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THE CHANGE IN EIGENVALUE MULTIPLICITY

ASSOCIATED WITH PERTURBATION OF A DIAGONAL

ENTRY OF THE MATRIX

CHARLES R. JOHNSON, ANTÓNIO LEAL DUARTE AND CARLOS M. SAIAGO

Abstract: Here we investigate the relation between perturbing the i-th diagonal
entry of A ∈ Mn(F) and extracting the principal submatrix A(i) from A with
respect to the possible changes in multiplicity of a given eigenvalue. A complete
description is given and used to both generalize and improve prior work about
Hermitian matrices whose graph is a given tree.
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In a series of papers investigating the possible multiplicity lists for the
eigenvalues among Hermitian matrices whose graph is a given tree, consid-
erable information relating the structure of the tree to the change in the
multiplicity of an eigenvalue when passing to a principal submatrix has been
generated ([13], [14], [3], [5], [8], [6], [9], [11], [10]). Our purpose here is
several-fold: (1) to focus on a single multiple eigenvalue, but in the very gen-
eral setting of square matrices over a field; (2) to understand the relationship
between change in multiplicity with change in a diagonal entry and change
in multiplicity when passing to a principal submatrix; and (3) to apply these
observations to get further, or different, insights in the Hermitian/tree case.
Our basic results generalize certain aspects of the Hermitian case. Beyond
what we do here, we suspect that these observations may be powerful tools
for further generalization. A priori, there are substantial differences in the
general matrix case. For example, when passing to a principal submatrix of
size one smaller a multiplicity may change by more than one, in contrast to
the Hermitian case; the same distinction occurs when there is a change in
the value of a diagonal entry. This alone makes a substantial difference in
the strength of the statements that can be made. Nonetheless, remarkable
parts of the Hermitian/tree case carry over.

All our results will be about algebraic multiplicity, and we use polynomial
methods. We begin with a simple observation about polynomials that will
be used repeatedly. We note two important aspects of the way we present
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all the results. First, we imagine that the polynomial roots or eigenvalues
in question lie in the given field from which the coefficients or entries are
chosen. This emphasizes that if a value of a diagonal entry is to be chosen
to achieve a certain change, the value can be chosen from the same field, but
there is no loss of generality, as the results may be applied to an extension
field in which the eigenvalue lies and the matrix entries still lay. Second,
when a value is not, by hypothesis, confined to the ground field, it may be
chosen completely freely (in any field extension) and the statement is still
valid.

We employ the standard matrix notation in which A(i) ∈Mn−1(F) denotes
the principal submatrix of A ∈ Mn(F) after deletion of the i-th row and
column, while F denotes a general field; Eii ∈ Mn(F) denotes the n-by-n
matrix with a 1 in the (i, i) position and zeros elsewhere. We also use pA(x)
for the characteristic polynomial, det(xI − A), of the matrix A and mA(λ)
or mp(λ) to indicate the multiplicity of λ as an eigenvalue of A ∈Mn(F) or
a root of the polynomial p(x) ∈ F[x].

Leading to one of our main results, we present three lemmata, one dealing
with each of three cases in which mA(i)(λ) < , = , > mA(λ). Note that all
three can occur, |mA(λ)−mA(i)(λ)| may be any nonnegative integer and that
we allow that either mA(λ) or mA(i)(λ) be 0 or 1. We note that to support a
proof of Theorem 5 to come, only a much weaker version of each of Lemmas
2, 3, 4 is necessary (essentially just the forward implication of each), but we
give the more complete version of each for clarity.

Lemma 1. Let 0 6≡ p1, p2 ∈ F[x], with F a field. If λ ∈ F, mp1
(λ) = m > 0,

mp2
(λ) > m and pa(x) = (x − a)p1(x) + p2(x), then mpa

(λ) = m for all a,
except for a unique a0 ∈ F for which mpa0

(λ) > m.

Proof. Obviously, by a divisibility argument, we have mpa
(λ) > m, for all

a ∈ F. Let pi(x) = (x− λ)mqi(x), i = 1, 2, a. Then

qa(x) = (x− a)q1(x) + q2(x) .

Now mpa
(λ) > m if and only if qa(λ) = 0, that is, if and only if

a = λ +
q2(λ)

q1(λ)

(which is an element of F), and so this is the only element a0 for which
mpa0

(λ) > m.
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We note that mpa
(λ)−m may be arbitrarily large, as with the remark after

Lemma 4, which also shows that the decrease in multiplicity in Lemma 3
may be arbitrarily large.

First, we consider the case in which mA(i)(λ) > mA(λ).

Lemma 2. Suppose that A ∈Mn(F), that i, 1 6 i 6 n, is an index and that
λ ∈ F. Then,

mA(i)(λ) > mA(λ)

if and only if

mA+tEii
(λ) = mA(λ)

for all t.

Proof. Using the Laplace expansion of the characteristic polynomial of A, we
have

pA(x) = (x− aii)pA(i)(x) + q(x), (1)

in which q(x) is a certain polynomial of degree n− 2. Using the same expan-
sion for the characteristic polynomial of A + tEii, t ∈ F, we obtain

pA+tEii
(x) = (x− aii − t)pA(i)(x) + q(x) = pA(x)− tpA(i)(x). (2)

Suppose that mA(i)(λ) > mA(λ). The hypothesis and a divisibility argu-
ment applied to equation (2), mA+tEii

(λ) > mA(λ). But, if mA+tEii
(λ) >

mA(λ), then mA(λ) > min
{
mA+tEii

(λ), mA(i)(λ)
}

> mA(λ), a contradiction.
So mA+tEii

(λ) = mA(λ), which proves the necessity.
Consider sufficiency. Since mA+tEii

(λ) = mA(λ), a divisibility argument ap-
plied to (2) implies that λ is also a root of pA(i)(x) with multiplicity at least
mA(λ), i.e., mA(i)(λ) > mA(λ). Suppose that mA(i)(λ) = mA(λ). By a divisi-
bility argument applied to (1) we have that mq(λ) > mA(λ). In that case, by
Lemma 1, there would exist a (unique) t0 ∈ F such that mA+t0Eii

(λ) > mA(λ),
a contradiction. Therefore we have mA(i)(λ) > mA(λ).

We note that indices of the sort described in Lemma 2 are known to always
exist in case A is Hermitian, its graph is a tree and mA(λ) > 1 [5, 13, 14].
Otherwise, there need not be such indices [4], but, of course, they may occur,
in situations beyond the Hermitian/tree case.

Next we consider the case in which the multiplicity declines when passing
to the principal submatrix.
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Lemma 3. Suppose that A ∈Mn(F) that i, 1 6 i 6 n, is an index and that
λ ∈ F. Then,

mA(i)(λ) < mA(λ)

if and only if
mA+tEii

(λ) < mA(λ)

for all t 6= 0.
Moreover, in this event, mA+tEii

(λ) = mA(i)(λ) (< mA(λ)) for any t 6= 0,
so that for any t 6= 0, the decline in multiplicity when passing from A to
A + tEii is the same.

Proof. We show first that, for t 6= 0, both: (a) mA(i)(λ) < mA(λ) implies
mA+tEii

(λ) = mA(i)(λ) and (b) mA+tEii
(λ) < mA(λ) implies mA+tEii

(λ) =
mA(i)(λ), from which the entire statement of the lemma follows.

For (a), a divisibility argument applied to (1) gives mq(λ) = mA(i)(λ).
Then, Lemma 1, applied to (2), shows that, for any t 6= 0 (t = 0 being the
only exception in Lemma 1), mA+tEii

(λ) = mA(i)(λ).
For (b), Lemma 1, applied to (2), shows that mA+tEii

(λ) = mA(i)(λ), with
the lone exception of t = 0.

Finally, we consider the case in which the multiplicity does not change
when passing to the principal submatrix.

Lemma 4. Suppose that A ∈ Mn(F), that i, 1 6 i 6 n, is an index, and
λ ∈ F. Then,

mA(i)(λ) = mA(λ)

if and only if
mA+tEii

(λ) = mA(λ)

for all t, except for a unique t0 ∈ F for which mA+t0Eii
(λ) > mA(λ).

Proof. Suppose that mA(i)(λ) = mA(λ). A divisibility argument applied to
(1) shows that mq(λ) > mA(λ). By Lemma 1, applied to equation (2), there
is a unique t0 ∈ F, obviously t0 6= 0, for which mA+t0Eii

(λ) > mA(λ).
To prove sufficiency, we show that neither mA(i)(λ) > mA(λ) nor mA(i)(λ) <

mA(λ) can occur. If we suppose that mA(i)(λ) > mA(λ), by Lemma 2, we
would have, for any t ∈ F, mA+tEii

(λ) = mA(λ), which is a contradiction.
If we suppose that mA(i)(λ) < mA(λ), by Lemma 3, we would have, for any
0 6= t ∈ F, mA+tEii

(λ) = mA(i)(λ) < mA(λ) which is again a contradiction.
Therefore, we have mA(i)(λ) = mA(λ), completing the proof.
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An analysis of the proofs of Lemmas 2 to 4 shows that if F1 is a subfield
of F and pA(x), pA(i)(x) ∈ F1[x], λ ∈ F1 then the reverse implication of each
of the lemmas is still true with t restricted to F1 (because we still can apply
Lemma 1); in this case we have t0 ∈ F1 in Lemma 4. This situation occurs
for Hermitian matrices over C, with F1 = R. We note also that, in each of
the Lemmas 2 to 4, the parameter t may be taken to be unrestricted in the
forward implication and need only to be assumed in F (or F1) for the reverse
implication.

Each of Lemmas 2, 3, 4 has a natural and interesting specialization to the
case in which A ∈Mn(C) is Hermitian. Then,

mA(i)(λ) > mA(λ)

if and only if

mA(i)(λ) = mA(λ) + 1,

and

mA(i)(λ) < mA(λ)

if and only if

mA(i)(λ) = mA(λ)− 1 ,

because of the interlacing [1, Chap 4] (mA(i)(λ) = mA(λ) may still occur).
We do not state these, but they may be referred to as Lemma 2(Hermitian),
Lemma 3(Hermitian) and Lemma 4(Hermitian). The statements should be
clear, except that we note that in Lemma 4(Hermitian), the very last part
would be mA+t0Eii

(λ) = mA(λ) + 1, and t0 ∈ R.
By analogy with the Hermitian case, we give names for each of the above

three cases. In the general setting, we say that an index i, 1 6 i 6 n,
is Parter for λ in A if mA(i)(λ) > mA(λ) (as in Lemma 2). Similarly, i is
neutral (respectively, a downer) for λ in A if mA(i)(λ) = mA(λ) (respectively,
mA(i)(λ) < mA(λ)). If the amount of change is of interest, we say, for example,
that i is Parter for λ in A of order k if mA(i)(λ) −mA(λ) = k. Of course, if
A is Hermitian, “Parter” implies “Parter of order 1”.

The increase mentioned in Lemma 4 could be bigger than 1 in the general
case. Since this is the only situation in which multiplicity may increase (or
increase by more than 1) when passing from A to A+tEii, we give an example
of what may occur.

Example. The increase in multiplicity due to the unique change in one
diagonal entry corresponding to a neutral index can be arbitrarily large in
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general. An n-by-n matrix of the form

A =

[
w − t y>

z D

]

with D diagonal, with distinct nonzero diagonal entries, and w = tr D and
such that A + tE11 is nilpotent gives an example such that mA(0) = 0 but
mA+tE11

(0) = n. According to [12], y and z may be chosen to produce such
an A for any such D.

The three Lemmas 2, 3 and 4 may be combined into a single summary
statement, a main result. Of course, there is also a Hermitian specialization.

Theorem 5. Suppose that A ∈ Mn(F), that i, 1 6 i 6 n, is an index and
λ ∈ F. Then, i is Parter (respectively, downer, neutral) for λ in A if and
only if

mA+tEii
(λ) = ( respectively <, =) mA(λ)

for all t (respectively, all t except t = 0, for all t except for a unique t0 ∈ F
for which we have >).

Now, to make some applications of Theorem 5, we give another lemma that
may be of independent interest.

Lemma 6. If A ∈ Mn(F) and λ ∈ F is an eigenvalue of A, then there is a
downer index for λ in A.

Proof. Since p′A(x) =
∑n

i=1 pA(i)(x) [1, p. 43] and mp′A(λ) = mA(λ) − 1,

(x − λ)mA(λ) cannot divide
∑

pA(i)(x). But, if each index is either neutral

or Parter, (x − λ)mA(λ) would divide each pA(i)(x) and thus the sum. This
contradiction means that there must be at least one downer.

Remarks. Another (longer) proof of Lemma 6 may be given by applying
ideas about compound matrices [1] to the characteristic matrix xI − A. In
case A is Hermitian with graph a tree, there are at least two downer indices
for any eigenvalue. In general, for an eigenvalue of multiplicity one, there may
be only one, as in the case of a diagonal matrices. When mA(λ) > 1, must
there be at least two downer indices (or more under certain circumstances)?
In general, the answer is “no”, as is shown by the example in M3:

A =




a a −a
−a −a a
−a −a a


 , a 6= 0,
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in which mA(0) = 2 since rank A = 1 and tr A = a. Since mA(1)(0) =
mA(3)(0) = 2, index 2 is the only downer (mA(2)(0) = 1).

For the Hermitian case we have the following result.

Theorem 7. If A ∈ Mn(C) (n > 1) is Hermitian and λ ∈ R and either
mA(λ) > 1 or mA(λ) = 1 and A is irreducible, then there are at least two
downer indices.

Proof. It follows from [2, Corollary 2] that if there were zero or one downer
index then any eigenvector of A associated with λ will have, respectively, all
components zero (which is impossible) or all but one component zero; in this
last event A will be reducible and if mA(λ) > 1 then one the direct summands
of A will have λ as an eigenvalues; this will allows us to find another downer
index in this summand which will be also a downer index of the original
matrix A contradicting the supposition that there were just one such index.

One of the uses of Lemma 6 is to show that if λ is a highly multiple
eigenvalue of A, then there are matrices A′ that agree with A off the diagonal
and have λ as an eigenvalue with lower multiplicity. Typically, only a few
diagonal entries need be changed. If A has a downer index of order 1, then
a change in one diagonal entry to produce A′ will lower the multiplicity by
1. If there is another such index, we may lower the multiplicity by 1, etc.,
so that all lower multiplicities will be achieved. This will be the case if A is
Hermitian, as the only possible order for a downer index is 1. This gives the
following result.

Theorem 8. If A ∈ Mn(C) is Hermitian, λ ∈ R is an eigenvalue of A and
mA(λ) = m > 1, then for any 0 6 l 6 m, there exist k = m − l diagonal
entries that may be changed to produce A′ for which mA′(λ) = l.

We note that, according to Theorem 5, if A ∈ Mn(F) has a Parter index
for λ ∈ σ(A), then any change in the diagonal entry corresponding to that
index gives a new matrix for which the same index is Parter for λ. If a
diagonal entry associated with a neutral index is changed so as to increase
the multiplicity (a unique change does this), then that index becomes a
downer. (A change other than the unique one will leave the index neutral.)
Similarly, any change in a downer makes the index become neutral. It is
more subtle what changes in a diagonal entry can do to the status of other
indices.
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Since, for a tree T , diagonal entries only can be changed to produce
maximum multiplicity among Hermitian matrices with graph T , we have
a stronger result.

Let G be an undirected graph on n vertices and denote by H(G) the col-
lection of Hermitian matrices whose graph is G. Further, let M(G) be the
maximum multiplicity of an eigenvalue among matrices in H(G). When the
graph is a tree T , M(T ) has been characterized as the path cover number
in [3].

Corollary 9. Let T be a tree, B ∈ H(T ) and M = M(T ). Then for any
0 6 m 6 M and any λ ∈ R, there is a diagonal matrix D ∈ Mn(R) such
that mB+D(λ) = m.

Proof. To apply Theorem 8, we need only show that there is a real diagonal
perturbation A of B for which mA(λ) = M(T ). This may be done using
an idea of [3]. If q vertices are removed from T to leave p paths so that
p − q = M(T ) and for the submatrix corresponding to each path, diagonal
entries are changed (e.g. via translation), if necessary, to place λ on the path.
Then, reconstructing the tree will produce a new A with mA(λ) = M(T ).

Another proof of Corollary 8 may be given via a translation and diago-
nal congruence/ rank argument. It is an open conjecture that any possible
(unordered) multiplicity list for a tree may be attained for any off-diagonal
entries.

Bringing multiplicities down via diagonal perturbation is always possible
because of the existence of downer indices. The reverse is, not surprisingly,
not always possible, as there may not be neutral indices. The nonexistence
of neutral vertices is the condition for a certain sort of local maximum in
multiplicity. (Of course, neutral indices may, or may not occur.)

The following result is a direct consequence of Theorem 5, as the only
way that a single diagonal perturbation can increase multiplicity is if neutral
indices exist.

Corollary 10. If A ∈ Mn(F) and λ ∈ F, then mA(λ) can be increased by
change of a single diagonal entry of A if and only if there is an index that is
neutral for λ in A.

Corollary 10 allows us to give a very different proof of a generalization of
a result of [7].
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Corollary 11. Let G be any graph and let A ∈ H(G) and λ ∈ σ(A) be such
that mA(λ) = M(G). Then no vertex of G is neutral in G for λ and A.

Proof. If there were a neutral vertex for λ in A, then mA(λ) could be increased,
which is not possible if it is already a maximum.

We close by noting that there are other circumstances in which there can
be no neutral vertices. For example, if there is an eigenvalue λ such that
mA(λ) = M(G) = m1 and another eigenvalue µ such that mA(µ) = m2,
which is a maximum given m1, then if multiplicities m1 − 1 and m2 + 1
cannot occur (there are examples, see [8, § 5]), there can be no neutral
vertices for µ in T given A. Other such situations can be identified. It would
be of interest to characterize all situations for a given graph in which neutral
vertices cannot occur.
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