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ABSTRACT: In this paper we study sequences of vector orthogonal polynomials. The
vector orthogonality presented here provides a reinterpretation of what is known in
the literature as matrix orthogonality. These systems of orthogonal polynomials
satisfy three-term recurrence relations with matrix coefficients that do not obey
to any type of symmetry. In this sense the vectorial reinterpretation allows us to
study a non-symmetric case of the matrix orthogonality. We also prove that our
systems of polynomials are indeed orthonormal with respect to a complex measure
of orthogonality. Approximation problems of Hermite-Padé type are also discussed.
Finally, a Markov’s type theorem is presented.
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1. Introduction

In the late eighties of the last century, the following problem attracted the
interest of many researchers.

When a sequence of monic polynomials, {py }nen, satisfying a recurrence re-
lation

QZan(SU) = Cn,()pn(x) =+ Z [En,kpn—k(x) + Cn—i-k,kp?H-k(x)] ) (1)

where c,o(n = 0,1,...) is a real sequence and c,, (n = 1,2,...) are se-
quences of complex numbers for k =1,2,..., N with ¢, y # 0, is related with
some kind of orthogonality?

Several authors (A. J. Duran, F. Marcellin, W. Van Assche, and S. M.
Zagorodnyuk, among others) were interested on this subject. Their contri-
butions revealed an enormous interdisciplinarity between different kinds of
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orthogonality (like Sobolev orthogonality, orthogonality on rays of the com-
plex plane) and several applications, mainly quadrature formulas. From the
extensive bibliography on the subject we stand out the references [1, 4, 5, 7,
10, 13, 14, 15, 16, 17, 18, 19].

In his work [4], A. J. Duran presents for the first time a Favard’s theorem
for sequences of polynomials {p, },en satisfying recurrence relations like (1).
Few years later this result was reformulated by the author together with
W. Van Assche in [7] where they stated the connection between sequences
of matrix orthogonal polynomials and sequences of polynomials that satisfy
a higher order recurrence relation. As an application, the authors gave an
interpretation of a Sobolev discrete inner product.

In this context the authors considered a positive integer number N and
the operators Ry,,, m = 0,1,...,N — 1, defined on the linear space of
polynomials, P, by

00 p(nN—i-m)(O) ;

Rym(p)(7) = mw ;

n=
i.e, the operator Ry, takes from p just those powers with remainder m
(modulus N) and then removes 2™ and changes 2 to z proving then, the
following result.

Theorem 1. [4] Suppose that {p,}nen, with degp, = n, is a sequence of
polynomials satisfying a (2N + 1)—term recurrence relation as (1) and let
{P,}nen be a matriz polynomial sequence defined by

Ryo(pan)(x) — --- Ry n-1(pan) ()
P,(z) = : :
Ryo(Pmsyn-1)(®) -+ Bnn-1(Pmi1)nv-1)(T)
Then, this sequence 1s orthonormal on the real line with respect to a positive
definite matrixz of measures and satisfies a three-term recurrence relation with
matriz coefficients.
Conversely, suppose that {P,}nen, with P, = [Pr’f"j]%;io, is a sequence of
orthonormal matrix polynomials or, equivalently, theg; satisfy a symmetric
three-term recurrence relation with matriz coefficients. Then the scalar poly-
nomials defined by
N-1
PuN+m(T) = inpﬁj(ﬂ) (meN,0<m<N—1)
j=0
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satisfy a (2N + 1)—term recurrence relation of the form (1).

Taking into account the current relevance of the subject our work is con-

cerned with the analysis of higher order recurrence relations, in this case, of
order 2N + 1

2N -1
h('x)pn( )_CZI% 1pn+N )+ Z Zi% % kpn—f—N 1— k( ) (2)
where h is a polynomial of fixed degree N and where c”+N L'n >0, are
complex sequences for j =n—N,...,n+ N — 1 with c”+N 1 2£ 0 and initial
conditions on p; for e =0,..., N — 1 are given.

We begin by pointing out that in the structure of the recurrence relation (2)
the polynomial h is a generic polynomial with fixed degree N and their
coefficients do not satisty any kind of symmetry.

Our aim is to analyze this more general case by studying the sequences of
polynomials satisfying such a kind of recurrence relations in order to find out
what type of orthogonality is associated with them. On the other hand, as
an application, we expect to obtain some known results.

Let us consider the family of vector polynomials PN = {[p; --- pn]" pj €
P}, and My« n(C) the set of N x N matrices with complex entries. Given a
polynomial A, with deg h = N, we can split the linear space of polynomials, PP,
using the basis

{1,z,..., 2" h(x), zh(z),. .., 2" 'hix), h*(z), zh*(x),. . .}. (3)

Then, let {P,};en be a sequence of vector polynomials such that P;(z) =

(h(z)) Po(z), where Py(z) = [1a - xN_l]T , j € N. Let {py,}men be a
sequence of polynomials, degp,, = m, m € N. We define the associated
vector polynomial sequence {B, }men by

23m - [pmN co p(m+1)N—1}Ta neN.

A scalar polynomial p,,n.r of degree mN + k, with 0 < k < N — 1, can be
expanded in the basis (3) as follows

m N-1

PNk Z Z a; ;' h' ().

i=0 j=0
If we consider the operator Ry, y ; that takes from p,,n 11 the terms of the form
a; ;2’h'(z) and then removes the common factor 27 and change h(x) to x, we
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get

N-1

Prnk(x) = Y @ R (D) (h(2)).
7=0

It is easy to see that we can write B,, in the matrix form
where V), is a N x N matrix polynomial of degree m given by

By no(pan)(R(z)) -+ Rynn-1(pan)(M(2))
Vin(h(z)) = : - :
Ry no(Pmsyn—1)(M(x)) - Rynn-1(Pms1ynv-1)(h())

and Py(z) = [1z --- 2 _I]T. Equivalently, we can write the elements of the
sequence of matrix polynomials {V}, },,en in the form

Vi(h(2)) = ) Bj'(h()),
=0

where (B7") is a family of matrices with complex entries.

First we want to prove that if a sequence of scalar polynomials {p,},en
satisfies a recurrence relation like (2) then there exists a sequence of vec-
tor polynomials denoted by {B,,}men and a sequence of matrix polynomials
{Vin}men defined by (4) that satisfies a recurrence relation with matrix coef-
ficients and the converse is also true.

Notice that we can rewrite (2) changing n by n+ N — 1,

2N-1
n+2(N—-1 n+2(N
h(x)pn—i—]\f—l(x) = Cnizg\f_l )pn—|—2N 1 + Z 7112 kpn+2( 1)_k($) (5)

and then, consider the N equations associated with (2) and (5).
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A straightforward calculation yields that the above system of N linear
equations can be written in the matrix form

Pn() Chin Pntn ()
h(x) : = : :
wva@] e ] o)
=L T Pn()
s :
CIPENZZ AN ntN-1(T)
G Y T (@)
+ : : :
e V2] Lo (@)

Introducing the change of index n = m/N in the above relation we get
h(z)B,(x) = ApBosi(z) + BB (x) + CpBp—1(x), m > 1, (6)

Similarly, if we take into consideration Theorem 1 given by A. J. Duran, and
instead of using the canonical basis for the linear space of polynomials, PP,
we deal with the basis (3), then we get a sequence of polynomials {V}, }nen
that satisfies the three-term recurrence relation

Vin(2) = AnVis1(2) + BilVin(2) + CriVi—1(2), m > 1

with some given initial conditions.

Notice that if we multiply this last relation by Py then we obtain the recur-
rence relation for the sequence of vector polynomials {B,, }men given by (6).
Finally, from (6) and taking into account the structure of the recurrence re-
lation as well as the expression of the vector B,,, we get the (2N + 1)—term
recurrence relation (2).

Theorem 2. Let {p,}nen be a sequence of scalar polynomials, { B, }men the
sequence of vector polynomials with

By (2) = [pron(2) Prn41(2) -+ pmsiyv_1(2)] ",

and {Vy,}men the sequence of matriz polynomials given in (4). Then, the
following statements are equivalent:

(a) The sequence of scalar polynomials {p,}nen satisfies (2).
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(b) The sequence of vector polynomials { B, }men satisfies
h(z)B,.(x) = ApBpsi(z) + BB (z) + CpBp—1(x), m > 1,

with initial conditions B_1(x) = Onx1 and Bo(x) given.
(¢) The sequence of matriz polynomials {V,, }men satisfies

2Vin(2) = AV (2) + BV (2) + CplVi-1(2), m > 1,

with initial conditions V_1(z) = Onxny and Vy(z) a fixred matriz.

The matrices A,,, B, and C,, in the recurrence relations are given, respec-
tively by

(m+1)N—1 (m+1)N—1 (m+1)N—1
C C DY C
(m+1)N mN (m+1)N-1
(m+2)N -2 (m+2)N -2 (m+2)N -2 (m+2)N -2
C o e e C C o o e C
(m+1)N (m+2)N-1 mN (m+1)N-1
(m+1)N-1 (m+1)N-1
Cim-1)N CN-1
and : :
(m+2)N-2
CmN-1

Now we consider the sequence of matrix polynomials {V},, }.en defined by
eV (z) = ApVins1(2) + B Vi () + CpilVip—1(x)  m >0, (7)

with initial conditions V_1(z) = Onyxny and Vy(z) = Inxn -

The first question is to know when a sequence of matrix polynomials de-
fined by (7) is related to the matrix orthogonality.

If C,, = A5, = AL | and B,, = B}, there is a positive definite matrix
of measures W supported on the real line, and so the polynomials {V},, },en
are orthonormal with respect to a left inner product, i.e.,

Vi, V) = / Vi(a)dW (2)V7 (2) = 8D (®)

In the last years several authors have studied analytic properties of matrix
orthonormal polynomials (see for example [4, 5, 6, 8]) and their connections
with the spectral theory of linear differential operators with matrix polyno-
mials as coefficients.

In the case when neither ), = A} _, nor B,, are Hermitian we cannot
guarantee that the system of matrix polynomials {V},}en satisfying the
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recurrence relation (7) is orthogonal with respect to a inner product induced

by a positive definite matrix of measures W'.
In [3] the authors presented a result that characterizes the existence of

a matrix of measures W such that the system of polynomials {V},}men is
orthogonal in the sense of (8). In fact, if the matrices A4,, and C,,, for
m € N, in the recurrence relation (7), are non-singular then there exists a
matrix of measures on the real line with a positive definite Hankel matrix as
moment matrix such that the system of polynomials {V, },en defined by (7)
is orthogonal with respect to the measure W in the sense of (8) if, and only
if, there exists a sequence of non-singular matrices {R,,}nen such that the
following relations hold:
e R, B,k issymmetric, Vm € Ny,
e RIR, =C- T .CTT(RYRy)Ag- -+ Ap1, Vm € Ny

In this contribution we prove that a recurrence relation (7) characterizes a
different kind of orthogonality. The structure of the paper is as follows: In
section 2, we present the algebraic theory of the sequences of vector polyno-
mials. In this context, we define a vector linear functional and we introduce
the concept of right and left-orthogonality with respect to this linear func-
tional. In section 3, we present a reinterpretation of the matrix orthogonality
in terms of the vector orthogonality showing that there are two sequences
of matrix orthogonal polynomials with respect to a matrix of measures, not
necessarily positive definite, which are bi-orthogonal with respect to a vector
linear functional. In section 4, we analyze two type Hermite-Padé approxima-
tion problems and, finally, a Markov’s type Theorem is deduced in section 5.

2. Vector orthogonality

Let (PV)* be the linear space of vector linear functionals defined on the
linear space of vector polynomials with complex coefficients PV, i.e., (PV)*
is the dual space of PY. In this space we define a vector of functionals as
follows.

Definition 1. Let v/ : P — C with j = 1,..., N be linear functionals.
We define the wvector of functionals U = [u'--- N7 in PV with values
n MNXN((C)a by
<U1,p1> T <U’Nap1>
W(P) .= (WPHT = ; : ,
(u',pn) - (W, pw)
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where “(.)” means the symbolic product of U and PT.

Let A(z) = Y4, Apa®, where Ay € My (C), be a matrix polynomial
and U be a vector of linear functionals. Let us considAer the vector of linear
functionals, the so called left multiplication of U by A, that we will denote
by AU, such that

!
(AU)(P) == (AUP)T = (@ U)(P) (A"
k=0

We will introduce the concept of sequence of vector polynomials left-ortho-
gonal with respect to the vector of linear functionals U and we will prove
that U is quasi-definite, i.e, there exists a unique sequence of vector polyno-
mials, up to the multiplication on the left by a non-singular matrix, that is
left-orthogonal with respect to U.

Definition 2. Let {p, }nen be a sequence of scalar polynomials with deg p,, =
n,n € N. Let h be a polynomial of fixed degree N, {B,,}en be a sequence

of vector polynomials with B,,(z) = [pmn (@) prn1(z) - - p(mH)N_l(x)]T,

and let U = [ul ey ]T be a vector of linear functionals. {B,, }men is said
to be left-orthogonal with respect to the vector of linear functionals U, if

(a) (R*U) (B,) = Onxn, E=0,1,...,m — 1.
(b) (R™WU) (B,,) = A, m € N, where A, is a non-singular upper trian-
gular matrix.

We introduce the notion of moment associated with the vector of linear
functionals U. Taking into account that {P;}, with P;(z) = (h(x))’Py(z)
and Po(z) = [1x --- 2V 17T is a basis in the linear space of vector polyno-
mials PV, we denote (z*U)(P;) = U} the jth moment associated with the

vector of linear functionals z*U.
The Hankel matrices associated with U are the matrices

Uy - U,
Dyp,=1: . + |, meN,
U, - Usyp
where U; are j-th moments associated with the vector of linear functionals U.

U is said to be quasi-definite if all leading principal submatrices of D,,, m €
N, are non-singular.
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The following result provides a necessary and sufficient condition for the
existence of a sequence of vector polynomials which are left-orthogonal with
respect to the vector of linear functionals U.

Theorem 3. Let U be a vector of linear functionals. Then U is quasi-definite
if, and only if, there exists a unique sequence of vector polynomials { B, }men
such that B,, = Y i1 af'P;, where o € My«n(C) with aj) is non-singular
lower triangular matriz and a unique sequence, (A,), of non-singular upper
triangular matrices such that (h*U) (B,,) = Apbpms k=0,1,...,m, m € N.

Moreover,

-1

UPy) - WP P
Bp=[00 - A ¢ - : : (9)

WP - WP |

Proof: To prove that U is quasi-definite. Let {B,,}en be a sequence of

vector polynomials with B, = > %" a'P;, where o' € My n(C) and {P;}

is a basis in PV, such that P;(z) = (h(x))Py(z), Po(z)=[lz - :I:N_l}T .

From the orthogonality conditions, the vector sequence of polynomials
{B,n} men is left-orthogonal with respect to the vector of linear functionals U
if, for k=0,...,m— 1,

m m

(W) (B) = (h*U) (Z aj'P;) = Z o (W) (P)) = Onew,
and for all m € N,
(F"W) (Bu) = (F"W) (Y_ a'P5) = D _ o (W"W) (Py) = A

Taking into account (h*U)(P;) = U(P,;x), the above conditions can be
read as

U(Po) -+ U(Pm)

g af - ap]

: .. : :[0 0 - Am}- (10)
U(‘Pm) u(jDZm)

For m = 0, in (10) we have ajUy = Ay. Using the non-singularity of the
matrices o and Ag, U is a non-singular matrix. In an analog way, taking
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m = 1in (10), we have

1u 1u e 0 X
04(1) 0+ O‘} 1 NxN e af(Uy — U U Uy ) = Ay

Since A; and o are non-singular matrices then det(Us — U, U, 1u1) # 0
and, as a consequence, the second leading principal submatrix is non-singular.
This argument can be inductively used and we obtain that U is quasi-definite.
Conversely, to find the vector sequence of polynomials such that {B,,}en
with B,, = Z?:o af'P;, where o' € My ~(C) and where /" is non-singular
lower triangular matrix such that (h*U) (B,,) = Ak, K =0,1,...,m, m €
N, is equivalent to solve (10) for m € N.
For m = 0, we have aQUy = Ay. Using the non-singularity of Uy, and the
decomposition LU, we can find uniquely «f) a non-singular lower triangular
matrix, and Ay a non-singular upper triangular matrix such that ajUy = A,.
For m = 1 we have
{Oé(l) Uy + Oé% U; = Onxn

e, at(Us — U USTU) = AL
Oé(l)ul—f—Oé%UQZAl, e &1( 2 1o 1) !

Again, using that the second leading principal submatrix Us — U; Uy U, is
non-singular and the LU decomposition, we can find uniquely ai a non-

singular lower triangular matrix and Ay a non-singular upper triangular ma-

trix such that ol = (Uy — U Uy " Uy) = Ay. We also obtain from of Uy +

oz% U; = Onxn, uniquely the matrix 04(1). This argument can be inductively

used and we obtain the stated result. ]

Theorem 4. Let U be a quasi-definite vector of linear functionals and let
{B,.} men be a sequence of vector polynomials. Then, the following statements
are equivalent:

(a) The vector sequence of polynomials { B, tmen is left-orthogonal with
respect to the vector of linear functionals U, i.e.,

(K" (B) = Dbk, k=0,1,...,m, meN, (11)
with A, a non-singular N x N upper triangular matriz given by
A, =0 - Cr Ay, m>1,

where Ag is a N X N non-singular matriz and {Cp, }men 1S a sequence
of non-singular upper triangular matrices.
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(b) There exist sequences of N x N matrices, by { A }men,{ Bm }men, and
{Ch }men with C, a non-singular upper triangular matriz, such that

h(2)Bu(2) = ApBoot (2) + BuBu(z) + CouBri(z), m>1,  (12)

with B_1(x) = Onx1, Bo(z) = Py(x), where Po(z) = [1z --- xN—l}T,

Proof: To prove (a) = (b), first we consider the polynomial hB,, and then
we take into account that hB,, is a polynomial of degree m + 1 that can be
written

h(z)Bum(x) =) APBi(z), Ay € Myn(C). (13)
k=0

We will prove that A}" = Onxn, for £ =0,1,...,m — 2. Indeed, if we apply
the vector of functionals U to both sides of (13) then we get Aj' = Oy xn.
Thus we can rewrite (13)

() By (x) =Y APBy(z). (14)

Again, by applying the vector of functionals U to both sides of (14) we obtain
A" = Onxn.

Iterating this procedure, i.e., first by multiplying by h?, afterwards by h® and
then, successively, applying U we get

AY' =0nxn, for k=0,1,...,m—2.
Thus, we can rewrite (13)
h(x)B,,(z) = Ay 1 Bm-1(x) + A B (x) + AL 1B (). (15)

If we multiply (15) by A™~! and we apply the vector of linear functionals U
then we obtain

m = (WMU) (By) (B"U) (Brur)) = ApAL)

m—1 — m—1

m>1.
Using the same technique we obtain
A= [(R"TU) (Br) — Ay (B (B 1)) [(RU) (By)]
= [(A"U) (By) — ApALL (R™MU) (Br—1)] AL
Ay = [(RPU) (Bya) — Ay (R (Bya1) — AR (R7™HU) (Bya)] AL

m m+1-
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The comparison with the coefficients in (12) yields the following explicit
expressions for the coefficients in the recurrence relation:

Ay = [(R"2U) (Br) — Ajp (K™ U) (Byy) — A (WU (Bn) | AL,
By = [(W"TW) (Br) — A (R™W) (Breot)| AL,
Cn = ApAZLL

To prove (b) = (a), we must start by constructing a vector of linear func-
tionals U, satisfying (11), which is defined from the sequence of moments

(Uin), ey using
U(By) = Ay, U(B,) =0nxn, m>1, (16)

where A is a non-singular upper triangular matrix. Since {P;} is a basis
for PV, with

P(x) = (h(z))Po(z) and Po(z)=[lz - 21",
then there exists a unique family of matrices Vi€ My n(C) such that the

vector of polynomials B,, can be written B,,(x) = > i v7"P;(x). Thus,

e For m = 0, U(By) = YIU(Py), i.e., Uy = (70) T A.
e Form=1,U(B;) = Z;:O fy}U(in), i.e., Uy = —(71) 1dU,.
o For m =2, U(Bs) = >0 V2U(P;), ie., Us = — 30 (73) 192U,

§=0
For m > 3, we have U,,, = — Z;?;‘Ol(y;q)—w;”uj :
First, we will prove that for U defined as above, we have

(hkU) (Bm) =0yxn, m>k+1.
To prove it, we apply U in the recurrence relation:
U (th) =AU (Bm—i—l) + B,,U (Bm) + C,, U (Bm—l) =0nxny, m=>2.

Again, if we multiply both sides of the recurrence relation by h, then we
obtain

h?(2) B (x) = h(2) A Bt (z) + h(2) BB (z) + h(2)Cpy B (),
and, as a consequence, by applying U in the last relation, we have for m > 3
(R*W) (By) = Ay (RU) (Brs1) + By (RU) (Br) + Cy (MU (Brne1) = Oy -
Proceeding in a similar way we get

(R*W) (B,,) = Onun, m > k+1, ie., (B*U) (B,,) = Oyxn, k=0,1,...,m—1.
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For k = m, we have
(A™U) (Bin) = A (h"™ W) (Brer) + B (WU (By) + Con (AU (Ba)
and so

(W™U) (Br) = Cr (W™ 'U) (Bp—1) = CrnCrpt -+ 1Ay, m>1.

Therefore, the moments associated with the vector of linear functionals U
are uniquely determined from (16). Thus, we obtain the orthogonality con-
ditions (11). Hence, the result follows. |

Next we will introduce the concept of right-orthogonality with respect to a
vector of linear functionals and, afterwards, we will show how the right and
left vector orthogonality are connected.

Definition 3. Let U = [ul T ]T be a vector of linear functionals and let
consider a sequence of matrix polynomials {G,, }men. {Gm}men is said to be
right-orthogonal with respect to the vector of linear functionals U if

(a) deg G, = m.

(b) (GE(h(x)W) (P;) =Onwn, j=0,1,...,m—1.

(c) (GT (h(2)U) (P,,) = Opny m € N, where O, is a non-singular lower
triangular matrix.

Concerning the right-orthogonality we obtain some analog results to those
we found for left-orthogonality. For example, the matrix right-orthogonal
polynomial sequence is uniquely defined up to a multiplication on the right
by a non-singular matrix and the vector of linear functionals U is quasi-
definite with respect to the right-orthogonality. We will present these results
but we shall skip the proofs since the techniques are the same as used in the
left-orthogonality case.

Theorem 5. Let U be a vector of linear functionals. Then, W is quasi-
definite if, and only if, there exists a sequence matriz polynomials { G, }men,
with G (h(x)) = Y7700 87 (h(x))!, for B]" € Myxn(C) where 3]} is non-
singular upper triangular matrix and there exists a sequence of non-singular
lower triangular matrices, {Oy, tmen, such that

(GL(R(2)W) (Pr) = Ombim, 5 =0,1,...,m —1, m € N.
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Moreover,

W -~ W,T7 'To

Gp = [Inxn hyxn --- h™Inun] | 00 o0 . (1)

Theorem 6. Let U be a vector of linear functionals and let {G,}men be a
sequence of matriz polynomials. Then, the following statements are equiva-
lent:

(a) The sequence of matriz polynomials { G, }men is Tight-orthogonal with
respect to the vector of linear functionals U, i.e.,

(GT (W)W (P;) = Onxn, J=0,1,....m—1,
(G (h(@)W) (P) = On, meN,

where O, is a non-singular lower triangular matriz.
(b) There exist sequences of N x N matrices, {Du}men, {Em}tmen and
{Fn}tmen with F,, a non-singular lower triangular matriz, such that

h(z)Gp(h(z)) = Gy (h(2)) Dy + Go(h(2)) By 4+ Go1(h(2))
m > 1, with G_1(x) = Oyxn and Go(z) = Inxn -

To show the connection between right and left vector orthogonality we will
introduce some concepts on duality theory. We denote by P* the dual space
of P, i.e., the vector space of complex valued linear functionals defined on P.

Let {pm}men be a sequence of scalar monic polynomials. The sequence of
linear functionals { Ly }nen, where L, € P* is said to be its dual sequence if
L,(pm) = Omn, m,n € N, where 6,,, is the Kronecker delta.

Let {L,}nen be a sequence of linear functionals. The vector sequence of
linear functionals {L,,},en given by

L, = [LnN T L(n—i—l)N—l}Ta n € N>

is said to be the vector sequence of linear functionals associated with { L, },en.
Taking into account Definition 1, we get

LnN(pmN) T L(n—i—l)N—l(pmN)
Ln(‘Bm) - - INXN(Sm,n-

LnN(p(m+1)N—1) L(n+1)N—1(p(m+1)N—1)
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Definition 4. Let {B,, } nen be a vector sequence of polynomials. The vector
sequence of linear functionals {L, }en is said to be its dual vector sequence if

Ln(‘Bm) = INXN 5m,n7 n,mec N.

The next two results give the connection between right and left vector
orthogonality through the equivalent conditions of these two types of vector
orthogonality.

Definition 5. Let U be a vector of linear functionals. We denote by ?Al,
the normalized vector of linear functionals associated with U, ie., U =

(U(Pe))™)TU, where Py(z) = [1, @, ---, ¥ 1]
Furthermore, from this definition we have
U(Po) = ((U(Po)) ™) UN(Py) = U(Po)(U(Py)) " = I

Theorem 7. Let U be a quasi-definite vector of linear functionals, { B, }men
be a sequence of vector polynomials, and let {L,}nen be its dual vector se-
quence. Then, the following statements are equivalent:

(a) { B }tmen is left-orthogonal with respect to U.

(b) There exist sequences of N x N matrices, {Apm}tmen, {Bm}men, and
{Cr}men  with C,, a non-singular upper triangular matriz, such that
{ B }men satisfies the three-term recurrence relation

h(z)B(r) = AnBmii(x) + BnBu(x) + CpBr1(x), m>1 (18)

with B_1(z) = 01xn, Bo(z) = Po(z) , where Py(z) = [1z - xN_l}T.

(¢) There exist sequences of N x N matrices, {An}en, {Bn}nen, and
{C} ben, with Cyq a non-singular matriz, such that {L,}nen is de-
fined by the three-term recurrence relation

h(x)Ln = (Cn—i—l)TLn—i—l + (Bn)TLn + (An—l)TLn—la n > 17 (19)

with Lo = (U(Po))") MU, Ly = (CF) 7 (h(x)] = (Bo)" )[U(Po))"]~U.

(d) There exist matriz polynomials G,,(h(z)), Gy (h(x)) = >3, 87 (h(x))’,
where B is a non-singular matriz, such that the elements in the dual
vector basis {L,}nen can be written in terms of the vector of linear
functionals U as follows

L, = (Gu(h(x))' U, neN. (20)
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(e) The sequence of matrix polynomials {G,, }nen defined by (20) satisfies

h(z)Gn(h(x))
= Gp1(h(x)Ap_1+ Gu(h(x)) By + G (W(x))Craq, n>1, (21)
with initial conditions G_1(h(x)) = Onxn and Go(h(z)) = U(Py) L.
(f) The sequence of matriz polynomials {Gy, }nen defined by (20) is right-

orthogonal with respect to the normalized vector of linear function-

als U.

Proof: We will prove this theorem according to the following scheme:
(a) & (b), (e) & (f), (b) & (), (¢c) = (d), (d) = (e), and () = (c).
The proofs of (a) < (b) and (e) < (f) follow immediately from Theorems 4
and 6. We start by proving that (b) = (c). Let

n+1

W)Ly = B1L;, where (8))7 = (h(2)L,)(B,) = Ln(h(z)B;), j € N.

=0
Applying the vector of linear functionals £,, in both sides of the three-term
recurrence relation satisfied by {By }ren, we have

(BT = AL(Brsr) + Biln(Br) + Crln(Byr))
(A1, j=n-—1,

By, J=n,

Chy1, Jj=n+1,

Onxy, J#Fn—1nn+1,

e, Ol =Al |, B = Bl' and 8., = CL . Thus the three-term recurrence

relation for the vector sequence of linear functionals {L,,},en follows.

To prove that (¢) = (b), let hB,, = Z;ZBl v7'Bj v € Muxn(C). Ap-
plying the vector linear functional L, in both sides of the last relation, we
get hln(B,) = S0 Y Ln(Bj) =~ Now, from our hypotheses, we have

J=0 1j
%T — Ln—l—l(%m)cn—i—l + Ln(Bm)Bn + Ln—l)(Bm)An—l
(O, n=m—1,
B, n=m,

= 9
A, n=m-+1,

Onxny, n#Fm—1,m,m+ 1.
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So, (18) holds.

To prove (¢) = (d) we will show by induction that {L,},en has the fol-
lowing representation £, = (G,(h(x))) U, n € N. For n = 0, we have
that Lo = (U(Py))T)*U. Now, let us assume that the statement holds for
k=0,1,...,p, ie, Lp = (Gp(h(x))" U with deg Gy = k, k= 1,...,p. We
will show that it is also true for k = p+1, i.e., L1 = (Gpar(h(z)))" U, p € N.
Considering the three-term recurrence relation satisfied by {£,},en and tak-
ing into account the hypothesis of induction, we have

Lot = (Cpa) ™" [(h(@)] = (B,))Gp((x)) = (A1) Gy (h(2))] U
= [(Go(h(@))" (h(x)] = (B,)) — G-y (h(x)) A1) Cy ] U.

Thus, L, = (Gp+1(h(x)))T U, p € N, i.e., if the condition holds for k =
1,...,p, then it is also true for p + 1.
To prove that (d) = (e) we will write hGL in terms of {GjT}jeN, ie.,

n+1

h(x)GZ;(h(x)):Z&?G?(h(x)), where o) €  Myxn(C). (22)

Thus, the multiplication on the right by U in both sides of the last equation
yields

n+1

h(z)GE (h(z)U =Y oG] (h(z))U.
j=0

Applying this relation to By we get

n+1

(h(@)Gh (A(2)W)(Br) = Y (G (A(2))U)(By).

J=0

Since, L, = (Gp(h(2)))" U, neN,
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Using (18) in (22) we get
(OKZ)T = CkLn (Bk_1) + BkLn (3k) + AkLn (Bk—i—l)
rAn_l, k=mn— 1,
B, k =n,
Cn_|_1, k =n -+ ]_,
(Onxny, k#Fn—1,nn+1.

Thus, {G,, }nen satisfies
Wz )Gn(M(z)) = Gn1(M(@)) A1 + Gn(M(2)) Bn + Gry1 (h(2)) Crsr.

Finally, to prove that (e) = (c¢), we must take the transpose in the recur-
rence relation (21) and, then, multiply on the right by U both sides of the
resulting equation. Thus (19) follows. |

Theorem 8. Let U be a quasi-definite vector of linear functionals, { B, }men
and {Gp}tnen defined by (9) and (17), respectively. Then, {B,,}men and
{G, }nen are bi-orthogonal with respect to U, i.e.,

(Gr(R()" W) (B) = InxnOnm,n, m €N
if, and only if, A, = (B7)F and Q, = (o).
As a consequence, the dual sequence {L,}nen associated with { B, }men s

given by L,, = (G, (h(z)))TU, n € N.
Proof: There exists a unique family of matrices (a]') C My (C) such that

— m m . m . .
By =D i 'P;, where aj; is a non-singular matrix. Hence,

(GH(h(@))U)(By) = (GL(h(@)W(D_ afPj) = Y ol (GL(h(x)U)(P)).
j=0 =0

Since {G,, }nen is right-orthogonal with respect to U then

m —
an®,,, m=n

(G (h(2))U)(By,) = {

Thus, (G (h(2))W)(B,,) = Iyxy if, and only if, a™O,, = Iy, ie., ©,, =

(a™)~1. Now, let us consider

OnxN, m > n.

n

(G (@)W (B) = (D B} (h())) U)(B) = D (Ala)U)(Bn) By
j=0

J=0
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As above, since {B,, }men is left-orthogonal with respect to U then

ApBY, m=n

OnxN, m > n.

(G (h(2))U)(By,) = {

So, (GL (h(z))U)(B,,) = Inxy if, and only if, A, = (™)L, |

To conclude this section notice that Theorems 2 and 7 suggest that the
sequence of matrix polynomials {V;, },en is orthogonal with respect to some
matrix of measures. As a consequence of Theorem 7, the sequence of matrix
polynomials {G,, }men should also be orthogonal in the matrix sense. Finally,
Theorem 8 suggests that the sequences of matrix polynomials {V}, };nen and
{G, }men should be bi-orthogonal to each order, as we will prove in the next
section.

3. The connection between vector and matrix orthogo-
nality

In this section we show how the vector and matrix orthogonality are con-
nected when a special case of the matrix orthogonality is considered. In this
sense, if the sequences {G), }ren and {B,, }en are bi-orthogonal with respect
to the vector of linear functionals U, then the sequences of matrix polyno-
mials {G,}nen and {V;,}men are bi-orthogonal with respect to a complex
matrix of measures.

Definition 6. Let U be a vector of linear functionals. We define the gener-
alized Markov matriz function, F, associated with U by

Po(x) (e =) o (s =)
F(z) = U, (O—> = : : . (23)
< — h(ﬂ]) <u1 N1 > o < N N1 >
) z—h(x) T z—h(x)

with 2 such that |h(z)| < |z| for every x € L where L = U;_;__ysuppu’. .
Here U, represents the action of U on the variable z and Py(x).

Theorem 9. Let U be a quasi-definite vector of linear functionals and let F
be its generalized Markov matriz function. Then, the following statements
are equivalent:
a) The sequences {Gplnen and { B, }men are bi-orthogonal with respect
to U, 1.e.
(Gr(h(2)"U) (B) = Inxn Opm, m,m € N.
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b) The sequences {Gy}nen and { Vi, tmen, where By, (2) = Vi (h(2))Po(2),
are bi-orthogonal with respect to F, i.e.,
1
— [ Vo(2)F(2)G,(2)dz = INuN Onm, n,m € N.
21 C
where C is a closed path in {z € C: |z| > |h(x)|,z € L}.

Proof: Taking into account that

Val2F(2)60() = (G ) (ZEE)

we have
1 NF(NC (N — - ) (Y Pol@)
o [5G = o [ (G (R g,

Because of G,,, V,,,, and P, are analytic functions, according to the Cauchy
integral formula we have

L P T Vm(z)fp()(x) . T T . .
o [ (Ge) (EED) e — (6,00 W) V)90t
and, as a consequence, for all n,m € N

1
i ). Vin(2)F (2)Gu(2)dz = ((Ga(h(2))) " Ua) (B (%)) = Insy O
Thus the statement follows. ]

The last theorem tell us that {B,,}men s a sequence of vector polyno-
mials left-orthogonal with respect to U if, and only if, {V,,}men associated
with {B, }men s left-orthogonal with respect to F. Also, {G}men is a se-
quence matrix polynomials right-orthogonal with respect to U if, and only if,
{G . }men is Tight-orthogonal with respect to F.

It is important to recall now that the definition of F shows us that we only
need N linear functionals to describe the matrix orthogonality. Usually, to
describe the matrix orthogonality, (1 + N )N /2 measures are needed (see, for
example [4, 5, 7]).

As we have already referred in the introduction, we need to know when
a sequence of matrix polynomials defined by a recurrence relation (7) is
related to some kind of matrix orthogonality. Partial answers were given to
this problem, but no complete answer was given as far as we know. To do
that, we start by considering a N x N matrix of measures W that is not
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necessarily positive definite in C, and such that there exist matrix sequences
{Vin}men and {G,, } men, orthogonal with respect to W in the following sense

/ Vi(z)dW (2)2" = QL ok, k=0,....m, (24)
c

/ " dW (2)Gp(z) = P 0pm, k=0,...,m, m=0,1,... (25)
C

where where C' is a closed path in the interior of a region D C C, Q! is a
non-singular upper triangular matrix, Q2 is a non-singular lower triangular
matrix, and d,, is the Kronecker delta.

V., and G,, are matrix polynomials of degree m with non-singular leading
coefficients and they are defined up to the multiplication on the left or on
the right by a unitary matrix, respectively. The matrix sequences {V},, }nen
(respectively, {G,}men) satisfying (24) (respectively, (25)) are said to be
the left-orthogonal matrix polynomial sequence (respectively, right-orthogonal
matrix polynomial sequence), with respect to the matrix of measures W.

Usually, in the theory of matrix orthogonal polynomials there are only refer-
ences to the left-orthogonality. The reason is that the authors deal only with
orthonormality with respect to a positive definite matrix of measures, that
allows us to say that left and right orthogonality are, essentially, the same.
Very few authors have emphasized this difference (see, for instance, [11]).

The moments of the matrix measure W are given by N x N matrices

Sk:/xde(x), k=0,1,....

From the orthogonality conditions it follows that the sequences {V}, }men
and {G,, }men satisfy three-term matrix recurrence relations. It is not so
obvious to prove the converse result, i.e. if a sequence of matrix polynomials
is defined by a recurrence relation (7) or (21), then there exists a matrix of
measures W, not necessarily positive definite, such this sequence is left or
right-orthogonal with respect to W.

The following result proves this equivalence with respect to the left-ortho-
gonality and gives an extension of the Favard’s theorem in the matrix case.

Theorem 10. Let {V,,}men be a sequence of matriz polynomials. Then, the
following statements are equivalent:

(a) The sequence {Vy, }men is left-orthogonal with respect to matriz of mea-
sures W.
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(b) There are sequences os scalar matrices {Ap}tmen, {Bm}men and
{Ch bmen, with Ay, lower-triangular, and Cy,11 upper-triangular, non-
singular matrices for m € N, such that the sequence {Vy, }men satisfies

2V (2) = ApVin1(2) + BV (2) + CplVi—1(2), m > 1, (26)
where V_1(z) = Onxny  and Vo(2) = Inxn -

Proof: First we will prove that (a) implies (b). Since the sequence {V;,}men
is a basis in the linear space of matrix polynomials we can write

Then, from the orthogonality conditions, we get
Am /Vj(z)dW(z)Vj(z) _ /vm(z)dW(z)zﬂ'+1 Oy for j =0, m—2

Thus,
2V (2) = A0 Vi1(2) + A Vi (2) + Al Vi (2),

where

A = ( /szdW(z)Vm> QL) Am | = ( /sz(z)dW(z)Vm_l(z)>

<@ and A = [V () ) @)™

Taking A, = A}, By, = A, and C), = A _; the result follows.

Finally, to prove that (b) implies (a), we should start by defining recur-
sively the matrix moments associated with the matrix of measures W by the
following conditions

So = /dW(z) = () and /Vm(z)dW(z) = Onxn, m > 1,

where €} is a non-singular upper triangular matrix.
Taking into account that V,, can be written

Vm(z) = Vm,mzm + e+ ‘/m,lfZ + Vm,O

with V},,,, a non-singular matrix, then we have

ON><N = /Vm(z)dW(z) = Vm,mSm + -+ Vm’()SO.
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Thus, the moments are defined recursively by S, = n;}n z;ﬂ:_ol VinjiSj -
Let us show that [Vin(2)dW (2)2* = Onxn, &k = 0,...,m — 1, and
V(2 = QL . From (26) we get [2V,,(2)dW (z) = Onxn, m > 2,

Again, by multlplymg both sides of the recurrence relation by z we get
2V (2) = A 2Vis1(2) + B2V (2) + CrzVin-i(2),

and , as a consequence, [V,,(2)dW (z)z* = Oyxn, m > 3.

In an analog way, we conclude that [V, (2)dW (z2)z" = Oyxy,m >k + 1,
and so [V, (2)dW (2)2" = Onwn, k=0,...,m —
For k = m we have

/Vm(z)dW(z)zm = O, /Vm_l(z)dW(z)zm_l = 0 Chy - C19.

Then [V,,(2)dW(2)z" = Onwn, k=0,...,m—1 and [V, (2)dW (z)z"
QL where Q) = C,C,_1---CiQ} is a non-singular upper trlangular
matrix. [ ]

The reader should notice that left vector orthogonality and matrix orthog-
onality are equivalent. This equivalence is given by Theorems 2, 7, and 10.
A similar result can be obtained for the right-orthogonality.

Theorem 11. Let {G,,}men be a sequence of matrix polynomials. Then, the
following statements are equivalent:
(a) {Gm}men is a right-orthogonal sequence of matriz polynomials with
respect to a matrix of measures W'.
(b) There are sequences os scalar matrices {Ap}men, {Bm}tmen and
{Cn}men, with A, lower-triangular, and Cy,11 upper-triangular, non-
singular matrices for m € N, such that the sequence { G, } men satisfies

Gn(2) = Gno1(2) A1+ Gu(2)By + Gr1(2)Crpr, m>1 (27)
where G_1(z) = Onxn  and Go(z) = Inxn -

4. Some characterizations of the vector and matrix or-
thogonality

In this section we present some characterizations of the vector orthogonality

as well as of the matrix orthogonality. First, we analyze two type Hermite-

Padé approximation problems that characterize completely the right and left
vector orthogonality, respectively.



24 BRANQUINHO, MARCELLAN AND MENDES

Definition 7. Let {B,,}nen be a vector sequence of polynomials, {G,, }nen
be a sequence of matrix polynomials, and U be a quasi-definite vector of

linear functionals. The sequence of polynomials {23,%)},%1\; given by

BU(2) =1, (Vm“(i - Z’g)l(h(x)) ?O(x>> |

is said to be the sequence of associated polynomials of the first kind for
{B}men and U. In a similar way, the sequence of polynomials {G%)}meN

given by
of(e) = (Gl T @Dy [ ),

is said to be the sequence of associated polynomials of the first kind for
{G}men and U. Here U, represents the action of U on the variable x.

Theorem 12. Let U be a quasi- deﬁnite vector of linear functionals, { B, }men

a vector sequence of polynomials, {B }meN its sequence of assoctated polyno-
mials of the first kind, and F the generalized Markov function given in (23).
Then {B,,}men 1s left-orthogonal with respect to the vector of linear func-
tionals U if, and only if,

1
Vin1(2)F(2) — B(l)(z) =Api1—— + -

m Zm+2

Proof: From the definition of B%), we get

BU(2) = Vs (2)5(2) — 1L, (M) |

z — h(x)
But
. (Bea) i )t ) B (1))
Hence,
Ba(0)) _ o ()W) (Byr(e)) 1
Uy (Z - h(w)) Z ntl Amt1 7075 Hm+2 + ’

n=m-+1

if, and only if, the sequence {B,, }men is left-orthogonal with respect to U,. =
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Theorem 13. Let U be a quasi-definite vector of linear functionals, { G, }men

a sequence of matriz polynomials with N x N matriz coefficients, {G%)}meN
its sequence of associated polynomials of the first kind, and F is the general-
ized Markov function. Then {Gy,}men is Tight-orthogonal with respect to the
vector of linear functionals W if, and only if,

1
T Gomia(2) — () = Oy +-

Proof: Taking into account the definition of the polynomial {GS&’}%N, we
have

e = [(FE ) ] o

Z —

= U (22 ) - (G o) (245

But,

o(®)
(Gt (2505 ) =3 S ) )
Hence,
Po(z) 1
(G (h(2)Uy) <z——h(a:)> = Oni1—s s R
if, and only if, the sequence {G,,}nen is right-orthogonal with respect
to U,. |

Next, some algebraic results, known as Christoffel-Darboux type formulas
(see for instance [2]), concerning the behavior of the sequences of matrix
orthogonal polynomials {V,, }eny and {G, }men are given.

Theorem 14. Let h be a polynomial of fixred degree N and U be a quasi-
definite vector of linear functionals. Let {Gp,}men and { B, }men be, respec-
tively, sequences of matrix polynomials with deg G,, = m, for allm € N and
Bon(z) = Vi (h(x))Po(x), where V,,, is a matriz polynomial with degV,, = m,
for all m € N. Then, the following statements are equivalent:
(a) { B }tmen is a sequence of vector polynomials left-orthogonal with re-
spect to U.

(b) {L,}nen is a sequence of vector linear functionals bi-orthogonal with
respect to { B, bmen such that L, = GL(h(z))U.
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(¢) {Vintmen and {Gy, tmen satisfy the Christoffel-Darboux type formula
(= 2) ) Gr(2)Vi(z) = Gu(2) AnVins1 (2) = G (2)Conga Vin (), (28)
k=0
with x, z € C.

(d) For every m € N, {Vy,}men and {Gp}men satisfy the Christoffel-
Darboux type confluent formula

Gn(@) A Vi1 (%) = Gyt () Crst Vi () = Oy, (29)
> Gu(@)Vi(®) = Gu(@) AV (2) = Gt (1) Croa Vi (2), - (30)
k=0

(e) For everym € N, {V,, }men and {G, }men satisfy for all x € C

Gm(aj)Ame+1($) o Gm+1(x)cm+1vm(x) - ONxN, (31)
> Grl@)Vi(x) = Gyt (2)Cria Vin(2) — G (2) A Vinsa (2) . (32)
k=0

Proof: To prove this theorem we will proceed according to the following
scheme (a) < (b), (b) = (c) = (e), (¢) = (b) and (¢) = (d) = (a).

The equivalence (a) < (b) is proved in Theorem 7. To prove that (b)
implies (c¢) we remember that the sequences of matrix polynomials {V},, }en
and {G,, }men verify, respectively, the recurrence relations

eVi(r) = AnVia(x) + BrVi(x) + Cp Vi1 () (33)
2Gn(2) = Guo1(2)Am—1+ Gu(2)By + Gi1(2)Chsa (34)

Multiplying on the left by G,,(2) in both sides of (33) and on the right by
Vin(z) in both sides of (34) and subtracting the resulting expressions, we get

(= 2)Gn(2)Vin(2) = [Gn(2) AnVin1(2) — Gi1(2) A1 Vin ()]
- [Gm—i—l('z)Cm—i—lvm('x) - Gm(z)cmvm—l(x)]

and so we have (28). To prove that (c) implies (d), we just have to take z = «
in (28) and then we obtain (29). (30) follows from (28) by differentiation with
respect to  and letting z = .

To prove that (c) implies (e), we must take z = z in (28) and then (31)
holds. (32) follows in a similar way by differentiating (28) with respect to z
and taking z = z.
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To complete the proof we need to show that (d) implies (a). We can rewrite
the equation (30) as

m—1

G () AV 1 (%) = Gt (2) Crna Vi () = G (2)Vin () + ) Gi() V()

k=0

or, equivalently,

G(@)Vin(2) = Gra(@)[An Vi1 (@) + ColVi 1 (2)]
- [Gm—i-l(x)cm—i-l + Gm—l(x)Am—ﬂV,%(x)-

Using (29) we get [(AnVis1(x) + CoVi1(2))V, 1 (2)] = Inxn . Then, we
have

(A Vi1 () + CopVinoa (2)]V,, () = I — B,
i.e, {V,}men satisfies a three-term recurrence relation. Now, multiplying
both sides in the three-term recurrence relation by Py, from the definition
of B,, and by Theorem 4, the result follows.

Finally, to prove that (e) = (b) we proceed in a similar way as in the proof
of (d) = (a) starting from (32) and taking into account Theorem 7. |

5. Markov type theorem
The block matrix

[ By Ay Onxn
g @5 By Aq
Onxny Co DBy ’

is related to the matrix polynomial sequences {V,, }men and {G,, e trough
the recurrence relations (7) and (27). This block matrix is said to be the N-
block Jacobi matrix associated with the above matrix polynomial sequences.

For polynomials satisfying a symmetric recurrence relation, it was proved
in [9] that the zeros of the m-th matriz orthogonal polynomial, i.e. the zero
of the scalar polynomial det V,,, are the eigenvalues of the leading principal
submatrix .J,,,y of J. This result can be generalized for sequences of orthog-
onal polynomials that satisfy non-symmetric recurrence relations. Thus, for
m € N, the zeros of the matrix polynomials G, and V,, are the eigenval-
ues of the matrix J,,,y (with the same order of algebraic multiplicity) where
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Lonxmn 18 the mN x mN identity matrix and J,, 5 is the leading principal
submatrix of dimension mN x mN for the N-block Jacobi matrix.

Lemma 1. [6] Let V(t) be a N x N matriz polynomial and let a be a zero
of V(t) of multiplicity p. Let L(a,V) = {v € CN : vV(a) = 01y} and
R(a,A) = {v e CN : V(a)v* = 01xn} .

If dim L(a.V) = dim R(a,V) = p. then (adj (V1 N (@) = Onwn, for
[=0,...,p—2 and, (adj (V(£)))*"" (@) # Onun -

Moreover, rank (adj (V(£)))¥™ (a) = p and (adj (V(1)))?"V (a) defines a
linear mapping from CV onto L(a, V') which is an isomorphism from R(a, V)
into L(a,V).

Lemma 2. [6] Let x 1, k= 1,...,s with s < mN be the zeros of the matrix
polynomial V,,,. For any matriz polynomial V (t) of degree < n — 1 we have
the partial fraction decompositiont € C\ {xm1, ..., Tms},
- Cm k
V) (Vi(t) =)y —2
OOy =3
where Cp, , = L V(2mr)(adj (Vi (O)) W (z,0) and I is the

(det (Vin (£)) ) (2 1)
multiplicity of T, (I < N ).
With these results we are able to establish a quadrature formula for the
matrix orthogonal sequence {V;, }nen.

Theorem 15 (Quadrature Formula). Let {V,,},en be the sequence of matrix
polynomials that is left-orthogonal with respect to the matriz of measures W.
Also let {B}men be the sequence of vector polynomials defined by (4) and
let {B }meN, be the sequence of associated polynomials of the first kind for

{By}men and . Let xp g, (kK =1,...,5) be the zeros of the matriz polyno-
mial Vy, (hence s < mN ), and let ijk be the matrices

Iy . B )
I di (Vo (eN@ Dz, VBY (.
F (det (Vm(SU)))(lk)(CCm,k)(a 3 V(@) (@m k) Byl 1 (k)
for k =1,... s where l}, is the multiplicity x,, j.

Then, for any polynomial V' of degree less than or equal to 2m — 1 the
following quadrature formula holds

/ V (h(x))dW (h(z)) =V (@ms) T -
k=1
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Proof: Let V' be a matrix polynomial of degree less than or equal to 2m — 1.
Since V, is a polynomial with non-singular leading coefficient, then (cf. [12])

V(z) = C(x)Vi(z) + R(x),

where C' and R are matrix polynomials with degree of R less than or equal
to m — 1. Thus V(2)V1(x) = C(z) + R(z)V,, }(z) assuming that x is not a
zero of V,,. Since degree R(z) < m — 1, using Lemma 2 we get

- Cm k
R —1 — 9
@V (@) = Y
k=1 )
where the matrices C,, , are given by
[ . _
Crne = s (@) (adj (Viu ()" (@0)-

(det (Vin(2))) ) (1)

According to Lemma 1, V,,(z,1) (adj (Vo ()Y (m k) = Onxn and tak-
ing into account that R(zp,;) = V(zmi) — C(@mi)Vi(@mi), the previous
expression becomes

— i T ) (ad] 2))) D (g k
Chn i (det (Vm(x)))(l’f)(xm,k)v( m, )(adj (Vin(z))) ( m, )-

Then,

sngce vm<xm,ﬁ> (adj (Vi (2)) " (k) = (adj (Vn(2)) "™ (2.) Vi (10.1)

Then, from the integral representation of the associated polynomials of the

first kind v -
5 (2) = [ = ),
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it follows that

/V(h( /c h(t))dW (h(t)) + Z Conk B (2 1),

k=1
So, from the orthogonality of {V}, },en with respect to W we have

/ V (h(t))dW (h Zcm eBY (@),

k=1
and the statement follows. ]

The next result is an extension of one proved by A. J. Duran in [6]. It
deals with the ratio asymptoticss of the m-th orthogonal polynomial V,,, with
respect to the generalized Markov matrix function, ¥, and the (m — 1)-th

associated polynomial of the first kind 7357?_1-

Theorem 16 (Generalized Markov’s theorem). Let U be a quasi-definite
vector of linear functionals, {V,,}men be the sequence of matriz polynomials
left-orthogonal with respect to the generalized Markov matrix function, F,

defined by (23), and let {B }meN be the sequence of associated polynomials
of the first kind for {B,, }men and UW. Then,

lim V. '(2)BY (2) = F(2)

m—1
m—00

locally uniformly in C\T', where I' = Ny>oMy, My = U,>ny{zeros of V,,,}.

Proof: First, from Lemma 2 we get

i 1
Vil ()BY () =Y D
m (Z) m—l(z) sz . xm,k’

where I'),, ;; are the matrix coefficients that appear in the quadrature formula
presented in Theorem 15 and x,, ) are the zeros of V,,,. On the other hand,
there always exist complex numbers v, such that h(ym k) = Tk, and

Vo l(2) Zrmkz_

We consider the sequence of discrete matrices of measures { iy, }men de-

fined by
= Toidy,,.
k=1

ym k)
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Thus,
=t dpi (h())
Vo Z g o / - h) (35)

if z is not a zero of V,. Taklng into account (35), it will be enough to prove

that
Aty (h(z
lim M:?(z)for ze C\T.
m—00 z — h(x)
The first step deals with the pointwise convergence. Otherwise, we assume
that there exists a complex number z € C \ I', an increasing sequence of

nonnegative integers (m;), and a positive constant C' such that

At (h
/M—fﬂz) >C>0,1>0, (36)
z = h(z) 2
where || . ||o denotes the spectral norm of a matrix, i.e.,

|A]l; = max{V\ : \is a eigenvalue of A*A}.

Taking an increasing sequence (ay) such that ay — oo, and using the Banach-
Alaoglu’s theorem there exists a subsequence (r;) from (my), defined on a
curve 7y contained in a disc |z| < aj, with the same k-th moment of the
vector of linear functionals, U, for k£ < 2r; — 1, such that

tim [ F())dun(h(@) = —— [ Fh (%) dz.  (37)
Moreover,

|—00 2
|/ 25 -7 - ha) |

Tk
with £ in the exterior of the disc |z| < ar. We write Sy for the first moment
of the matrices of measures p,, which is the first moment of U. Then, by
taking k& and then r; large enough, from (36) and (37) we obtain

7 < o (i
— < max
2 |z —

Yk

Y

2

< |

i

2 2

| d:uTl )

anll.
< max<|z_ ) IS0l
0

But this yields C' = 0 and, therefore, (3

2

is not possible.
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The next step is to prove that the analytic functions which are the entries
of the matrix [ M are uniformly bounded in compact sets of C \ I'.
Then, the umform convergence in compact subsets of C \ I" will follow from
Stieltjes-Vitali’s theorem.

Given a compact K C C\ T, let notice that K N My # (), for N large
enough, and then there exists A > 0 such that

z—;h(x) < A, for z € K and h(z) € My.
Then, forn > N
d“”—H <AS.
o —
The spectral norm | d“mi())) is uniformly bounded and, therefore, from the

equivalence of the norms in finite dimensional spaces, the result follows. m

Remark . In an analog way we can deduce the following result. Let {G,, }men
be the sequence of matrix polynomials right-orthogonal with respect to the

generalized Markov function F and let {G%)}meN be the sequence of associ-
ated polynomials of the first kind for {G,, },neny and U. Then,

lim G ()G (2) = F(2),

for z € C\ I' and the convergence is locally uniformly on C\ I', where

I'=Nn>oMy, My = U,>n{zeros of G,,}.
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