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Abstract: We prove that the relative commutator with respect to a subvariety of
a variety of Ω-groups can be described in terms of categorical Galois theory. This
extends the known correspondence between Fröhlich’s and Janelidze and Kelly’s
notions of central extension. As an example we study the reflection of the category
of loops to the category of groups where we obtain an interpretation of the associator
as a relative commutator.
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Introduction
This article concerns the connection between universal algebra and cat-

egorical algebra which arises when the concept of relative commutator is
analysed from a Galois-theoretic point of view. It may be seen as a con-
tinuation of Janelidze and Kelly’s work [21] on a general theory of central
extensions, which gives a categorical interpretation of the relative notion of
central extension introduced by Fröhlich [15] in the universal-algebraic con-
text of Higgins’s Ω-groups [18]. We shall explain how, in a formally precise
way, the relative commutator studied in [7] corresponds to a two-dimensional
version of those relative central extensions.

Relative central extensions in varieties of Ω-groups. Fröhlich’s defi-
nition involves a variety of Ω-groups A and a chosen subvariety B of A. Let
I : A → B be the left adjoint to the inclusion functor, and η : 1A ⇒ I the
unit of the adjunction. Then [−]B : A → A denotes the variety subfunctor
associated to I, which maps an object A of A to the object [A]B defined
through the short exact sequence

0 ,2 [A]B
µA ,2 A

ηA ,2 IA ,2 0,
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and a morphism a : A′ → A to its (co)restriction [a]B : [A′]B → [A]B. For
instance, when A is the variety Gp of all groups and B is the subvariety Ab
of abelian groups, IA is the abelianisation A/[A,A] of A, and [A]Ab is the
commutator subgroup [A,A]. Of course, A is in Ab if and only if [A]Ab =
[A,A] = 0.

An extension f : A → B in A being a surjection, it is central with re-
spect to B if and only if for any parallel pair of morphisms a0, a1 : A′ → A,
the condition f ◦a0 = f ◦a1 implies that [a0]B = [a1]B. For instance, in the case
of groups vs. abelian groups, a surjective group homomorphism f is central
with respect to Ab exactly when it is central in the classical sense, i.e., the
commutator [K, A] of A with the kernel K of f is trivial.

The Galois-theoretic approach. Janelidze and Kelly understood how this
relative concept of central extension may be described in terms of categori-
cal Galois theory. Introduced by Janelidze (in [19]; see also [3]) this general
approach to Galois theory not only captures, e.g., the case of field exten-
sions, but similar concepts in other parts of mathematics as well—indeed
also Fröhlich’s relative central extensions, as explained in the article [21].
In the context where we shall need it, their definition of central extension
involves a semi-abelian category A (in the sense of [22]: pointed, Barr exact
and Bourn protomodular with binary sums) and a Birkhoff subcategory B
of A: full and reflective in A, and closed in A under formation of subobjects
and regular quotients. The adjunction

A
I ,2
⊥ B
⊃

lr (A)

together with the classes |ExtA| and |ExtB| of extensions (i.e., regular epi-
morphisms) in A and in B form a so-called Galois structure

Γ = (A
I ,2
⊥ B
⊃

lr , |ExtA|, |ExtB|).
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An extension f : A → B in A is trivial (with respect to B) or B-trivial
when the induced commutative square

A
f

,2

ηA

¯µ

B
ηB

¯µ

IA
If

,2 IB

is a pullback. And f is central (with respect to B) or B-central when
there exists an extension g : C → B such that the pullback g∗f of f along g
is B-trivial.

In the present context, if f is central then one necessarily has that either
one of the projections f0, f1 in the kernel pair (R[f ], f0, f1) of f is B-trivial
(i.e., f is normal with respect to B) [21, Theorem 4.8]. When A is a variety
of Ω-groups, it is a semi-abelian category, and a Birkhoff subcategory B of
A is the same thing a subvariety. Then an extension is B-central in the
Galois-theoretic sense if and only if it is B-central in Fröhlich’s sense [21,
Theorem 5.2]. More precisely, the definition of central extensions as we
presented it above for Ω-groups is equally valid in semi-abelian categories [4,
Theorem 2.1].

Connections with homological algebra. There are close connections be-
tween the Janelidze–Kelly theory of central extensions and some recent de-
velopments in homological algebra, which are worth exploring before we go
deeper into the link with commutator theory. Already in the work of Fröhlich,
Lue and Furtado-Coelho [15, 24, 16] in the varietal context, the relation be-
tween the derived functors of the reflector I : A → B and the notion of B-
central extension is emphasised. This relation is particularly explicit in the
Hopf formula

H2(B,B) ∼= K ∩ [A]B
[K,A]B

which gives an interpretation of a derived functor of I (the left hand side
of the equation) in terms of commutators (the equation’s right hand side).
Here the short exact sequence

0 ,2 K
k ,2 A

f
,2 B ,2 0 (B)

is a presentation of B, i.e., A is projective, and the commutator [K,A]B
is the smallest ideal J of A such that the induced map A/J → B is central.
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Similar ideas are known to work in the context of semi-abelian categories [8,
11, 12].

The relative theory of central extensions may be used to prove higher-
dimensional versions of the Hopf formula, which express the higher homology
groups Hn(B,B) in terms of higher-dimensional central extensions [10, 6].
Just like the concept of central extension which is defined with respect to
an adjunction (A), one may consider double central extensions which are
defined with respect to the reflection of extensions to central extensions—
the adjunction

ExtA
I1 ,2
⊥ CExtBA
⊃

lr

where ExtA denotes the category of extensions and commutative squares be-
tween them, and CExtBA its full subcategory determined by those extensions
which are B-central. Together with well-chosen classes of double extensions,
this adjunction forms a Galois structure Γ1, and Galois theory provides us
with a notion of relative double central extension with respect to B. This
construction may be repeated ad infinitum, so that notions of n-fold cen-
tral extension are obtained, but for the present purposes the second step is
sufficient. Thus double central extensions, first introduced by Janelidze for
groups [20], appear naturally in the study of (co)homology [6, 10, 13, 17, 25],
and turn out to be precisely what we need to understand how the relative
commutator works.

The relative commutator. Given a variety of Ω-groupsA and a subvariety
B of A, the objects of B and the B-central extensions are often defined in
terms of some kind of commutator. (Such as, in the case of groups, the
classical commutator [−,−], which is used to characterise abelian groups
and central extensions.) One may take the opposite point of view, and ask
whether the subvariety B (and the B-central extensions) determine a notion of
commutator. In his paper [7], the first author does exactly this: he introduces
a relative commutator [−,−]B with respect to B which is such that an object
A of A is in B if and only if [A,A]B = 0. Moreover, an extension f : A → B
in A with kernel K is B-central if and only if [K, A]B = 0. For example, if A
is the variety PXMod of precrossed modules (which is indeed a variety—see,
e.g., [23]) and B is the subvariety XMod of crossed modules then [−,−]B is
the Peiffer commutator 〈−,−〉.
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In view of the above ideas, a relation between this relative commutator
and the concept of higher central extension was to be expected. Morally, the
fact that we need double central extensions here is simply a consequence of
the commutator’s having two arguments. Indeed, the objects of the Birkhoff
subcategory B of A are those objects A for which the commutator [A,A]B of
A with itself is zero: to characterise the zero-dimensional B-central extensions
of A, the commutator has to take no non-trivial arguments. To characterise a
one-dimensional B-central extension f : A → B with kernel K as an extension
f such that [K, A]B is zero, one non-trivial argument of the commutator is
needed; so it is natural to expect that a commutator with two non-trivial
arguments corresponds to the two-dimensional B-central extensions of A.

Structure of the text. In the first section we recall the definition of the rel-
ative commutator introduced in [7], as well as some basic notations and exam-
ples. In Section 2 we sketch the needed categorical background: semi-abelian
categories, categorical Galois theory and the concept of double central exten-
sion. We characterise double central extensions in terms of double equiva-
lence relations and the zero-dimensional commutator (Proposition 2.9). Sec-
tion 3 contains the main result of the article, Theorem 3.1, which gives an
interpretation of the relative commutator in terms of double central exten-
sions. Finally, in Section 4, we study a non-classical example: the relative
commutator of loops with respect to groups. The category Loop of loops and
loop homomorphisms does not form a variety of Ω-groups, hence lies beyond
the scope of the theory introduced in [7]. Nevertheless the concept of relative
commutator arises naturally here when the reflection to the category Gp of
groups is considered (Theorem 4.7).

1. The relative commutator
A variety of Ω-groups [18] is a pointed variety of universal algebras

(it has exactly one constant) that has amongst its operations and identities
those of the variety of groups. It is well-known that any such variety is semi-
abelian [22]. Examples include the varieties Gp of groups, Rng of non-unital
rings, XMod of crossed modules, PXMod of precrossed modules, CommAlg
of commutative algebras, RMod of modules over a ring R and LieK of Lie
algebras over a field K.

We shall denote finite ordered sets (x1, x2, . . . , xr), (a1, a2, . . . , as),. . . by x,
a, etc. Instead of (x1y1, x2y2, . . . , xryr) we shall write xy. w(x1, x2, . . . , xr)
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and w(a1, a2, . . . , as) become w(x) and w(a), for terms (words) w. If 1 is
the unit of a group operation we shall write  instead of (1, . . . , 1). Also,
a1, a2, . . . , as ∈ A will be abbreviated to a ∈ A.

In this context, a normal subobject N of an object A is usually called an
ideal. The meet of ideals is their intersection, and also the join is easy to
compute: if M and N are ideals of A then M ∨N is the (internal) product

M ·N = {mn |m ∈ M,n ∈ N}
with the Ω-group structure induced by A. A priori, M ∨ N contains all
w(mn) where w is a term, m ∈ M and n ∈ N ; but w(mn) may be written
as the product of w(mn)w(n)−1 ∈ M with w(n) ∈ N , which explains
why M ∨ N = M · N . (To see that w(mn)w(n)−1 is indeed an element
of M , apply the quotient map A → A/M to it.) Given an ideal J of M ·N ,
the induced quotient of M ·N is denoted

qJ : M ·N → M ·N
J ;

we write RJ for the kernel pair of qJ .
Suppose that A is a variety of Ω-groups and B is a subvariety of A. Then B

is completely determined by a set of identities of terms of the form w(x) = 1.
The set of all corresponding terms w(x) forms a group

W = WB = {w(x) |w(b) = 1,∀B ∈ B,∀b ∈ B}.
An object B belongs to B if and only if w(b) = 1 for all w ∈ W and b ∈ B
and, consequently,

[A]B = {w(a) |w ∈ W, a ∈ A}
for any A in A.

Now we are in a position to recall the definition of the relative commutator
introduced in [7].

Definition 1.1. Let A be a variety of Ω-groups and B a subvariety of A.
For any object A of A and any pair of ideals M and N of A, the commutator
[M, N ]B is the ideal of M ·N generated by the set

{w(mn)w(n)−1w(m)−1w(p) |w ∈ W, m ∈ M, n ∈ N, p ∈ M ∩N}.
Examples 1.2. We already mentioned that in the case of groups vs. abelian
groups, [M,N ]Ab is the classical commutator [M,N ]. It is shown in [7] that,
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more generally, for any variety of Ω-groups A, the commutator [M, N ]AbA rel-
ative to the subvariety AbA of abelian Ω-groups in A is the Higgins commu-
tator from [18]. Proposition 2.3 in [7] states that the commutator [M,N ]XMod
of two precrossed submodules M and N of a precrossed module A is precisely
the Peiffer commutator 〈M,N〉 of M and N . For any k ≥ 2, a description of
the commutator [M,N ]Solk of groups vs. solvable groups of class at most k,
and of [M,N ]Nilk, the commutator of groups vs. nilpotent groups of class at
most k can be found in [9].

2. Double central extensions
In this section we sketch the categorical and Galois-theoretic background

needed for the definition of double central extension, and we explain how
those double central extensions can be characterised in terms of zero-dimen-
sional commutators and double equivalence relations (Proposition 2.9). More
on these subjects may, for instance, be found in the articles [6, 10, 25].

2.1. Semi-abelian categories. Recall that a regular epimorphism is a
coequaliser of some pair of arrows. A category is regular when it is finitely
complete with coequalisers of kernel pairs and with pullback-stable regular
epimorphisms. In a regular category, any morphism may be factored as a
regular epimorphism followed by a monomorphism, and this image factori-
sation is unique up to isomorphism. A category is Barr exact when it
is regular and such that any internal equivalence relation is effective, i.e.,
it is the kernel pair of its coequaliser. A pointed and regular category is
Bourn protomodular when the (Regular) Short Five Lemma holds:
this means that for any commutative diagram

K[f ′]
ker f ′

,2

k
¯µ

A′ f ′
,2

a
¯µ

B′

b
¯µ

K[f ]
ker f

,2 A
f

,2 B

such that f and f ′ are regular epimorphisms, k and b being isomorphisms
implies that a is an isomorphism. A semi-abelian category is pointed, Barr
exact and Bourn protomodular with binary coproducts [22].

Since a regular epimorphism is always the cokernel of its kernel in a semi-
abelian category, the following notion of short exact sequence is appropriate.
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A short exact sequence is any sequence

K
k ,2 A

f
,2 B

with k = ker f and f a regular epimorphism. We denote this situation

0 ,2 K
k ,2 A

f
,2 B ,2 0.

2.2. Double extensions. Let A be a semi-abelian category. Recall that
an extension in A is a regular epimorphism. The category ExtA has for
its objects the extensions in A, and for its arrows the commutative squares
between extensions. Since ExtA need no longer be semi-abelian, we usually
make all constructions involving exact sequences etc. in the semi-abelian
category ArrA of all arrows in A which contains ExtA as a full subcategory.

A double extension is a commutative square

X
c ,2

d
¯µ

C
g

¯µ

D
f

,2 Z

(C)

such that all its maps and the comparison map (d, c) : X → D ×Z C to the
pullback of f with g are regular epimorphisms. The category of double
extensions in A and commutative cubes between them is denoted Ext2A. The
basic categorical properties of higher-dimensional extensions are explored
in [10] and [6].

2.3. Double relations. Given two (internal) equivalence relations R and
S on an object X, a double equivalence relation C on R and S is an
equivalence relation C on S of which the “object part” is R, as in the next
diagram.

C
,2
,2

¯µ¯µ

S

¯µ¯µ

R
,2
,2 X

For instance, R¤S denotes the largest double equivalence relation on R
and S. In the concrete case of a variety of universal algebras it consists
of all quadruples (x, y, z, t) ∈ X4 in the configuration(

x y
z t

)
,
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i.e., where (x, z), (y, t) ∈ R and (x, y), (z, t) ∈ S. We shall be especially
interested in the special case where C is induced by a double extension (C)
as follows: R = R[c] is the kernel pair of c, S = R[d] is the kernel pair of d
and C = R[c]¤R[d]. It is easily seen that then the rows and columns of the
induced diagram

R[c]¤R[d]
p1 ,2

p0

,2

r1
¯µ

r0
¯µ

R[d]
p

,2

d1
¯µ

d0
¯µ

R[g]

g1

¯µ
g0

¯µ
R[c]

c1 ,2

c0

,2

r
¯µ

X
c ,2

d
¯µ

C

g

¯µ
R[f ]

f1 ,2

f0

,2 D
f

,2 Z

are exact, i.e., consist of effective equivalence relations with their coequalisers.

2.4. Birkhoff subcategories. Given a semi-abelian categoryA, a Birkhoff
subcategory B of A is full and reflective in A, and closed in A under
formation of subobjects and regular quotients.

Example 2.5. Recall from [5] that a variety of universal algebras A is semi-
abelian if and only if it has a unique constant 1 and, for some natural number
n ≥ 1, n binary terms ti and an (n + 1)-ary term t such that ti(x, x) = 1
and t(t1(x, y), t2(x, y), . . . , tn(x, y), y) = x. This is the case, precisely when
the variety is pointed and BIT speciale in the sense of [26] or classically ideal
determined in the sense of [27].

A Birkhoff subcategory B of A is the same thing as a subvariety. Since
x = y in A if and only if ti(x, y) = 1 for all i, the subvariety B is completely
determined by a set of identities of terms of the form w(x) = 1, as in the
case of varieties of Ω-groups.

2.6. The centralisation functor. Let B be a Birkhoff subcategory of A.
The full subcategory of ExtA determined by the B-central extensions is de-
noted CExtBA. The inclusion CExtBA ⊂ ExtA has a left adjoint, the central-
isation functor, which is denoted I1 : ExtA → CExtBA. It may be described
in terms of one-dimensional commutators as follows.

Let f : A → B be an extension with kernel K. Note that f is B-central if
and only if for the kernel pair (R[f ], f0, f1) of f , the (co)restrictions

[f0]B, [f1]B : [R[f ]]B → [A]B
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of the two projections are equal: [f0]B = [f1]B. Indeed, if the latter condition
holds and f ◦a0 = f ◦a1 for some a0, a1 : A′ → A, then there exists a map
a : A′ → R[f ] such that f0◦a = a0 and f1◦a = a1, which implies [a0]B = [a1]B.
The converse is obvious.

Since [f0]B and [f1]B are jointly monomorphic and have a common splitting,
[f0]B is equal to [f1]B exactly when either one of these maps is an isomorphism.
Hence the kernel [K,A]B of [f0]B measures how far f is from being central: f
is B-central if and only if [K,A]B is zero. This one-dimensional commutator
[K,A]B may be considered as a normal subobject of A via the composite
µA◦[f1]B◦ker [f0]B : [K, A]B → A, as depicted in the following diagram.

[K, A]B
ker [f0]B

¯µ

¹Ã

0 ,2 [R[f ]]B
µR[f ]

,2

[f0]B
¯µ

[f1]B
¯µ

R[f ]

f0
¯µ

f1
¯µ

ηR[f ]
,2 IR[f ]

If0
¯µ

If1
¯µ

,2 0

0 ,2 [A]B µA

,2 A ηA

,2 IA ,2 0

Examples 2.7. Here are two examples, taken from [10] and [7]. If f : A → B
is an extension of precrossed modules with kernel K then the commutator
[K,A]XMod relative to the subvariety of crossed modules is the Peiffer commu-
tator 〈K, A〉. If f is an extension of groups then the commutator [K, A]Sol2
relative to the subvariety Sol2 of all groups which are solvable of class at most
2 is [[K, A], [A,A]].

Given any extension f : A → B with kernel K, its centralisation I1f is
now obtained through the diagram with exact rows

0 ,2 [K, A]B ,2

¯µ

A
ρ1

f
,2

f
¯µ

A
[K,A]B

,2

I1f
¯µ

0

0 ,2 B B ,2 0.

Considering this diagram as a short exact sequence

0 ,2 K[η1
f ]

µ1
f

,2 f
η1

f
,2 I1f ,2 0

in the semi-abelian category of arrows ArrA we obtain a description of the
unit η1 of the adjunction and its kernel µ1.
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Thus the Galois structure Γ induces a new Galois structure

Γ1 = (ExtA
I1 ,2
⊥ CExtBA
⊃

lr , |Ext2A|, |ExtCExtBA|)

where ExtCExtBA consists of all double extensions which lie in CExtBA.

2.8. Double central extensions. By definition, a double extension is a
double central extension when it is a covering with respect to the Galois
structure Γ1. This means that the double extension (C), considered as a map
(c, f) : d → g in the category ExtA, is central if and only if the first projection

R[c]
c0 ,2

r
¯µ

X

d
¯µ

R[f ]
f0

,2 D

R[c]
c0 ,2

ρ1
r

¯µ

X

ρ1
d

¯µ
R[c]

[K[r],R[c]]B
,2 X
[K[d],X]B

of its kernel pair—the left hand side square—is a trivial extension with re-
spect to Γ1. (Alternatively, one could use the square of second projections.)
This means that the comparison map to its reflection into CExtBA—the right
hand side square—is a pullback. For this to happen, the natural map

[K[r], R[c]]B → [K[d], X]B (D)

must be an isomorphism. This, in turn, is equivalent to the square

[R[c]¤R[d]]B
[p0]B ,2

[r0]B
¯µ

[R[d]]B
[d0]B

¯µ

[R[c]]B
[c0]B

,2 [X]B

being a pullback, because [K[r], R[c]]B and [K[d], X]B are by definition the
kernels of the vertical maps in this square. Note that, equivalently, we could
have chosen second projections for the vertical maps. Thus we proved the
following characterisation of double central extensions, which is a relative
version of the result in Section 1.9 of [25].

Proposition 2.9. Let A be a semi-abelian category and B a Birkhoff subcat-
egory of A. A double extension (C) is central with respect to B if and only
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if any of the induced commutative squares in

[R[c]¤R[d]]B ,2
,2

¯µ ¯µ

[R[d]]B

¯µ ¯µ

[R[c]]B ,2
,2 [X]B

is a pullback.

3. The commutator in terms of categorical Galois theory
Now we are ready to prove our main theorem: a characterisation of the

relative commutator from Definition 1.1 in Galois-theoretic terms.

Theorem 3.1. Let A be a variety of Ω-groups and B a subvariety of A.
Given any two ideals M and N of an object A of A, the commutator [M, N ]B
is zero if and only if the double extension

M ·N qM ,2

qN

¯µ

M ·N
M

¯µ
M ·N

N
,2 0

(E)

is central.

Proof : First note that the above square is indeed a double extension: the
comparison map

(qN , qM) : M ·N → M ·N
N × M ·N

M

to the induced pullback is a surjection, because

(qN(mn), qM(m′n′)) = (qN(m), qM(n′))

= (qN(mn′), qM(mn′))

for all m,m′ ∈ M , n, n′ ∈ N .
Now suppose that [M,N ]B is zero. By Proposition 2.9, it suffices to prove

that any of the commutative squares in

[RM¤RN ]B
,2
,2

¯µ¯µ

[RN ]B

¯µ¯µ

[RM ]B
,2
,2 [M ·N ]B

(F)
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is a pullback. Now RM¤RN consists of all
(

mn mn′

m′n m′n′p

)

where m,m′ ∈ M , n, n′ ∈ N and p ∈ M ∩N . Hence [RM¤RN ]B contains all
quadruples (

w(mn) w(mn′)
w(m′n) w(m′n′p)

)

where w ∈ W , m, m′ ∈ M , n, n′ ∈ N and p ∈ M ∩ N . We have to prove
that two of those quadruples coincide as soon as three out of four of their
elements do. This is the case because the assumption implies

w(m′n′p) = w(m′)w(n′)w(p)

= w(m′)w(n′)

= w(m′)w(n)w(n)−1w(m)−1w(m)w(n′)

= w(m′n)w(mn)−1w(mn′),

so that the fourth element depends fully on the other three.
Conversely, suppose that any of the commutative squares in (F) is a pull-

back. Then, since for any w ∈ W and p ∈ M ∩N , both
(

1 1
1 w(p)

)
and

(
1 1
1 1

)

are in [RM¤RN ]B, we have that w(p) = 1. Also, for any w ∈ W , m ∈ M
and n′ ∈ N , we have that both

(
w(m) w(mn′)

1 w(n′)

)
and

(
w(m) w(mn′)

1 w(m)−1w(mn′)

)

are in [RM¤RN ]B, hence w(mn′) = w(m)w(n′).

Using Theorem 3.1, one can extend the relative notion of commuting sub-
objects so that A is allowed to be any semi-abelian category A and B any
Birkhoff subcategory of A. Taking, for normal subobjects M and N of an
object A in A, their commutator [M, N ]B to be the smallest normal subob-
ject J of M ∨ N such that qJM and qJN commute thus provides one with
a categorical notion of relative commutator, which will be studied in more
detail in [14].
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4. Example: the associator of loops
We now illustrate this approach with example of loops vs. groups. Note

that loops do not constitute a variety of Ω-groups, so that Definition 1.1 is not
applicable. Nevertheless, the variety Loop is semi-abelian. The commutator
[−,−]B defined above in terms of double central extensions characterises the
associator of loops when B is taken to be the subvariety Gp of groups. Since
indeed loops are “non-associative groups” it makes sense for the reflection to
Gp to induce a commutator [M,N ]Gp which measures how well the elements
of two given normal subloops M and N of a loop A associate with each other.

4.1. Basic definitions and properties. Recall that a loop is an alge-
braic structure (A, ·, \, /, 1) where the multiplication · and the left and right
division \ and / satisfy the axioms

y = x · (x\y) y = x\(x · y)

x = (x/y) · y x = (x · y)/y

and 1 is a unit for the multiplication, x · 1 = x = 1 · x. We shall sometimes
write xy for x · y. The variety of loops is denoted Loop. It is known to be
semi-abelian [2], and easily seen to be such using the description recalled in
Example 2.5: take n = 1, t(x, y) = xy and t1(x, y) = x/y.

Suppose that M and N are normal subloops of a loop A. Then the ar-
gument showing that M ∨ N = M · N given in the case of Ω-groups is still
valid, as indeed w(mn) is the product of w(mn)/w(n) with w(n).

4.2. The associator. The associator of three elements x, y, z of a loop
A is the unique element [x, y, z] of A such that (xy)z = [x, y, z] · x(yz).
Hence [x, y, z] is equal to ((xy)z)/(x(yz)). Given three normal subloops L,
M and N of A, we write [L,M, N ] for the normal subloop of A generated
by the elements [x, y, z], where either (x, y, z) or any of its permutations is
in L×M ×N : it is the smallest normal subloop J of A such that qJL, qJM
and qJN “associate”.

The associator of A is its normal subloop [A,A, A]. A loop A is a group
if and only if its associator is trivial, and the reflection gpA of any loop A
into Gp is given by A/[A,A, A]. Thus we see that [A]Gp = [A,A, A].
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4.3. Characterisation of the Gp-central extensions of loops. The ad-
junction

Loop
gp

,2
⊥ Gp
⊃

lr

induces a notion of central extension of loops, relative to the subvariety of
groups. It may be characterised in terms of an associator as follows.

Proposition 4.4. In the category of loops, let f : A → B be an extension
with kernel K. The extension f is central with respect to Gp if and only if
the associator [K,A, A] is zero. Hence

[K, A]Gp = [K, A,A].

Proof : By definition, f is a central extension if and only if the induced split
epimorphisms of loops

[f0]Gp, [f1]Gp : [R[f ], R[f ], R[f ]] → [A,A, A]

are equal.
Let (k, a, a′) be an element of K ×A×A and suppose that [f0]Gp = [f1]Gp.

Then

[k, a, a′] = f0[(k, 1), (a, a), (a′, a′)] = f1[(k, 1), (a, a), (a′, a′)] = [1, a, a′] = 1.

Similarly, also [a, k, a′] = 1 and [a, a′, k] = 1, which means that [K,A, A] = 0.
Conversely, assume that [K,A, A] = 0. First note that this implies that

(ak)/(a′k) = a/a′ ∀a, a′ ∈ A, k ∈ K. (G)

Indeed, it follows from the assumption that

ak = ((a/a′)a′)k = (a/a′)(a′k).

Now, for any element (a, a′) of R[f ] we can write a′ = ak, where k = a\a′ is
in K. Thus we see that [R[f ], R[f ], R[f ]] is generated by all elements of the
form [(a, ak), (a′, a′k′), (a′′, a′′k′′)] where (a, a′, a′′) ∈ A3 and (k, k′, k′′) ∈ K3.
We have to show for any such generator that [a, a′, a′′] = [ak, a′k′, a′′k′′]. We
shall do this in three steps, first eliminating k′′, then k′, and finally k.

Consider an associator [ak, a′k′, a′′k′′]. Then

[ak, a′k′, a′′k′′] = ((ak · a′k′)(a′′k′′))/((ak)(a′k′ · a′′k′′))
and (ak · a′k′)(a′′k′′) = (ak · a′k′)a′′ · k′′ while

(ak)(a′k′ · a′′k′′) = (ak)((a′k′ · a′′)k′′) = (ak)(a′k′ · a′′) · k′′
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so that [ak, a′k′, a′′k′′] = [ak, a′k′, a′′] by (G). Write k′a′′ = a′′k′ where k′ =
a′′\(k′a′′) ∈ K. Since

(ak · a′k′)a′′ = ((ak · a′)k′)a′′ = (ak · a′)(k′a′′) = (ak · a′)(a′′k′) = (ak · a′)a′′ · k′
and

(ak)(a′k′ ·a′′) = (ak)(a′ ·k′a′′) = (ak)(a′ ·a′′k′) = (ak)(a′a′′ ·k′) = (ak ·a′a′′)·k′,
using (G) we find that [ak, a′k′, a′′] = [ak, a′, a′′]. Finally,

(ak · a′)a′′ = (a · ka′)a′′ = (a · a′k)a′′ = (aa′ · k)a′′

= aa′ · ka′′ = aa′ · a′′k = (aa′ · a′′) · k
and

ak · a′a′′ = a(k · a′a′′) = a(ka′ · a′′) = a(a′k · a′′) = a(a′ · ka′′)

= a(a′ · a′′k) = a(a′a′′ · k) = (a · a′a′′) · k,

for some k, k ∈ K, from which we infer—again using (G)—that [a, a′, a′′] =
[ak, a′k′, a′′k′′].

One way to apply this result occurs when computing of the homology of
loops with respect to groups: the second homology group of a loop B may
be written in a Hopf formula as a quotient of associators.

Corollary 4.5 (Hopf formula for loops vs. groups). If B is a loop and (B)
a projective presentation of B, then

H2(B, Gp) ∼= K ∩ [A,A, A]
[K, A,A]

,

where the left hand side homology group is the comonadic homology of B
with coefficients in the reflector gp : Loop → Gp and relative to the comonad
induced by the forgetful/free adjunction to Set.

Proof : This is an instance of [12, Theorem 6.9]; see also [10] and [8].

4.6. The relative commutator is an associator. We now use the char-
acterisation of Gp-central extensions of loops to interpret the commutator
[−,−]Gp in terms of associator elements. Let A be a loop and let M and N
be normal subloops of A. As in the case of Ω-groups, the induced commuta-
tive square (E) is indeed a double extension of loops: the proof given with
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Theorem 3.1 is still valid. We have to find out when this double extension is
Gp-central.

Theorem 4.7. If M and N are normal subloops of a loop A then

[M,N ]Gp = [M, N,M ·N ].

Proof : We have to show that the associator [M, N, M ·N ] is zero if and only
if (E) is central. This happens when the two projections

[
K[qN ◦(qM)0] ∩K[qN ◦(qM)1], RM

]
Gp → [N,M ·N ]Gp

arising through the diagram

K[(qN ◦(qM)0, qN ◦(qM)1)]
,2
,2

¯µ

N

¯µ
RM

(qM )1 ,2

(qM )0

,2

(qN◦(qM )0,qN◦(qM )1)
¯µ

M ·N qM ,2

qN

¯µ

M ·N
M

¯µ
M ·N

N × M ·N
N

,2
,2 M ·N

N
,2 0

and corresponding to (D) are equal to each other. Proposition 4.4 tells us
that they are the restrictions of the kernel pair projections (qM)0 and (qM)1

to maps

q0, q1 :
[
K[qN ◦(qM)0] ∩K[qN ◦(qM)1], RM , RM

] → [N, M ·N,M ·N ].

If q0 = q1 then, for any m, m′ ∈ M and n, n′ ∈ N ,

[n, m,m′n′] = q0[(n, n), (m, 1), (m′n′, n′)]

= q1[(n, n), (m, 1), (m′n′, n′)]

= [n, 1, n′] = 1.

Similarly, [m,n, m′n′], [m,m′n′, n], [n,m′n′,m], [m′n′,m, n] and [m′n′, n, m]
also vanish so that [M, N, M ·N ] = 0.

Conversely, suppose that [M, N, M ·N ] is zero. We have to prove that then
the morphism q0 is equal to q1. Note that any element of the intersection
K[qN ◦(qM)0] ∩ K[qN ◦(qM)1] may be written as (n, np) with n ∈ N and p ∈
M ∩N , and any element of RM as (nm, nmm′) with m,m′ ∈ M and n ∈ N .
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Hence it will be sufficient to prove that the identities

[n, n′m,n′′m′′] = [np, n′mm′, n′′m′′m′′′],

[n′′m′′, n, n′m] = [n′′m′′m′′′, np, n′mm′]

and
[n′m,n′′m′′, n] = [n′mm′, n′′m′′m′′′, np]

hold for all p ∈ M ∩ N , m, m′, m′′, m′′′ ∈ M and n, n′, n′′ ∈ N . This in
its turn simplifies to proving that each of the commutators [nm, n′m′, n′′],
[nm, n′, n′′m′′] and [n, n′m′, n′′m′′] is equal to [n, n′, n′′], since in that case we
have that

[n, n′m,n′′m′′] = [n, n′, n′′] = [np, n′, n′′] = [np, n′mm′, n′′m′′m′′′]

—and the other two identities can be derived in a similar fashion. We shall
work out in detail that [nm, n′m′, n′′] = [n, n′, n′′]. The proofs of other two
identities are quite similar and are left to the reader.

Let thus m and m′ be elements of M and let n, n′ and n′′ be elements
of N . Write m′n′′ = n′′m′, mn′ = n′m and then mn′′ = n′′m, where m′ =
n′′\(m′n′′), m = n′\(mn′) and m = n′′\(mn′′) all lie in M . Then

[nm, n′m′, n′′] = ((nm · n′m′) · n′)/(nm · (n′m′ · n′′))
and

(nm · n′m′)n′′ = ((nm · n′)m′)n′′ = (nm · n′) ·m′n′′ = (nm · n′) · n′′m′

= ((nm · n′)n′′)m′ = ((n ·mn′)n′′)m′ = ((n · n′m)n′′)m′

= ((nn′ ·m)n′′)m′ = (nn′ ·mn′′)m′ = (nn′ · n′′m)m′

= ((nn′ · n′′)m)m′ = (nn′ · n′′) ·mm′

while

nm · (n′m′ · n′′) = nm · (n′ ·m′n′′) = nm · (n′ · n′′m′) = nm · (n′n′′ ·m′)

= (nm · n′n′′)m′ = (n(m · n′n′′))m′ = (n(mn′ · n′′))m′

= (n(n′m · n′′))m′ = (n(n′ ·mn′′))m′ = (n(n′ · n′′m))m′

= (n(n′n′′ ·m))m′ = ((n · n′n′′)m)m′ = (n · n′n′′) ·mm′

so that

(nn′ · n′′) ·mm′ = ([n, n′, n′′] · (n · n′n′′)) ·mm′ = [n, n′, n′′] · ((n · n′n′′) ·mm′)

which implies that [nm, n′m′, n′′] = [n, n′, n′′].
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DMUC 09-06 (2009), 1–8, submitted.
[14] , Relative commutator theory in semi-abelian categories, in preparation, 2009.
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J. Algebra 67 (1980), 385–414.
[24] A. S.-T. Lue, Baer-invariants and extensions relative to a variety, Math. Proc. Cambridge

Philos. Soc. 63 (1967), 569–578.
[25] D. Rodelo and T. Van der Linden, The third cohomology group classifies double central exten-

sions, Pré-Publicações DMUC 08-55 (2008), 1–22, submitted.
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