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A NOTE ON TWO COMMUTATORS
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Abstract: We show that two known conditions which naturally arose in commu-
tator theory and in the theory of internal crossed modules coincide: every star-
multiplicative graph is multiplicative if and only if every two effective equivalence
relations commute as soon as so do their normalisations. This answers a question
asked by George Janelidze.
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Introduction
The purpose of this work is proving that for a semi-abelian category, the

following conditions are equivalent:

(SM) every star-multiplicative graph is an internal groupoid;
(SH) two equivalence relations commute if and only if their normalisations

commute.

The first condition comes from the study of internal crossed modules. In a
semi-abelian category A, the internal crossed modules introduced by Jane-
lidze [Jan03] form a category which is equivalent to the category of internal
groupoids in A. To define a crossed module of groups, however, less structure
is needed: already a reflexive graph equipped with a star-multiplication deter-
mines a crossed module. Nevertheless, there exist examples of semi-abelian
categories where this is not true. Thus the question arose under which con-
ditions on A, the star-multiplicative graphs in A are internal groupoids.

The second condition is classical in the categorical approach to commu-
tator theory. On one hand, there is the commutator of internal (effective)
equivalence relations which was introduced by Smith [Smi76] in the context
of Mal’tsev varieties and made categorical by Pedicchio [Ped95]. On the
other hand, in the article [Huq68], Huq introduced a commutator for normal
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subobjects in a context which is roughly equivalent to that of semi-abelian
categories. This definition was further studied by Borceux and Bourn [BB04].
Since, in any semi-abelian category, there is a bijective correspondence be-
tween the normal subobjects of an object and the effective equivalence re-
lations on it, it is natural to ask how the two concepts of commutator cor-
respond to each other. The answer is that in general, these concepts are
not equivalent—not even in a variety of Ω-groups, as the counterexample of
digroups shows [BB04]. On the other hand, in a category which is, for in-
stance, strongly semi-abelian, two equivalence relations commute if and only
if their normalisations commute.

It is already known that the second condition (SH) implies the first (SM):
this was shown by Mantovani and Metere [MM09]. We shall prove that the
other implication holds also. We do this in two steps: in the first section we
work towards Theorem 1.4 which essentially states that Condition (SH) may
be restricted to a special class of effective equivalence relations: those pairs
of effective equivalence relations which are the kernel pairs of the domain and
codomain morphisms of a reflexive graph. Then, in Section 2, we prove that a
reflexive graph carries a star-multiplication if and only if it is a Peiffer graph
if and only if the kernels of its domain and codomain morphisms commute
(Proposition 2.11). This is enough to obtain our main result, Theorem 2.12,
which states that (SM) is equivalent to (SH).

1. The Smith is Huq condition
We show that for a pointed protomodular category, the following two con-

ditions are equivalent:

(SH) every two effective equivalence relations commute as soon as so do
their normalisations;

(SH’) every reflexive graph of which the kernels of the domain and the
codomain morphisms commute is a groupoid.

Condition (SH) is the Smith is Huq condition in the title of this section; condi-
tion (SH’) is well-known to hold, for instance, in the case of groups: recall the
analysis of crossed modules given in the final chapter of Mac Lane’s [Mac98].

1.1. The context. In this section we shall work in pointed protomodular
categories. Recall that a category is pointed when it has a zero object,
i.e., an initial object that is also terminal. A pointed category is Bourn
protomodular [Bou91] when it has pullbacks along split epimorphisms and
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the Split Short Five Lemma holds: given a diagram

K[f ]
Ker f

,2

k
¯µ

A
f

,2

a
¯µ

B

b
¯µ

slr

K[f ′]
Ker f ′

,2 A′
f ′

,2 B′s′lr

(A)

such that fs = 1B and f ′s′ = 1B′, the morphisms k and b being isomorphisms
implies that a is an isomorphism.

In particular, a pointed protomodular category has binary products and
kernels of split epimorphisms. Moreover, given a split epimorphism and its
kernel as in

K
k ,2 A

f
,2 B

slr

the kernel k and the section s are jointly strongly epic [BB04, Lemma 3.1.22].
Hence k and s are jointly epic [BG04, Lemma 2.2].

1.2. Commuting kernels. A coterminal pair of morphisms

X
k ,2 A Y

llr

commutes (in the sense of Huq) [BB04, Huq68] when there is a (neces-
sarily unique) morphism ϕ such that the diagram

X
〈1X ,0〉

z¥ÄÄ
ÄÄ

ÄÄ
Ä k

½$?
??

??
??

X × Y ϕ ,2 A

Y
〈0,1Y 〉

Zd??????? l

:DÄÄÄÄÄÄÄ

is commutative.
We shall only consider the case where k and l are kernels. Of particular

interest to us is the situation where they are the kernels of the domain and
codomain morphisms of a reflexive graph C = (C1, C0, d, c, e):

C1

d ,2

c
,2
C0,elr de = ce = 1C0

and k = Ker d : X → C1, l = Ker c : Y → C1.
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One usually views the elements of C1 as arrows between the elements of C0,
so that the morphism ϕ : X × Y → C1 is nothing but a partial composition
on C1 which sends a couple of arrows

· 0αlr ·β
lr

to its composite ϕ(α, β). The central question studied in this paper is, under
which conditions such a partial composition extends to a composition on the
entire graph. To answer it, we shall need the concept of commuting effective
equivalence relations and its connection with commuting kernels.

1.3. Commuting effective equivalence relations. Consider a pair of
reflexive graphs (R,S) on a common object A

R

r0 ,2

r1

,2 A∆R
lr ∆S

,2 S,
s0

lr

s1lr

and consider the induced pullback of r1 and s0.

R×A S
πS ,2

πR

¯µ

S

s0
¯µ

R r1

,2 A

The pair (R,S) commutes (in the sense of Smith) [Smi76, Ped95, BB04]
when there is a (necessarily unique) morphism θ such that the diagram

R
〈1R,∆Sr1〉

z¥ÄÄ
ÄÄ

ÄÄ
Ä r0

½$?
??

??
??

R×A S θ ,2 A

S
〈∆Rs0,1S〉

Zd??????? s1

:DÄÄÄÄÄÄÄ

is commutative.
We shall only consider the case where R and S are effective equivalence

relations (i.e., kernel pairs). It is well-known that when for a span

C1
d

y¥}}
}}

}}
}} c

½%A
AA

AA
AA

C0 C ′
0

(B)
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the kernel pairs R[d] and R[c] commute, this means that (d, c) carries an
internal pregroupoid structure [JP01]; briefly, any zigzag

· ·αlr
β

,2· ·γ
lr

in C1 may be composed to a single arrow θ(α, β, γ), in such a way that
θ(α, β, β) = α and θ(β, β, γ) = γ. In particular, a reflexive graph C =
(C1, C0, d, c, e) is an internal groupoid if and only if R[d] and R[c] commute:
then θ(α, β, γ) = α ◦ β−1 ◦ γ.

It is also well-known that when a pair (R, S) of effective equivalence rela-
tions commutes, then so do their normalisations

X = K[r0]
k=r1Ker r0 ,2A K[s0] = Y :

l=s1Ker s0lr

see [BB04, Proposition 2.7.7]. In particular, for any internal groupoid C the
composition on C restricts in such a way that the kernels of its domain and
codomain morphisms commute. The converse is not true: in general, it is not
possible to extend the partial composition on a reflexive graph which is given
by its commuting kernels to a composition on the entire graph which makes it
into a groupoid. This is explained by the next result (inspired by Lemma 2.1
in [Joh91]), together with the fact that a pair of effective equivalence relations
of which the normalisations commute need not commute itself [BB04].

Theorem 1.4. For a pointed protomodular category, the following conditions
are equivalent:

(SH) every two effective equivalence relations commute as soon as so do
their normalisations;

(SH’) every reflexive graph of which the kernels of the domain and the co-
domain morphisms commute is a groupoid.

Proof : It is clear that (SH’) is just (SH) in the special case where the effective
equivalence relations considered are the kernel pairs of the domain and the
codomain maps of a reflexive graph. This special case implies the general
case. Let indeed R = R[d] and S = R[c] be the effective equivalence relations
induced by a span (B) and assume that the kernels k = Ker d and l = Ker c
commute in the sense of Huq. We have to prove that R and S commute in
the sense of Smith, i.e., the span (d, c) is a pregroupoid.
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If one thinks of the “elements” of the object C1 as arrows d(α) α ,2c(α)
then R and S consist of couples

· · α ,2
β

lr · and · γ
,2· ·δlr ,

respectively. Forming the pullback of r0 and s0 we obtain a reflexive graph

R×0 S

dom=r1πR ,2

cod=s1πS

,2
C1.〈∆R,∆S〉lr (C)

Note that there is an isomorphism R×C1 S ∼= R×0 S under which an element
((α, β), (β, γ)) corresponds to ((β, α), (β, γ))—in both cases, a triple (α, β, γ).
Thus an arrow in this reflexive graph is a triple

· ·αlr
β

,2· ·γ
lr

considered as an arrow β with domain α = dom(α, β, γ) = r1πR(α, β, γ) and
codomain γ = cod(α, β, γ) = s1πS(α, β, γ). The kernels of dom and cod
commute because so do k and l. The needed morphism

K[dom]×K[cod] → R×0 S

takes a couple

(· ·0lr
β

,2· ·γ
lr , · ·δlr ε ,2· ·0lr )

in the product K[dom]×K[cod] and maps it to the element

· ·δlr
ϕ(β,ε)

,2· ·γ
lr

of R ×0 S. The hypothesis that (SH’) holds now implies that this reflexive
graph is a groupoid. This, in turn, establishes a pregroupoid structure on the
span (d, c): the required morphism θ : R×C1 S ∼= R×0 S → C1 is determined
by

(· ·γ
lr

θ(α,β,γ)
,2· ·αlr ) = (· ·β

lr α ,2· ·αlr ) ◦ (· ·γ
lr

γ
,2· ·β

lr )

where the composition takes place in the groupoid (C).

Condition (SH) is usually called the Smith is Huq condition. It is known
to hold in quite diverse situations: in pointed and strongly protomodular
categories (by Theorem 6.6.1 in [BB04]; see also [Bou04]) and in pointed and
action accessible categories (as explained in [MM09]; see also [BJ]). This
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condition is also weaker than the reflected admissibility condition studied
in [MF09].

2. Star-multiplication
In this section we show that, in a semi-abelian category, three types of

(uniquely determined) structure on a reflexive graph C = (C1, C0, d, c, e)
coincide: a reflexive graph C is star-multiplicative if and only if it is Peiffer
if and only if the kernels of d and c commute (Proposition 2.11). This allows
us to prove Theorem 2.12 which states that a semi-abelian category has the
Smith is Huq property if and only if every star-multiplicative graph is a
groupoid.

2.1. The context. A category is semi-abelian [JMT02] when it is pointed,
Bourn protomodular and Barr exact with binary coproducts. Barr exact
means that every internal equivalence relation is effective (i.e., it is the ker-
nel pair of its coequaliser) and the category is regular: finitely complete with
pullback-stable regular epimorphisms. A homological category is pointed,
regular and protomodular [BB04].

In a homological category regular epimorphisms (coequalisers), strong epi-
morphisms and normal epimorphisms (cokernels) coincide, and every mor-
phism f : A → B may be factored as a regular epimorphism A → I[f ] fol-
lowed by a monomorphism Im f : I[f ] → B. The monomorphism Im f is the
image of f . A morphism f is proper when it has a normal image, i.e.,
Im f is a kernel. In a semi-abelian category, the direct image Im (pm) of a
normal monomorphism m along a regular epimorphism p is always a normal
monomorphism (condition (SA*6) in [JMT02]).

We need the following lemma; see [Bou01, Proposition 7] or [BB04].

Lemma 2.2. In a homological category, given a commutative diagram

K[f ]
Ker f

,2

k
¯µ

A
f

,2

a
¯µ

B

b
¯µ

K[f ′]
Ker f ′

,2 A′
f ′

,2 B′

where f and f ′ are regular epimorphisms, the morphism k is an isomorphism
if and only if the right hand side square bf = f ′a is a pullback.
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2.3. Commuting kernels implies isomorphic kernels. Using this lemma
we may show that when the kernels k and l of the morphisms d and c in a
reflexive graph C = (C1, C0, d, c, e) commute, their domains are isomorphic.

Lemma 2.4. Let k and l be induced by a reflexive graph C in a homological
category as above. If k and l commute then the following commutative squares
are pullbacks.

X × Y
πX ,2

ϕ
¯µ

X

h=ck
¯µ

C1 c
,2 C0

X × Y
πY ,2

ϕ
¯µ

Y

dl
¯µ

C1
d

,2 C0

This makes X and Y isomorphic in a strong sense: there exist morphisms
i : X → Y and j : Y → X such that

ji = 1X , ij = 1Y , ckj = dl and ck = dli.

Proof : The left hand side diagram commutes because 〈1X , 0〉 and 〈0, 1Y 〉 are
jointly (strongly) epimorphic and moreover cϕ〈1X , 0〉 = ck = ckπX〈1X , 0〉
and cϕ〈0, 1Y 〉 = cl = 0 = ckπX〈0, 1Y 〉. It is a pullback by Lemma 2.2 since
the induced morphism between the kernels of πX and c is 1Y . Similarly the
right hand side square is a pullback.

The morphism i : X → Y is obtained through the universal property of
the first pullback as follows. The equality ceck = ck = h1X gives rise to
a morphism ι : X → X × Y such that ϕι = eck and πXι = 1X ; considering
X × Y as a product now, this ι is a couple 〈1X , i〉 : X → X × Y . Clearly,

dli = dlπY 〈1X , i〉 = dϕ〈1X , i〉 = deck = ck.

Using the second pullback one obtains a morphism j : Y → X that satisfies
ϕ〈j, 1Y 〉 = edl, so that ckj = dl.

Now we only have to prove that i and j are each other’s inverse. This again
follows from the universal properties of the pullbacks. Indeed, the maps
〈j, ij〉 : Y → X × Y and 〈j, 1Y 〉 : Y → X × Y are both universally induced
by the equality cedl = ckj = hj, hence they are equal. Likewise, 〈1X , i〉 is
equal to 〈ji, i〉 so that ji = 1X .

2.5. Star-multiplicative graphs. A reflexive graph C = (C1, C0, d, c, e) is
star-multiplicative [Jan03] when there is a (necessarily unique) morphism

ς : C1 ×C0 X → X
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such that ς〈k, 0〉 = 1X and ς〈eck, 1X〉 = 1X . Here the square

C1 ×C0 X

π0
¯µ

π1 ,2 X

h=ck
¯µ

C1
d

,2 C0

is a pullback. A star-multiplication takes a composable pair of arrows

· ·αlr 0
β

lr

and sends it to their composite ς(α, β).

2.6. Peiffer graphs. A reflexive graph C = (C1, C0, d, c, e) is Peiffer
[MM09] when there is a (necessarily unique) morphism

ω : X ×X → C1

such that ω〈1X , 0〉 = k and ω〈1X , 1X〉 = eck. The structure ω sends a
composable pair of arrows

· 0
β

,2αlr ·
to the composite ω(α, β)—which should be considered as α ◦ β−1.

In [MM09] these two structures are shown to be equivalent; we recall the
argument.

Proposition 2.7. A reflexive graph C = (C1, C0, d, c, e) in a pointed proto-
modular category is star-multiplicative if and only if it is Peiffer.

Proof : Given ς : C1 ×C0 X → X put ω = π0〈ς, π1〉−1; given ω : X ×X → C1

put ς = π0〈ω, π1〉−1. Notations are as above. The inverse morphisms exist
by the Split Short Five Lemma.

Now we work towards an equivalence with reflexive graphs of which the
kernel of the domain map commutes with the kernel of the codomain map.
In Lemma 2.10 we need the surrounding category to be semi-abelian.

Lemma 2.8. Let g : X ×X → A be a morphism with g〈0, 1X〉 = 0 and write
g0 = g〈1X , 0〉. Then g = g0π0, so that g〈1X , 1X〉 = g0.

Proof : The morphism g is uniquely determined by the equalities g〈0, 1X〉 = 0
and g〈1X , 0〉 = g0. Since also g0π0〈0, 1X〉 = 0 and g0π0〈1X , 0〉 = g0 we have
that g = g0π0.
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Lemma 2.9. For any Peiffer graph C, the morphism c is the cokernel of the
composite ω〈0, 1X〉.
Proof : Consider f : C1 → A such that fω〈0, 1X〉 = 0; we claim that the
morphism fe : C0 → A satisfies fec = f . Indeed, by Lemma 2.8 the equalities
fω〈0, 1X〉 = 0 and fω〈1X , 0〉 = fk imply fω〈1X , 1X〉 = fk, so that feck =
fk. Since also fece = fe and k and e are jointly epic we may conclude that
fec = f .

Lemma 2.10. For any Peiffer graph C in a semi-abelian category the induced
commutative squares

X ×X

(i)ω
¯µ

π1 ,2 X

h=ck
¯µ

C1
d

,2 C0

X ×X

(ii)ω
¯µ

π0 ,2 X

h=ck
¯µ

C1 c
,2 C0

are pullbacks.

Proof : Both squares commute because the morphisms 〈1X , 0〉 and 〈1X , 1X〉
are jointly epic and

dω〈1X , 0〉 = dk = 0 = hπ1〈1X , 0〉,
dω〈1X , 1X〉 = deck = ck = hπ1〈1X , 1X〉,
cω〈1X , 0〉 = ck = 0 = ckπ0〈1X , 0〉

and cω〈1X , 1X〉 = ceck = ck = hπ0〈1X , 1X〉. Taking kernels horizontally
in (i) induces the identity morphism 1X ; hence the square is a pullback by
Lemma 2.2. The rest of the proof is devoted to showing that (ii) is also a
pullback.

Taking kernels vertically gives rise to the reflexive graph

K[ω]
π′0 ,2

π′1
,2
K[h];∆lr

Since (i) is a pullback, the morphism π′1, and hence also π′0, is an isomor-
phism. It follows by Lemma 2.2 that the top square in the vertical regular
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epi-mono factorisation

X
〈0,1X〉,2 X ×X

¯µ¯µ

π0 ,2 X

¯µ¯µ

X
Ker c ,2

(iii)i
¯µ

I[ω]
¯µ
Im ω

¯µ

c ,2 I[h]
¯µ
Im h

¯µ

Y
Ker c

,2 C1 c
,2 C0

of (ii) is a pullback. Taking kernels to the left induces morphisms as indi-
cated. We have to show that i is an isomorphism.

Being a composite h = ck of a kernel with a regular epimorphism, the
morphism h is proper, i.e., its image Im h is a kernel. Since the square (i)
is a pullback, ω is also proper, so that Im ω is a kernel. The morphism Im h
being mono implies that the square (iii) is a pullback. Since both Im ω
and Ker c are kernels, this implies that the diagonal of (iii)—the morphism
ω〈0, 1X〉—is also a kernel. Lemma 2.9 tells us that c is its cokernel, so that
ω〈0, 1X〉 is the kernel of c. This means that i is an isomorphism, and the
square (ii) is a pullback by Lemma 2.2.

Proposition 2.11. For a reflexive graph C = (C1, C0, d, c, e) in a semi-
abelian category, the following three conditions are equivalent:

(1) C is star-multiplicative;
(2) C is Peiffer;
(3) Ker d and Ker c commute.

Proof : Conditions (1) and (2) are equivalent by Proposition 2.7. If C is
Peiffer then Ker d and Ker c commute. Indeed, by Lemma 2.10 we can put
ϕ = ω since ω〈0, 1X〉 is the kernel l of c. Conversely, if Condition (3) holds
then by Lemma 2.4 we have

ι = 〈1X , i〉 : X → X × Y

such that ϕι = eck. Now ω = ϕ(1 × i) : X ×X → C1 is a Peiffer structure
on C because ω〈1X , 0〉 = ϕ(1X × i)〈1X , 0〉 = ϕ〈1X , 0〉 = k and ω〈1X , 1X〉 =
ϕ(1X × i)〈1X , 1X〉 = ϕι = eck.
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Theorem 2.12. For a semi-abelian category, the following conditions are
equivalent:

(SM) every star-multiplicative graph is multiplicative;
(SH) two (effective) equivalence relations commute if and only if their nor-

malisations commute.

Proof : We already explained above that one implication of (SH) always holds
by [BB04, Proposition 2.7.7]. Hence by Theorem 1.4 we may replace the
second condition with
(SH’) every reflexive graph of which the kernels of the domain and the co-

domain morphisms commute is a groupoid.

The result now follows from Proposition 2.11 and the fact that in a semi-
abelian category, multiplicative graphs (i.e., categories) and groupoids coin-
cide.

Note that only in Lemma 2.10 we use that the underlying category is semi-
abelian rather than homological. In the homological context, this suggests
a modification of the concept of Peiffer graph, where the pullback prop-
erty of square (ii) in Lemma 2.10 becomes an axiom. (Or, equivalently,
the morphism ω〈0, 1X〉 is demanded to be a kernel.) The concept of star-
multiplicative graph allows a similar modification, where now one asks that
the morphism of reflexive graphs

C1 ×C0 X

π1
¯µ

ς
¯µ

π0 ,2 C1

d
¯µ

c
¯µ

X
h

,2

LR

C0

LR

is not just a discrete cofibration (i.e., the square hπ1 = dπ0 is a pullback) but
also a discrete fibration (hς = cπ0 is a pullback). These definitions extend
Theorem 2.12 to homological categories.
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