓ′)
}

V (g) = 4(n− 2)(n− 1)n−3
k

∑

ℓ1,ℓ2,ℓ3=1

wℓ1wℓ2wℓ3

×

ν/2−1
∑

s,s′=0

(−1)s+s
′

(2s+s
′

s!s′!)−1I2s+r,2s′+r(µℓ1, µℓ2, µℓ3; σℓ1(g), σℓ2(g), σℓ3)

+ 2(n− 1)n−3
k

∑

ℓ,ℓ′=1

wℓwℓ′

ν/2−1
∑

s,s′=0

(−1)s+s
′

(2s+s
′

s!s′!)−1

× I2s+r,2s′+r(0, 0, µℓℓ′; g, g, σℓℓ′)

− (4n− 6)(n− 1)n−3

{ k
∑

ℓ,ℓ′=1

wℓwℓ′

ν/2−1
∑

s=0

(−1)s(2ss!)−1φ
(2s+r)
σℓℓ′(g)

(µℓℓ′)

}2

,

where µℓℓ′ = µℓ − µℓ′ and σ2
ℓℓ′ = σ2

ℓ + σ2
ℓ′ for ℓ, ℓ′ = 1, 2, . . . , k and for any

σ > 0 we write σ(g) = (σ2 + g2)1/2.

For L and f as given in the previous theorem we can also write

g0 =
∣

∣(2ν−1/π)1/2(ν/2)!

ν/2−1
∑

s=0

OF(2s+ r)(2ss!)−1ψ−1
r+νn

−1
∣

∣

1/(r+ν+1)
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with

ψr+ν =
k

∑

ℓ,ℓ′=1

wℓwℓ′φ
(r+ν)
σℓℓ′

(µℓℓ′)

(see Section 6). The previous theorem allows us to compute gMSE and
gBA numerically, and therefore to compare the exact errors of the three
bandwidth sequences, MSE(gMSE), MSE(gBA) and MSE(g0), in a non-
asymptotic way. In the following we restrict our attention to the case
ν = 2. However, similar results were observed for all the considered higher
kernel orders.

To analyze the finite sample behaviour of gMSE, gBA and g0 we use some
of the 15 normal mixture densities introduced in Marron and Wand (1992).
Precisely, we focus on their normal mixture densities #1, #7 and #12, cor-
responding to the cases where the difficulty in estimating the density itself
is low, medium and high. In Figure 2 (left column) we show the relative
efficiencies [MSE(gMSE)/MSE(g)]1/2 for g = gBA (solid lines) and g = g0

(dashed lines) against log10(n) for r = 0, 2, 4, 6. As expected, for each of
g = gBA and g = g0 the efficiency graphs are naturally placed in descending
order as r increases, that is, for g = gBA the top solid curve in each plot
corresponds to r = 0 and the bottom solid curve corresponds to r = 6, and
similarly for g = g0. This reflects the fact that the approximations to gMSE

given by gBA and g0 get worse (in the MSE sense) as the degree of deriv-
ative r increases, as predicted by the asymptotic theory (see Theorems 5
and 6 above).

However, even though both MSE(gBA) and MSE(g0) exhibit the same
relative order of convergence to MSE(gMSE), we can see in the left column
of Figure 2 that for small and moderate sample sizes there are striking
differences between gBA and g0. Whereas for n ≥ 10 and the cases r =
0, 2, 4, 6 represented in Figure 2 the efficiency of gBA is always greater than
90%, showing that the loss in changing the goal from gMSE to gBA is nearly
negligible, in some cases Figure 2 shows that the use of the bandwidth g0

may lead to a very disappointing performance of the estimator.
The situation for low and medium density estimation difficulty (densities

#1 and #7 above) is very similar: g0 is even more efficient than gBA for
density #1 when r = 0, and it is also quite acceptable for r = 2, but for
r ≥ 4 the efficiency of g0 decays rapidly, and it is already lower than 70%
(for r = 4) or 50% (for r = 6) for sample size n = 100. This effect is even
more dramatic for the case of a difficult-to-estimate density as #12: for
sample size n = 100 the efficiency of g0 is about 60% for r = 0 and it is
lower than 10% for r ≥ 2.
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Our conclusion is that g0 is indeed a bad surrogate for gMSE, especially
for r ≥ 4. This is quite a striking conclusion, since g0 is the usual target
bandwidth for plug-in bandwidth selection methods for the estimation of
ψr.

In the right column of Figure 2 we show the boxplots for the distribution
of ψ̂r(g)/ψr based on 500 generated samples of size n = 100. In each graph
we have vertical lines dividing the cases according to r = 0, 2, 4, 6 and, for
each of these cases, we have three boxplots corresponding to the use of
the theoretical g = gMSE, g = gBA and g = g0 in the estimator, from left
to right. We have also added a solid circle to each boxplot indicating the
sample mean of the distribution and a number on top with the square root
of the sample MSE of ψ̂r(g)/ψr.

The boxplots show the reasons for the bad efficiency results of g0. Al-
though this bandwidth is meant to annihilate the asymptotically dominant
bias term, it looks like g0 does not get close to this goal for moderate sample
sizes, since ψ̂r(g0) clearly overestimates ψr in mean, especially for r ≥ 4.
Moreover, this occasionally large bias does not come with a reduction in
variance, since in fact ψ̂r(g0) is more variable than the other two estima-
tors. Both effects (in bias and variance) are highly stressed for the case
of density #12. In contrast, it is possible to observe how the estimator
using the bandwidth gBA is unbiased, as it should be by definition, at the
expense of only a slightly increase of variance over gMSE. Nevertheless, the
distributions of the estimator with gMSE or gBA are very similar.

In view of the results in this simulation study it is clear that bandwidth
selectors oriented to gBA should give raise to much better performance than
the usual ones, which are designed to estimate g0. This is a subject that
we intend to study in detail in the future.

Remark 1. For the case ν = 2 the exact MSE formula for normal mixture
densities can be found in Aldershof’s thesis (1991). However, we would like
to highlight that although this result was known before, its consequences
(as extracted from Figure 2) had not been fully explored yet.

6. Proofs

We start by presenting some properties of RL,r,g(f) and SL,r,g(f) as func-
tions of g. Let us denote ψr,s =

∫

f (r)f (s)f .

Lemma 1. Under assumptions (L1) and (D1), we have:

a) The function g 7→ RL,r,g(f) is continuous and such that
limg→0RL,r,g(f) = ψr

∫

L and limg→∞ gr+1RL,r,g(f) = L(r)(0).
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b) The function g 7→ SL,r,g(f) is continuous and such that
limg→0 SL,r,g(f) = ψr,r(

∫

L)2 and limg→∞ g2r+2SL,r,g(f) = L(r)(0)2.

Proof. Using the fact that L(j) and f (j) are bounded and square inte-
grable, for j = 0, 1, . . . , r, and the same tools as in Hall and Marron (1987),
it is straightforward to check that we can write

RL,r,g(f) =

∫

L(u)
(

f (r) ∗ f̄
)

(gu)du, (9)

with f̄(x) = f(−x). Therefore, as L ∈ L1 the continuity and the first
limit in part a) follow from the Dominated Convergence Theorem (DCT)
and the boundedness and continuity of the convolution product of square
integrable functions, together with the fact that (f (r) ∗ f̄)(0) = ψr. For
the second limit, using again the DCT, together with the boundedness and
continuity of L(r) at zero, we obtain

lim
g→∞

gr+1RL,r,g(f) = lim
g→∞

∫∫

L(r)(x−yg )f(x)f(y)dxdy = L(r)(0)

as stated.
The proof of part b) can be obtained in a similar way. For the first limit

we start by writing

SL,r,g(f) =

∫∫∫

L(u)L(v)f (r)(gu− x)f (r)(gv − x)f̄(x)dxdudv (10)

=

∫∫

L(u)L(v)
(

f (r) ⊙ f (r) ⊙ f̄
)

(gu, gv)dudv,

where we are denoting

(α⊙ β ⊙ γ)(y, z) =

∫

α(y − x)β(z − x)γ(x)dx.

Reasoning as in the proof of Theorem 21.33 in Hewitt and Stromberg
(1965), for α, β, γ ∈ L3 it can be shown that α ⊙ β ⊙ γ is a bounded
continuous function. Consequently, as f, f (r) ∈ L3 (since they are bounded
and square integrable), we get the stated limit by using again the DCT,
together with the fact that (f (r) ⊙ f (r) ⊙ f̄)(0, 0) = ψr,r. The second limit
again follows from a direct application of the DCT, since

lim
g→∞

g2r+2SL,r,g(f) = lim
g→∞

∫∫∫

L(r)(x−yg )L(r)(x−zg )f(x)f(y)f(z)dxdydz

= L(r)(0)2.

2
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Proof of Theorem 1. From the previous lemma, together with (3) and (4),
we conclude that B2(g) and V (g) are continuous functions such that

lim
g→0

B2(g) = ∞, lim
g→∞

B2(g) = ψ2
r , lim

g→0
V (g) = ∞, lim

g→∞
g2r+2V (g) = 0.

So the MSE function, which equals MSE(g) = B2(g)+V (g), is a continuous
function such that

lim
g→0

MSE(g) = ∞, lim
g→∞

MSE(g) = ψ2
r .

Therefore, to show that there exist a value gMSE = gMSE,r,n(f) minimizing
the MSE function, it suffices to show that, for big enough g∗, we have
MSE(g∗) < ψ2

r . So if we define

D(g) = MSE(g) − ψ2
r = [B2(g) − ψ2

r ] + V (g),

all that we need to show is that, for some ρ>0, we have limg→∞ gρD(g)<0.
But using the previous lemma we have

lim
g→∞

g2r+2[B2(g) − ψ2
r ] = − sig

(

ψrL
(r)(0)

)

· ∞.

As our assumptions imply that sigψr = sigL(r)(0) = (−1)r/2, it immedi-
ately follows that limg→∞ g2r+2[B2(g)−ψ2

r ] = −∞. This, together with the
limit properties of the variance allows us to conclude that limg→∞ g2r+2D(g)
= −∞ and so the proof is complete. 2

Proof of Theorem 2. From the previous lemma, together with (3), we know
that B(g) is a continuous function such that

lim
g→0

B(g) = (sigL(r)(0)) · ∞, lim
g→∞

B(g) = −ψr.

Again, our assumptions imply that sig
(

− ψr · L
(r)(0)

)

= −1, which yields
the proof using Bolzano’s theorem. 2

Proof of Theorem 3. For g = gMSE or g = gBA, suppose that ngr+1 does
not converge to infinity. Then ngr+1 has a subsequence which is upper
bounded by some positive constant C. Therefore, along that subsequence
we have g → 0.

For g = gMSE this implies that

lim sup
n→∞

MSE(gMSE) ≥ lim sup
n→∞

B2(gMSE) = lim sup
n→∞

(n−1g−r−1
MSE L

(r)(0))2

≥ (L(r)(0)/C)2 > 0,

which contradicts the fact that 0 ≤ MSE(gMSE) ≤ MSE(n−1/(r+2)) → 0
that follows from (5) together with the previous lemma.
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Similarly, for g = gBA we would obtain that

0 = B2(gBA) = lim sup
n→∞

B2(gBA)

= lim sup
n→∞

(n−1g−r−1
BA L(r)(0))2 ≥ (L(r)(0)/C)2 > 0,

so that the result also follows by contradiction. 2

Proof of Theorem 4. Let us prove the result for gMSE. Denote by Λf,L the
set of accumulation points of the sequence (gMSE). Take 0 < λ ∈ Λf,L and
(gnk

) a subsequence of (gMSE) such that λ = limk→∞ gnk
. Writing B(g;n)

and MSE(g;n) for B(g) and MSE(g), respectively, from equalities (3) and
(4) we get that, for fixed g > 0,

lim
n→∞

MSE(g;n) = lim
n→∞

B2(g;n) = [RL,r,g(f) − ψr]
2,

so that using Lemma 1 and Theorem 3, we obtain

0 = lim
g→0

[RL,r,g(f) − ψr]
2 = lim

g→0
lim
k→∞

B2(g;nk) = lim
g→0

lim
k→∞

MSE(g;nk)

≥ lim
k→∞

MSE(gnk
;nk) ≥ lim

k→∞
B2(gnk

;nk) = [RL,r,λ(f) − ψr]
2.

Therefore

Λf,L ⊂ {λ ≥ 0 : RL,r,λ(f) = ψr}

= {λ ≥ 0 :
∫ ∞

0 tr|ϕf(t)|
2[1 − ϕL(tλ)]dt = 0}, (11)

since from Parseval’s formula, together with ϕf (r)(t) = (it)rϕf(t) (see
Butzer and Nessel, 1971, Proposition 5.2.19) we easily get that

ψr = (−1)r/2π−1

∫ ∞

0

tr|ϕf(t)|
2dt

and

RL,r,λ(f) = (−1)r/2π−1

∫ ∞

0

tr|ϕf(t)|
2ϕL(tλ)dt.

Additionally, we also have

Λf,L ⊂

[

0,min

(

SL
Cf
,
TL
Df

)]

. (12)

This is because in fact, if λ > 0 is such that λ ∈ Λf,L, from (11) we have
∫ Cf

0

tr|ϕf(t)|
2[1 − ϕL(tλ)]dt = 0 and

∫ ∞

TL/λ

tr|ϕf(t)|
2[1 − ϕL(tλ)]dt = 0.

Taking into account that ϕL is a real function (for L being symmetric)
and such that 1 − ϕL(tλ) ≥ 0, from the first equality we conclude that
ϕL(s) = 1 for all 0 ≤ s ≤ λCf , and then SL ≥ λCf , that is, λ ≤ SL/Cf .
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From the second equality we have ϕf(t) = 0 for all t ≥ TL/λ, and then
Df ≤ TL/λ, that is, λ ≤ TL/Df .

From (12) we finally get

0 ≤ lim sup
n→∞

gMSE ≤ min

(

SL
Cf
,
TL
Df

)

, (13)

which concludes the proof for gMSE.
Similarly, notice that any λ being an accumulation point of gBA the equal-

ity RL,r,λ(f) − ψr = 0 should also hold, due to Theorem 3, the continuity
properties in Lemma 1 and the fact that B(gBA) = 0. Consequently, (13)
is also true for gBA and so the desired result. 2

As a tool for the proof of Theorem 5 we will need the following lemma,
which follows directly from expressions (9) and (10) for RL,r,g(f) and
SL,r,g(f), respectively, the differentiation theorem under the integral sign
and standard Taylor expansions.

Lemma 2. Under assumptions (L1), (L2), (D1) and (D2) we have:

a) The function g 7→ RL,r,g(f) is differentiable with

RL,r,g(f) = ψr + gνψr+νmν(L)/ν! + o(gν),

dRL,r,g(f)/dg = gν−1ψr+νmν(L)/(ν − 1)! + o(gν−1).

Additionally, if |mν+2|(L) <∞ and f has bounded continuous deriva-
tives up to order r+ ν + 2, the previous residual term o(gν) may be
replaced by gν+2ψr+ν+2mν+2(L)/(ν + 2)! + o(gν+2).

b) If
∫

|u|L(r)(u)2du < ∞, the function g 7→ R(L(r))2,0,g(f) is differen-
tiable and such that dR(L(r))2,0,g(f)/dg = o(1).

c) The function g 7→ SL,r,g(f) is differentiable and such that

dSL,r,g(f)/dg = 2gν−1ψr+ν,rmν(L)/(ν − 1)! + o(gν−1).

Proof of Theorem 5. a) From expansion (7) and taking for g the asymp-
totically optimal bandwidth (8), we easily get

n2ν/(r+ν+1)
(

MSE(g0) − 4n−1Varf (r)(X1)
)

= o(1)

and then, as MSE(gMSE) ≤ MSE(g0),

lim supn2ν/(r+ν+1)
(

MSE(gMSE) − 4n−1Varf (r)(X1)
)

<∞. (14)
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Moreover, using the fact that gMSE → 0 (that follows from Theorem 4, due
to condition (L2)), from expansion (7) we also get

n2ν/(r+ν+1)
(

MSE(gMSE) − 4n−1Varf (r)(X1)
)

=
(

(n1/(r+ν+1)gMSE)−r−1L(r)(0) + (n1/(r+ν+1)gMSE)νmν(L)ψr+ν/ν!
)2

+ o
(

(n1/(r+ν+1)gMSE)−2r−2 + (n1/(r+ν+1)gMSE)ν−r−1 + (n1/(r+ν+1)gMSE)2ν
)

,

which contradicts (14) if lim inf n1/(r+ν+1)gMSE = 0 or lim sup n1/(r+ν+1)gMSE

= ∞. Therefore the proof for gMSE is complete. The proof for gBA can be
obtained in a similar way by noting that, using (6),

0 = nν/(r+ν+1)B(gBA)

= {(n1/(r+ν+1)gBA)−r−1L(r)(0) + (n1/(r+ν+1)gBA)νmν(L)ψr+ν/ν!}(1 + o(1)).

b) From Lemma 2 and equalities (3) and (4) the functions B(g) and V (g),
and therefore MSE(g), are differentiable with

B′(g) = −(r + 1)n−1g−r−2L(r)(0) + νgν−1ψr+νmν(L)/ν! + o(gν−1) (15)

and

V ′(g) = 2c1,r n
−1gν−1mν(L)/ν!− 2c2,r n

−2g−2r−2 + o(n−1gν−1 + n−2g−2r−2),
(16)

with c1,r = 4ν(ψr+ν,r − ψr+νψr) and c2,r = (2r + 1)ψ0

∫

(L(r))2.
From these expansions together with (6), part a) of this result and equa-

tion MSE′(gMSE) = 2B(gMSE)B′(gMSE) + V ′(gMSE) = 0 we obtain

ngr+1
MSEB(gMSE)ngr+2

MSEB
′(gMSE)

= −n2g2r+3
MSEV

′(gMSE)/2

= −c1,r ng
2r+ν+2
MSE mν(L)/ν! + c2,r gMSE + o(ng2r+ν+2

MSE + gMSE) (17)

where

ngr+1
MSEB(gMSE) = L(r)(0) + ngr+ν+1

MSE ψr+νmν(L)/ν! + o(1) (18)

and

ngr+2
MSEB

′(gMSE)

= −(r + 1)L(r)(0) + ν ngr+ν+1
MSE ψr+νmν(L)/ν! + o(1)

= (−1)r/2+1{(r + 1)|L(r)(0)| + ν ngr+ν+1
MSE |ψr+ν ||mν(L)|/ν!}+ o(1).

is such that lim inf ngr+2
MSE|B

′(gMSE)| > 0. Therefore, from (17) we finally
get

L(r)(0) + ngr+ν+1
MSE ψr+νmν(L)/ν! = o(1), (19)
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that concludes the proof for gMSE. Also, notice that from 0 = ngr+1
BA B(gBA)

and (6) we obtain the same formula as in (19) with gBA instead of gMSE

and thus the limit g0/gBA → 1 and, consequently, gBA/gMSE → 1.
c) Using the fact that f has a bounded derivative of order r + ν + 2,

from Lemma 2 we know that the residual term o(gν) appearing in the
expansion of B(g) can be replaced by O(gν+2). This enables us to improve
the order of convergence of the residual term in equation (18) which can
be replaced by O(g2

MSE) = o(gMSE). Using again equation (17) and the fact
that ngr+2

MSEB
′(gMSE) = −c3,r(1 + o(1)), where c3,r = (r + ν + 1)L(r)(0), we

get

L(r)(0) + ngr+ν+1
MSE ψr+νmν(L)/ν!

= c1,rc
−1
3,r ng

2r+ν+2
MSE mν(L)/ν!− c2,rc

−1
3,r gMSE + o(gMSE).

Taking into account that g0 satisfies the equality

L(r)(0) + ngr+ν+1
0 ψr+νmν(L)/ν! = 0, (20)

for some ḡ between g0 and gMSE we have

n(r + ν + 1)ḡr+ν(g0/gMSE − 1)ψr+νmν(L)/ν!

= −c1,rc
−1
3,r ng

2r+ν+1
MSE mν(L)/ν! + c2,rc

−1
3,r + o(1).

In order to conclude it suffices to remark that n1/(r+ν+1)ḡ = c0,r(1 + o(1))
where cr+ν+1

0,r = −ν!L(r)(0)/(mν(L)ψr+ν). Therefore, the announced con-
vergence for g0/gMSE − 1 takes place with

C = CL,r,ν(f) = −c0,rc
−2
3,r{c2,r + 4ν(ψν,0ψ

−1
ν − ψ0)L(0)δr0},

where δr0 is the Kronecker symbol, that is, δr0 = 1 for r = 0 and δr0 = 0
for r 6= 0.

On the other hand, starting from 0 = ngr+1
BA B(gBA) and using (6) with

the residual term o(gν) replaced by O(gν+2) we come to

L(r)(0) + ngr+ν+1
BA ψr+νmν(L)/ν! = gr+1

BA ψr +O(ngr+ν+3
BA ). (21)

Reasoning as before we conclude that the announced convergence for
gBA/gMSE − 1 takes place with

D = DL,r,ν(f) = −c0,rc
−2
3,r{c2,r + (4ν(ψν,0ψ

−1
ν − ψ0) + (ν + 1)ψ0)L(0)δr0}.

Finally, using the fact that f has a bounded continuous derivative of order
r + ν + 2, from Lemma 2 we know that the residual term o(gν) appearing
in the expansion of B(g) can be replaced by gν+2ψr+ν+2mν+2(L)/(ν+2)!+
o(gν+2) which enables us write the residual term in equation (21) more
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precisely. Together with equation (20) we conclude that the announced
convergence for g0/gBA − 1 takes place with

E = EL,r,ν(f) = −c0,rc
−1
3,r{c

r+ν+2
0,r ψr+ν+2mν+2(L)/(ν + 2)!(1− δr0) − ψ0δr0}.

2

The orders of convergence for the higher order derivatives of RL,r,g(f),
R(L(r))2,0,g(f) and SL,r,g(f) given in the next lemma will be used in the
proof of Theorem 6. They follow directly from expressions (9) and (10),
the differentiation theorem under the integral sign and standard Taylor
expansions.

Lemma 3. Under assumptions (L1), (L2) and (D1), if f has bounded
and continuous derivatives up to order r + ν + 2, |mν+2|(L) < ∞ and
∫

|u|3L(r)(u)2du < ∞, then the functions g 7→ RL,r,g(f), g 7→ R(L(r))2,0,g(f)
and g 7→ SL,r,g(f) are three-times differentiable with

d2RL,r,g(f)/dg2 = O(gν−2), d3RL,r,g(f)/dg3 = O(gν−3),

d2R(L(r))2,0,g(f)/dg2 = O(1), d3R(L(r))2,0,g(f)/dg3 = O(1),

d2SL,r,g(f)/dg2 = O(gν−2), d3SL,r,g(f)/dg3 = O(gν−3).

Proof of Theorem 6. From Lemmas 2 and 3 and equalities (3) and (4) the
functions B(g) and V (g), and therefore MSE(g), are three-times differen-
tiable with

B′′(g) = O(n−1g−r−3 + gν−2), B′′′(g) = O(n−1g−r−4 + gν−3)

and

V ′′(g) = O(n−2g−2r−3 + n−1gν−2), V ′′′(g) = O(n−2g−2r−4 + n−1gν−3).

Moreover, a Taylor expansion for g 7→ MSE(g) around g = gBA leads to

MSE(g0) − MSE(gBA) = MSE′(gBA)gBA(g0/gBA − 1)

+ MSE′′(gBA)g2
BA(g0/gBA − 1)2/2 + MSE′′′(g̃)g3

BA(g0/gBA − 1)3/3!,

for some g̃ between g0 and gBA. Taking into account that B(gBA) = 0 and
n1/(r+ν+1)gBA = c0,r(1 + o(1)), from the previous orders of convergence for
B′′(g), B′′′(g), V ′′(g) and V ′′′(g), the expansions (15) and (16) for B′(g)
and V ′(g), respectively, and Theorem 5.c), we get

MSE′(gBA)gBA = c−2r−1
0,r dr n

−(2ν+1)/(r+ν+1)(1 + o(1)),

MSE′′(gBA)g2
BA(g0/gBA−1) = 2c−2r−2

0,r c23,rE n
−min(r+2ν+1,2ν+2)/(r+ν+1)(1+o(1))

and
MSE′′′(g̃)g3

BA(g0/gBA − 1)2 = O(n−(2ν+2)/(r+ν+1)),
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where dr = −2{c2,r + 4ν(ψν,0ψ
−1
ν − ψ0)L(0)δr0} and the constants c0,r, c2,r

and c3,r are defined in the proof of Theorem 5. Therefore, from Theorem
5.c), the announced convergence for MSE(g0) − MSE(gBA) will take place
with Λ = ΛL,r,ν(f) = c−2r−2

0,r {c0,rdr + c23,rEδr0}. 2

Proof of Theorem 7. As noted previously, to obtain an explicit formula
for the MSE function we just need to provide explicit formulas for L(r)(0),
RL,r,g(f), ψr, SL,r,g(f) and R(L(r))2,0,g(f). From Fact C.1.6 in Appendix C
in Wand and Jones (1995) we already have

L(r)(0) =

ν/2−1
∑

s=0

(−1)s(2ss!)−1 (−1)(2s+r)/2(2π)−1/2OF(2s+ r)

= (−1)r/2(2π)−1/2

ν/2−1
∑

s=0

(2ss!)−1 OF(2s+ r).

Also, using Fact C.1.12 there, taking into account that r is even,

ψr =

∫

f (r)(x)f(x)dx =
k

∑

ℓ,ℓ′=1

wℓwℓ′

∫

φ(r)
σℓ

(x− µℓ)φσ′

ℓ
(x− µℓ′)dx

=
k

∑

ℓ,ℓ′=1

wℓwℓ′φ
(r)
σℓℓ′

(µℓℓ′).

And from the same result and Fact C.1.11 we have

RL,r,g(f) =

∫

(L(r)
g ∗ f)f

=

k
∑

ℓ,ℓ′=1

wℓwℓ′

ν/2−1
∑

s=0

(−1)s(2ss!)−1

∫

[

φ(2s+r)
g ∗ φσℓ

(· − µℓ)
]

φσℓ′
(· − µℓ′)

=
k

∑

ℓ,ℓ′=1

wℓwℓ′

ν/2−1
∑

s=0

(−1)s(2ss!)−1

∫

φ
(2s+r)
σℓ(g)

(x− µℓ)φσℓ′
(x− µℓ′)dx

=
k

∑

ℓ,ℓ′=1

wℓwℓ′

ν/2−1
∑

s=0

(−1)s(2ss!)−1 φ
(2s+r)
σℓℓ′(g)

(µℓℓ′)

and so, the formula for the bias is complete.
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On the other hand, Theorem 6.1 in Aldershof et al. (1995) with m = 3
and r3 = 0 states that

∫

φ(r1)
σ1

(x− µ1)φ
(r2)
σ2

(x− µ2)φσ3
(x− µ3)dx = Ir1,r2(µ; σ). (22)

But we have L
(r)
g ∗ f =

∑k
ℓ=1wℓ

∑ν/2−1
s=0 (−1)s(2ss!)−1 φ

(2s+r)
σℓ(g)

(· − µℓ) so that

from (22) we obtain

SL,r,g(f) =

∫

(L(r)
g ∗ f)2f

=

k
∑

ℓ1,ℓ2,ℓ3=1

wℓ1wℓ2wℓ3

ν/2−1
∑

s,s′=0

(−1)s+s
′

(2s+s
′

s!s′!)−1

×

∫

φ
(2s+r)
σℓ1

(g) (x− µℓ1)φ
(2s′+r)
σℓ2

(g) (x− µℓ2)φσℓ3
(x− µℓ3)dx

=
k

∑

ℓ1,ℓ2,ℓ3=1

wℓ1wℓ2wℓ3

ν/2−1
∑

s,s′=0

(−1)s+s
′

(2s+s
′

s!s′!)−1

× I2s+r,2s′+r(µℓ1, µℓ2, µℓ3; σℓ1(g), σℓ2(g), σℓ3).

For the remaining term, it is easy to check that

f ∗ f̄(z) =
k

∑

ℓ,ℓ′=1

wℓwℓ′φσℓℓ′
(z − µℓℓ′).

Also, we know that

g−2r−1R(L(r))2,0,g(f) =

∫∫

(L(r)
g )2(x− y)f(x)f(y)dxdy

=

∫

(L(r)
g )2(z)(f ∗ f̄)(z)dz

so that in the normal mixture case we have

g−2r−1R(L(r))2,0,g(f)

=
k

∑

ℓ,ℓ′=1

wℓwℓ′

ν/2−1
∑

s,s′=0

(−1)s+s
′

(2s+s
′

s!s′!)−1

∫

φ(2s+r)
g (z)φ(2s′+r)

g (z)φσℓℓ′
(z−µℓℓ′)dz

so we conclude again by using formula (22) with µ1 = µ2 = 0, µ3 = µℓℓ′
and σ1 = σ2 = g, σ3 = σℓℓ′. 2
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