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REDUCTIONS OF THE DISPERSIONLESS 2D TODA
HIERARCHY AND THEIR HAMILTONIAN STRUCTURES

GUIDO CARLET, PAOLO LORENZONI AND ANDREA RAIMONDO

Abstract: We study finite-dimensional reductions of the dispersionless 2D Toda
hierarchy showing that the consistency conditions for such reductions are given
by a system of radial Loewner equations. We then construct their Hamiltonian
structures, following an approach proposed by Ferapontov.

1. Introduction
The dispersionless KP and 2D Toda hierarchies are two main examples of

hierarchies of equations of hydrodynamic type with an infinite number of
dependent variables [9]. The problem of the finite-dimensional reduction of
these hierarchies consists in finding constraints which are compatible with the
flows of the hierarchy and such that the constrained flows are described by
a system of equations hydrodynamic type with a finite number of dependent
variables.

In the case of the dispersionless KP hierarchy (or Benney hierarchy) it was
shown [5, 6] that the equations describing the compatibility of the constraints
are a system of chordal Loewner equations. Recently, the Hamiltonian for-
mulation of such reductions have been studied, in terms of nonlocal [3] and
purely nonlocal [4] Poisson brackets.

In this paper we consider N -dimensional reductions of the dispersionless
2D Toda hierarchy. In Section 3 we show that the consistency of a reduction
is equivalent to a system of radial Loewner equations. We show that the
compatibility conditions for such system is given by Gibbons-Tsarev equa-
tions from which it follows that the reductions are semi-Hamiltonian. We
present generating functions for the flows (or symmetries) of the reductions
and give a proof of the functional dependence of the two Lax functions. In
Section 4 we consider the Hamiltonian structures of the reductions. Follow-
ing an approach of Ferapontov we show that it is possible to factorize the
Riemann curvature tensor, associated with some diagonal metric, in terms
of the symmetries of the reduction. From such factorization the existence of
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nonlocal Hamiltonian structures follows. In Section 5 purely nonlocal Hamil-
tonian structures for the reductions are studied and in Section 6 an example
is considered.

2. The dispersionless 2D Toda hierarchy
The Lax representation of the dispersionless two-dimensional Toda hierar-

chy [9] is defined in terms of two formal Laurent power series in p

λ = p+ u0 + u1p
−1 + . . . (1a)

λ̄ = ū−1p
−1 + ū0 + ū1p+ . . . . (1b)

where the dependent variables uk and ūk depend on the spatial variable x
and on two infinite sets of independent variables tn and t̄n for n > 0. The
Lax equations are

λtn = {Bn, λ}, λ̄tn = {Bn, λ̄}, (2a)

λt̄n = {B̄n, λ}, λ̄t̄n = {B̄n, λ̄}, (2b)

where the Poisson brackets are given by

{f, g} = p
∂f

∂p

∂g

∂x
− p∂g

∂p

∂f

∂x
,

and we define

Bn :=
1

n
(λn)+ B̄n :=

1

n
(λ̄n)−.

We denote by ( )+ and ( )− the projections of a power series in p to positive
and strictly negative powers of p respectively. In this formal setting the Lax
equations are considered as generating functions of an infinite set of involutive
evolutionary equations of hydrodynamic type for the coefficients uk and ūk.

In the following we will consider λ and λ̄ as univalent analytic functions on
certain domains in the complex plane, having the expansions (1) at p =∞, 0
respectively.

3. Reductions of the 2D Toda hierarchy
In this section we consider the reductions of the dispersionless 2D Toda

hierarchy and their relation with systems of radial Loewner equations. Sim-
ilar results were first obtained for the dispersionless KP case by Gibbons
and Tsarev [5, 6]; other examples – including the dispersionless 2D Toda
hierarchy – have been studied, for instance, in [14, 7, 8, 10, 11].
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A reduction of the dispersionless 2D Toda hierarchy is given by a choice of
two families of functions

λ = λ(p;λ1, . . . , λN), λ̄ = λ̄(p;λ1, . . . , λN), (3)

on the p-plane depending on N parameters λ1, . . . , λN such that the flows
(2) are consistent with (3) and are induced by diagonal hydrodynamic type
equations

∂λi
∂tn

= vi(n)
∂λi
∂x

,
∂λi
∂t̄n

= v̄i(n)
∂λi
∂x

, (4)

where vi(n) and v̄i(n) are suitable functions of λ1, . . . , λN , depending on the

choice of λ and λ̄. We will denote by vi = vi(1) the first of these functions.

Proposition 1. The functions (3) with (4) provide a reduction of the dis-
persionless 2D Toda hierarchy if and only if the following system of Loewner
equations is satisfied

∂λ

∂λi
=

pλp
p− vi

∂u0

∂λi
,

∂λ̄

∂λi
=

pλ̄p
p− vi

∂u0

∂λi
. (5)

Moreover, the functions vi(n) and v̄i(n) appearing in (4) are given by

vi(n) =

(
p
∂Bn

∂p

)
|p=vi

, v̄i(n) =

(
p
∂B̄n

∂p

)
|p=vi

. (6)

Proof Assuming the independence of the λix, the Lax equations (2a) – to-
gether with conditions (3) and (4) – are equivalent to the following set of
equations:

∂λ

∂λi
=

pλp
p(Bn)p − vi(n)

∂Bn

∂λi
,

∂λ̄

∂λi
=

pλ̄p
p(Bn)p − vi(n)

∂Bn

∂λi
. (7)

Conditions for the flow t̄n are similar

∂λ

∂λi
=

pλp
p(B̄n)p − v̄i(n)

∂B̄n

∂λi
,

∂λ̄

∂λi
=

pλ̄p
p(B̄n)p − v̄i(n)

∂B̄n

∂λi
. (8)

For n = 1 we have B1 = p + u0; therefore, in this case equations (7) are
exactly the Loewner system (5). We prove now that the other conditions (7)
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– for n > 2 – and (8), follow from (5). To see this, consider the first equation
in (7) for n > 2. Using Loewner equations, we have

∂Bn

∂λi
=

1

n

∂(λn)+

∂λi
=

1

n

(
p(λn)p
p− vi

)
+

∂u0

∂λi
.

On the other hand, using the fact that 1
p−vi =

(
1

p−vi

)
−

, we see that

1

n

(
p(λn)p
p− vi

)
+

=
1

n

(
(p(λn)p)+ − ((p(λn)p)+)|p=vi

p− vi

)
+

=
p(Bn)p − vi(n)

p− vi
.

Using these formulas we obtain

pλp
p(Bn)p − vi(n)

∂Bn

∂λi
=

pλp
p− vi

∂u0

∂λi

hence the first equation in (7) is a consequence of the Loewner equations (5).
Analogously, all other conditions (7) and (8) are proved. �

The Loewner equations can be equivalently written in terms of ϕ := log ū−1
instead of u0. Indeed, expanding both sides of the Loewner equations (5) at
p ∼ ∞, we get

∂u0

∂λi
= vi

∂ϕ

∂λi
, (9)

and substituting back into the Loewner system, we obtain

∂λ

∂λi
=
vipλp
p− vi

∂ϕ

∂λi
,

∂λ̄

∂λi
=
vipλ̄p
p− vi

∂ϕ

∂λi
. (10)

We derive now the compatibility conditions of the above system.

Proposition 2. The Loewner equations (10) are compatible if and only if
the functions vi and ϕ satisfy the Gibbons-Tsarev equations

∂vi

∂λj
=

vi vj

vj − vi
∂ϕ

∂λj
, i 6= j, (11a)

∂2ϕ

∂λi∂λj
= 2

vi vj

(vi − vj)2

∂ϕ

∂λi

∂ϕ

∂λj
, i 6= j. (11b)
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Proof Spelling out the compatibility conditions

∂

∂λi

∂

∂λj
λ =

∂

∂λj

∂

∂λi
λ, (12)

we obtain

∂iu0∂jv
i

(p− vi)2 −
∂ju0∂iv

j

(p− vi)2 + ∂i∂ju0

(
1

p− vi
− 1

p− vj

)
+

+ p
∂iu0∂ju0

(p− vi)(p− vj)

(
1

p− vi
− 1

p− vj

)
= 0,

where we have used the notation ∂i = ∂
∂λi

. The Gibbons-Tsarev equations

can be recovered as the two leading coefficients of the expansion for p ∼ vi.
It is easily checked by direct substitution in (12) that the Gibbons-Tsarev
are also sufficient for the compatibility. �

Using the Gibbons-Tsarev system (11), it is easy to prove that the charac-
teristic velocities vi of the reduction of the dispersionless 2D Toda hierarchy
satisfy the condition

∂

∂λk

(
∂vi

∂λj

vi − vj

)
=

∂

∂λj

(
∂vi

∂λk

vi − vk

)
, i 6= j 6= k 6= i, (13)

known in the literature as semi-Hamiltonian condition [12]. The above sys-
tem arises as the compatibility condition of the linear system

∂wi

∂λj
=

∂vi

∂λj

vi − vj
(
wi − wj

)
, i 6= j, (14)

which gives the characteristic velocities wi of the symmetries of the reduction.
Therefore, every N -tuple of functions defined in (6) automatically satisfies
the semi-Hamiltonian condition (13).

Next, we define a pair of generating functions for the symmetries.

Lemma 3. The functions defined by

W i(λ) =
p(λ)

p(λ)− vi
, W̄ i(λ̄) =

p(λ̄)

p(λ̄)− vi
(15)

where p(λ) := λ(p)−1 and p(λ̄) := λ̄(p)−1 are the inverse functions of λ(p)
and λ̄(p) respectively, are generating functions for the characteristic velocities
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(6), namely

W i(λ) =
∑
n>0

vi(n)λ
−n, W̄ i(λ̄) =

∑
n>1

v̄i(n)λ̄
−n.

Proof The function W i has an asymptotic expansion for λ 7→ ∞ of the form

W i(λ) =
∑
n>0

ci(n)λ
−n.

We want to prove that ci(n) = vi(n). Clearly, the coefficient of λ−n in the

expansion of W i is given by

ci(n) = −Res
λ=∞

W i(λ)λn−1dλ.

Expressing the residue in the variable p we rewrite it as

−1

n
Res
p=∞

p

p− vi
(λn)p dp = −v

i

n
Res
p=∞

(λn)+

(p− vi)2dp

where in the right hand side we have integrated per parts and dropped the
irrelevant negative powers of p in the numerator. We are left with the residue
of a rational expression with poles only at p =∞, vi. Hence it is equal to

ci(n) =
vi

n
Res
p=vi

(λn)+

(p− vi)2dp =
vi

n
(((λn)+)p)|p=vi

= vi(n).

An analogous proof holds for the generating function W̄ i. �

In the next section, we will find convenient to use different generating
functions, which are obtained (up to a sign) by differentiating W i and W̄ i

with respect to λ:

wi(λ) =
vi

(p(λ)− vi)2

∂p(λ)

∂λ
=
∑
n>1

nvi(n)λ
−n−1, (16a)

w̄i(λ̄) =
vi

(p(λ̄)− vi)2

∂p(λ̄)

∂λ̄
=
∑
n>1

nv̄i(n)λ̄
−n−1. (16b)

In the reductions of the dispersionless 2D Toda hierarchy one needs only
one of the two Lax functions λ, λ̄; indeed, we have the following
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Proposition 4. For a reduction of the dispersionless 2D Toda hierarchy,
the univalent functions λ and λ̄ are functionally dependent on the common
domain of definition.

Proof On any domain of the complex plane where λ̄ is invertible, denote
p(λ̄, λ1, . . . , λN) its inverse and define

F(λ̄) = λ(p(λ̄, λ1, . . . , λN), λ1, . . . , λN),

which is well-defined on the image by λ̄ of the intersection of the domains of
definition of λ and λ̄. A priori F might depend on λ1, . . . , λN , however since
λ and λ̄ satisfy the Loewner equations (5) we have

∂λ

∂λi
=
∂F
∂λ̄

∂λ̄

∂λi
+
∂F
∂λi

=
∂F
∂λ̄

pλ̄p
p− vi

∂u0

∂λi
+
∂F
∂λi

=
∂λ

∂λi
+
∂F
∂λi

hence ∂F
∂λi

= 0. This shows that λ can be expressed in terms of λ̄ in terms of
the function F which is independent of the parameters λ1, . . . , λN . �

In particular, it follows from the previous Proposition that λ and λ̄ have the
same critical points. Moreover, we have a relation between the critical points
of λ and the characteristic velocities of the reduction. Indeed, evaluating the
2D Toda equations at a critical point, one easily proves that

Proposition 5. If p̂ = p̂(λ1, . . . , λN) is a critical point of λ, i.e. λp(p̂) = 0,

and λ̂ := λ(p̂;λ1, . . . , λN) the corresponding critical value then

∂λ̂

∂tn
= v(n)

∂λ̂

∂x
,

∂λ̂

∂t̄n
= v̄(n)

∂λ̂

∂x
,

with

v(n) =

(
p
∂Bn

∂p

)
|p=p̂

, v̄(n) =

(
p
∂B̄n

∂p

)
|p=p̂

.

On the other hand, under generic assumptions, the characteristic velocities
are critical points of λ (and λ̄):

Proposition 6. The characteristic velocities vj are critical points of λ and
the Riemann invariants can be chosen to be the corresponding critical values.

Proof From the Loewner equation evaluated at p = vj one has

∂λ

∂λi |p=vj

(vj − vi) = vjλp(v
j)
∂u0

∂λi
,
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which for i = j implies λp(v
j) = 0.

�

In the rest of the article we will assume that the Riemann invariants λi
are the critical values corresponding to the critical points vi. Under this
assumption, we have the following

Lemma 7. The formula

∂ϕ

∂λi
=

1

(vi)2 λpp(vi)

holds for any reduction of the Toda hierarchy.

Proof Considering the Loewner equation (5) and taking the limit for p→ vi

one gets

1 = lim
p→vi

pλp(p)

p− vi
∂u0

∂λi
= lim

p→vi

p
(
λp(p)− λp(vi)

)
p− vi

∂u0

∂λi
= viλpp(v

i)
∂u0

∂λi
,

which holds since vi is a critical point of λ. The thesis follows from identity
(9). �

4. Hamiltonian formulation
We have seen that the reductions of the dispersionless 2D Toda hierar-

chy are semi-Hamiltonian systems of hydrodynamic type. In [1] Ferapontov
conjectured that any semi-Hamiltonian system is always Hamiltonian with
respect to suitable, possibly nonlocal, Hamiltonian operators (see also [2]),
which are obtained by the following construction:

1. Find the general solution of the system

∂

∂λj
ln
√
gii =

∂vi

∂λj

vj − vi
, i 6= j. (17)

To this purpose is sufficient to find one solution gii of (17), since the general
solution is gii

φi(λi)
, where φi are arbitrary functions of one argument. The

functions gii define the non-vanishing controvariant components of a diagonal
metric.
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2. Write the non-vanishing components of the curvature tensor in terms of
solutions wi

α of the linear system (14):

Rij
ij =

∑
α

εαw
i
αw

j
α εα = ±1. (18)

Given a solution of (17) and the quadratic expansion (18) of the associated
curvature tensor, the Hamiltonian structure is given by

Πij = giiδij
d

dx
+ Γijk (λ)λk,x +

∑
α

εαw
i
αλi,x

(
d

dx

)−1

wj
αλj,x,

where Γijk = −giiΓjik and the Γjik are the Christoffel symbols of the metric
g. We recall that the index α can take values on a finite or infinite - even
continuous - set.

We now apply the above procedure to find a Hamiltonian formulation for re-
ductions of the dispersionless 2D Toda hierarchy. Using the Gibbons-Tsarev
equations it is easy to check that

Proposition 8. The general solution of the system (17) is given by

gii =
1

φi(λi)

∂ϕ

∂λi
, (19)

where each φi is a function of the sole variable λi.

Let us consider first the case of potential metric, given by

gij =
∂ϕ

∂λi
δij. (20)

Following the Ferapontov’s procedure we have now to find a quadratic
expansion of the form (18) for the curvature tensor of the metric (20). For
this purpose, it is convenient to introduce the following function

F (p(λ);λ1, . . . , λN) =
∂p

∂λ
+

N∑
j=1

∂p

∂λj
,

which can be expressed in terms of the variable p as

F (p;λ1, . . . , λN) =
1

λp
−

N∑
j=1

p vj

p− vj
∂ϕ

∂λj
. (21)
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Here we used the identity

∂p

∂λi
=

p vi

vi − p
∂ϕ

∂λi
, (22)

which follows from the Loewner equations (10). We need the following tech-
nical lemma:

Lemma 9. The function F is analytic at p = vi, i = 1, . . . , N and satisfies

F|p=vi = δ(vi), (23)

∂F

∂p |p=vi

= δ

(
log

√
∂ϕ

∂λi

)
+
δ(vi)

vi
, (24)

where the operator δ is given by

δ :=
N∑
k=1

∂

∂λk
.

Proof Using Lemma 7 it is easy to see that the poles of 1
λp

in vi cancel out in

(21), hence F is analytic at p = vi. Moreover, if we consider the compatibility
condition between the Loewner system (22) and the equation

∂p

∂λ
= F +

N∑
j=1

p vj

p− vj
∂ϕ

∂λj
,

we obtain

0 =
∂2p

∂λi∂λ
− ∂2p

∂λ∂λi
= − (vi)2

(p− vi)2

∂ϕ

∂λi

[
F (p)− δ(vi)

]
+

(vi)2

p− vi
∂ϕ

∂λi

[
−Fp(p) + δ(log

∂ϕ

∂λi
) + 2

δ(vi)

vi

]
(25)

+ regular function at p = vi.

Multiplying by (p− vi)2 and taking the limit for p→ vi we get

(vi)2 ∂ϕ

∂λi
(F (vi)− δ(vi)) = 0,

which, under the assumptions ∂ϕ
∂λi
6= 0, vi 6= 0, implies identity (23). Com-

puting the residue of (25) at p = vi one obtains (24). �
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We are now in the position to find a quadratic expansion for the curvature
of the potential metric (20). Indeed, let Γi be a small contour surrounding
the point p = vi counter-clockwise and let Ci be the image of Γi under the
map λ. Let Γ :=

⋃N
i=1 Γi and C :=

⋃N
i=1Ci.

Theorem 10. The non-vanishing components of the Riemann tensor of the
potential metric (20) admit the following quadratic expansion

Rij
ij = − 1

2πi

∫
C

wi(λ)wj(λ)dλ, i 6= j, (26)

where the wi(λ) are the generating functions of the symmetries defined in
(16a).

Proof In order to determine the Riemann curvature tensor for the metric
(20), we use the following well-known fact: The only non-zero components
of the curvature tensor of a diagonal metric gij = δijgii having symmetric

rotation coefficients βij :=
∂i
√
gjj√
gii

are:

Rijij = −√gii
√
gjjδ(βij), i 6= j. (27)

Using the Gibbons-Tsarev equations we find that in our case the rotation
coefficients are given by:

βij =
1

2

∂i∂jϕ√
∂iϕ
√
∂jϕ

=
√
∂iϕ
√
∂jϕ

vivj

(vi − vj)2 , i 6= j.

Substituting into (27), and raising the first two indices, we obtain the formula

Rij
ij = −(vi + vj)[viδ(vj)− vjδ(vi)]

(vi − vj)3 −
vivj[δ(log

√
∂iϕ) + δ(log

√
∂jϕ)]

(vi − vj)2 , i 6= j,

(28)
which holds for any reduction. We can now use Lemma 9 to write (28) in
the form

Rij
ij = − vivj

(vi − vj)2

(
∂F

∂p
(vi) +

∂F

∂p
(vj)

)
+

2vivj

(vi − vj)3

(
F (vi)− F (vj)

)
.

Moreover, using the fact that F (p) is regular at all p = vk one can rewrite
this expression in terms of residues, obtaining

Rij
ij = − 1

2πi

∫
Γ

F (p)vivj

(p− vi)2(p− vj)2 dp, i 6= j.
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Due to (21), the above integral splits in two

1

2πi

∫
Γ

F (p)vivj

(p− vi)2(p− vj)2 dp = (29)

=
vivj

2πi

∫
Γ

1
λ′(p)

(p− vi)2(p− vj)2dp−
vivj

2πi

∫
Γ

∑N
k=1

pvk∂kϕ
p−vk

(p− vi)2(p− vj)2dp,

and the second term of the right hand side above is zero, for all poles of the
rational integrand lie inside the contour Γ. Hence, we have

Rij
ij = −v

ivj

2πi

∫
Γ

1
λ′(p)

(p− vi)2(p− vj)2dp,

after a change of the variable of integration, we get

Rij
ij = − 1

2πi

∫
C

vi ∂p∂λ
(p(λ)− vi)2

vj ∂p∂λ
(p(λ)− vj)2dλ,

which is exactly formula (26). �

We can now formulate our main theorem on the Hamiltonian representation
of the hierarchy in the case of potential metric.

Theorem 11. The reduction of the Toda hierarchy associated with the func-
tion λ(p, λ1, . . . , λN) is Hamiltonian with the Hamiltonian structure

Πij =
1

∂iϕ
δij

d

dx
+ Γijk λ

k
x

− 1

2πi

∫
C

vi ∂p
∂λ λix

(p(λ)− vi)2

(
d

dx

)−1 vj ∂p
∂λ λjx

(p(λ)− vj)2 dλ.

Here

Γijk = − 1

2∂iϕ∂jϕ
(δij∂i∂kϕ+ δjk∂i∂jϕ− δik∂i∂jϕ)

are the Christoffel symbols of the metric.

In the general case, with the non-potential metric

(gφ)ii =
1

φi(λi)

∂ϕ

∂λi
, (30)
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we can prove that we have a similar expansion of the curvature tensor, given
by

Rij
ij = −v

i vj

2πi

N∑
k=1

∫
Γk

1
λp

(p− vi)2(p− vj)2 φk(λ(p)) dp.

Therefore, we have the following family of Hamiltonian structures

Πij =φi
1

∂iϕ
δij

d

dx
+ Γijk λ

k
x

− 1

2πi

N∑
k=1

∫
Ck

vi ∂p
∂λ λix

(p(λ)− vi)2

(
d

dx

)−1 vj ∂p
∂λ λjx

(p(λ)− vj)2 φk(λ) dλ,

for any choice of the functions φi.

5. Purely nonlocal Hamiltonian structures
In addition to the nonlocal Ferapontov-type Hamiltonian operators, we can

associate to any reduction of the dispersionless 2D Toda hierarchy a family
of purely nonlocal Hamiltonian operators. In the semi-Hamiltonian case, it
has been shown in [4] that if W i

α are the characteristic velocities of pairwise
commuting diagonal hydrodynamic flows, the operator

Πij =
∑
α

εαW
i
αλ

i
x

(
d

dx

)−1

W j
αλ

j
x,

defines a purely nonlocal Hamiltonian structure provided∑
α

εαW
i
αW

j
α = 0, i 6= j.

Moreover
giiδij =

∑
α

εαW
i
αW

j
α.

defines a solution to (17).
For the reductions of the dispersionless 2D Toda hierarchy, the following

result holds:

Lemma 12. The contravariant components of the metric (30) admit the
following quadratic expansion

giiφ δ
ij = φi(λi)

1

∂iϕ
δ ij =

1

2πi

N∑
k=1

∫
Ck

W i(λ)W j(λ)φk(λ) dλ,
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where the W i(λ) are the generating functions of the symmetries (15).

Proof The proof is a straightforward computation of the integral:

1

2πi

N∑
k=1

∫
Ck

W i(λ)W j(λ)φk(λ) dλ =
N∑
k=1

Res
λ=λk

[
p(λ)2φk(λ) dλ

(p(λ)− vi)(p(λ)− vj)

]

=
N∑
k=1

Res
p=vk

[
p2 ∂λ

∂p

(p− vi)(p− vj)
φk(λ(p)) dp

]
= φi(λi)

(
vi
)2
λ′′(vi)δij,

the last step being due to the fact that p = vk are critical points of λ, so that
the differential turns out to be regular at all these points for i 6= j, and also
for i = j and k 6= i. Making use of Lemma 7, we obtain the desired result.
�

Therefore the purely nonlocal operators associated to the reductions of the
dispersionless 2D Toda hierarchy are

Πij =
1

2πi

N∑
k=1

∫
Ck

p(λ)

p(λ)− vi
λi,x

(
d

dx

)−1
p(λ)

p(λ)− vj
λj,xφk(λ) dλ.

6. An example: the Dispersionless Toda chain
The simplest example of reduction is the dispersionless Toda chain, which

is given by the constraint

λ = λ̄ = p+ v +
eu

p
.

The characteristic velocities are given by the critical points

v1 = e
u
2 , v2 = −e

u
2

and the Riemann invariants by the critical values of λ = λ̄

λ1 = v + 2e
u
2 , λ2 = v − 2e

u
2 .

In this simple example we can explicitly write λ, λ̄, the characteristic veloc-
ities, u0 and ϕ in terms of the Riemann invariants, i.e.

λ = λ̄ = p+
λ1 + λ2

2
+

(
λ1 − λ2

4

)2

p−1
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and

v1 =
λ1 − λ2

4
, v2 =

λ2 − λ1

4
, u0 = v =

λ1 + λ2

2
, ϕ = u = 2 log

λ1 − λ2

4
.

It is easy to check that these functions satisfy Loewner (5) and Gibbons-
Tsarev (11) equations.

Let us compute the Hamiltonian operators associated to the metrics

gij =
∂iu

λki
δij

for k > 0, which clearly solve (17). Explicitly

g11 =
2λ−k1

λ1 − λ2
, g22 =

2λ−k2

λ2 − λ1
.

In this case the curvature can be expressed as

R12
12 = −v

1v2

2πi

∫
C

(
∂p
∂λ

)2
λk

(p(λ)− v1)2(p(λ)− v2)2 dλ,

or alternatively as

R12
12 = −v1v2

2∑
i=1

Res
p=vi

(
λ(p)k 1

λ′(p)

(p− v1)2(p− v2)2 dp

)
.

For k = 0, 1, 2, the abelian differential

λ(p)k 1
λ′(p)

(p− v1)2(p− v2)2 dp

has poles only at the points p = v1, p = v2, and therefore the curvature
vanishes and the associated Hamiltonian operators are local.

For k > 2 new poles appear at p = 0 and p = ∞. Since the sum of
the residues of an abelian differential on a compact Riemann surface is zero,
we can substitute the sum of residues at p = v1, v2 with minus the sum of
residues at p = 0 and p =∞, obtaining

R12
12 = v1v2

(
Res
p=0

+ Res
p=∞

) λ(p)k 1
λ′(p)

(p− v1)2(p− v2)2 dp.
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Taking into account that λ(0) = λ(∞) =∞, we easily obtain the counterpart
of the above formulae in the λ-plane

R12
12 = 2Res

λ=∞

v1 ∂p
∂λv

2 ∂p
∂λλ

k

(p− v1)2(p− v2)2dλ = 2 Res
λ=∞

(
w1(λ)w2(λ)λk dλ

)
.

Since the expansions of w1(λ) and w2(λ) near λ =∞ have the form

w1(λ) =
∞∑
k=1

kv1
(k)λ

−k−1 =
λ1 − λ2

4λ2 +
(λ1 − λ2)(3λ1 + λ2)

8λ3 + . . .

w2(λ) =
∞∑
k=1

kv2
(k)λ

−k−1 =
λ2 − λ1

4λ2 +
(λ2 − λ1)(3λ2 + λ1)

8λ3 + . . .

we obtain the quadratic expansion of the Riemann tensor

R12
12 = −2

∑
l+s=k−1

lv1
(l)sv

2
(s)

and we can immediately write the corresponding nonlocal Hamiltonian op-
erator Πij. From the last formula we have that the nonlocal tail of e.g. Π12

is given by

−2
∑

l+s=k−1

lv1
(l)λ1,x

( d
dx

)−1
sv2

(s)λ2,x.

Similar formulas can be obtained in this example for purely nonlocal Hamil-
tonian structures.
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