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Abstract: Colorectal cancer is initiated in colonic crypts as a consequence of
alterations leading to the disruption of the normal colonic cellular process. We
propose a new model, which couples a convection-diffusion type equation with a
level set equation, for tracking the time evolution of an epithelial cell set, inside
a colonic crypt, until it reaches the top of the crypt. The convection-diffusion
equation describes the evolution of the density of the cells in the epithelial cell
set. The parameters of this equation regulate the geometric and temporal cellular
mechanism, and different parameter choices lead to distinct cell behavior. The level
set equation tracks the location and shape of the epithelial cell set, inside the crypt,
as well as its interface, separating the cell set from the others cells, which reside
within the crypt. The interfacial velocity of the epithelial cell set is obtained from
the convection-diffusion type equation. Some in silico experiments are described.
They are performed in a relative small time, with respect to the real biological
evolution.
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colonic crypt.
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1. Introduction
A colonic crypt is a cylindrical tube, closed at the bottom and with a round

opening in the top directed at the lumen’s colon, that contains different
populations of cells [1, 2]. These cells are aligned along the crypt wall: stems
cells are believed to reside in the bottom of the crypt, transit cells along the
middle part of the crypt axis and differentiated cells at the top of the crypt.
In normal human colonic crypts the cells renew completely each 3-6 days,
through a programmed mechanism which includes the proliferation of cells,
their migration along the crypt wall towards the top and their apoptosis,
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as they reach the top and the cell cycle is finished. If this programmed
mechanism changes, disease may appear leading to tumorigenesis.

Here we propose a new mathematical model, which couples a convection-
diffusion equation with a level set equation, for tracking the evolution of an
epithelial cell set, in a single crypt. In particular, we simulate the evolution
of the contour (or equivalently, of the shape) of this epithelial cell set, in
time, by means of its cell density. The model relies on biological and med-
ical information, and assumes the evolution of this epithelial cell set is due
to three main effects. The first is the movement (mainly upwards) of the
cells belonging to the set itself. The second effect is the assumption that the
transport of the epithelial cell set is also generated by the others cells sur-
rounding it, which, as a consequence of their normal behavior, tend to push
the epithelial cell set out of the crypt. Finally, the third effect, corresponds
to a cell proliferation rate inside the epithelial cell set itself. It should be
stressed that all these effects are incorporated in the parameters and coef-
ficients of the mathematical model here considered. Their choice is again
based on the description of the phenomena reported in the literature (see for
instance [1, 2, 3, 4, 5]). Essentially, they tend to capture both a normal and
abnormal behavior of the epithelial cell set, with emphasis on the convection,
diffusion and on the inner proliferative effect of the set.

We report two numerical simulations: with and without the proliferative
effect. The results seem to be reveal somewhat what is observed in reality,
in normal crypts, with an extra information concerning the shape of the
epithelial cell set and the distribution of the cell density inside this set.

We finish this introduction with a brief outline of the paper. It includes
a short description of the coupled model, in section 2, with details concern-
ing the crypt geometry and the definition adopted for the flux of the cells
belonging to the epithelial cell set. The numerical procedure proposed for
the solution of the mathematical model is outlined in section 3 (with a proof
related to a fixed point argument). The corresponding numerical simula-
tions are reported in section 4. Finally some conclusions and future work are
discussed in the last section.

2. Definition of the model
2.1. Geometry of a colonic crypt. To start with we define the domain
that corresponds to a colonic crypt. A crypt is a three-dimensional object
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(see Figure 1, middle), represented here in an equivalent two-dimensional
way.

Figure 1. Colon in two dimensions (left), a colonic crypt in
three and two dimensions (middle and right).

We first assume that the colon is cut open, and rolled out to give a two
dimensional rectangular domain (see Figure 1, left), perforated by circles,
periodically distributed. Each circumference, in the left picture of Figure 1,
represents the orthogonal projection of a crypt in the plan. In each crypt
(see Figure 1, right) the concentric circumferences stand for different heights
along the crypt’s axis.

A colonic crypt of height R is then identified, in a (O, x, y) two-dimensional
Cartesian reference system, with the closure of the open ball

BR := {(x, y) ∈ R2 :
√
x2 + y2 < R},

with center O = (0, 0) and radius R. In addition, we can also rewrite the
crypt as BR = (0, R)×(0, 2π) in the polar coordinate system, (O, r, θ), where
O is the pole that matches the origin O of the Cartesian system and, r and θ
stand for, respectively, the radial and angular component (this latter is also
known as the polar angle). Moreover, we note that the point r = 0 is the
origin O, and represents the bottom of the crypt, while r = R is the top of
the crypt, that is the crypt orifice linked with the lumen of the colon.

2.2. Definition of the cell flux. Let [0, T ] be a given time interval. The
goal is to track the evolution of an epithelial cell set, since a starting time
t = 0, until a final time t = T . For each t ∈ [0, T ], and in each point
(r, θ) of the crypt, the density of the cells, inside this cell set, is denoted
by c(r, θ, t). Moreover, we denote by D(t) this epithelial cell set, at time
t. In addition, for each fixed polar angle θ, intersecting D(t), the numbers
r1(θ, t) = min{r : (r, θ) ∈ D(t)} and r2(θ, t) = max{r : (r, θ) ∈ D(t)}
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represent, respectively, the minimum and the maximum distance from the
bottom of the crypt to D(t), measured along the polar angle θ. Likewise, for
each fixed radial component r, intersecting D(t), θ1(r, t) = min{θ : (r, θ) ∈
D(t)} and θ2(r, t) = max{θ : (r, θ) ∈ D(t)} are the minimum and maximum
angle in D(t), respectively, measured along the circumference of radius r.

We describe now a formula for the flux F (r, θ, t), of the cell population
within the domain D(t) (outside the region D(t) we implicitly suppose this
flux is zero; see the second equation of (3), where this assumption is enforced
explicitly). By definition, this flux F (r, θ, t) controls the rate of loss or in-
crease of c(r, θ, t) through the boundary of D(t). The formula for the flux
is based on several assumptions, which rely on biological and medical infor-
mation, regarding the mechanism of epithelial cells in colonic crypts. More
precisely we split the flux into the sum of its radial and angular components.
Then, F (r, θ, t) := g(r, θ, t) r̂+ h(r, θ, t) θ̂, where r̂ and θ̂ are the unit vectors
of the polar coordinate system and g and h are defined by


g(r, θ, t) := −α(r)

∫ r
r1(θ,t)

ct(s, θ, t) ds+ γ(r)
∫ r2(θ,t)

r
ct(s, θ, t) ds+

+v0(r) c(r, θ, t)

h(r, θ, t) := −β(r)
∫ θ
θ1(r,t)

rct(r, ϕ, t) dϕ+ β(r)
∫ θ2(r,t)

θ
rct(r, ϕ, t) dϕ.

(1)

In the following part of this section we describe the definitions for g(r, θ, t)
and h(r, θ, t) used in (1). In this two-dimensional model, the flux F (r, θ, t),
in a given point (r, θ) within D(t), is then the number of cells crossing a unit
of area in unit of time. We assume this flux F (r, θ, t) depends on the cell
density variation (with respect to time) ct(r, θ, t). Thus, the four integrals
in (1) represent the diffusion flux contribution in two different directions (in
the radial direction, along the crypt height, outwards and inwards the crypt,
and in the angular direction, towards the sides). The remaining fifth term
stands for the convective flux contribution to cell transport. More precisely:

i) The term −α(r)
∫ r
r1(θ,t) ct(s, θ, t) ds represents the pressure exerted by the

cells laying in D(t), along the radial direction (with θ fixed) and that are
behind the point (r, θ). The function α is a decreasing weight function of
r. For the numerical tests we assume α(r) = 1

4

(
1− r

R

)
. This choice comes

from the observation that at the bottom of the crypt (where there are more
semi-differentiated cells) the cells move rapidly towards the crypt orifice, due
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to their high rate of differentiation, and, when they are ascending to the top,
they become fully-differentiated cells and start then to move slowly to the
top of the crypt (see [2]).

ii) The term γ(r)
∫ r2(θ,t)
r ct(s, θ, t) ds accounts for the fact that when the cells

approach the top of the crypt, a large number of cells try to go outside the
crypt simultaneously, so that the exit from the crypt is penalized. This term
is proportional to the number of cells, within D(t), that lay along the radial
direction (with θ fixed), but that are near the crypt orifice, at the top. In
our numerical simulations we assume γ(r) = r

8R .

iii) The remaining two integrals in (1) define the angular flux component.
They symbolize the pressure exerted by the cells, which are inside D(t), and
lay in the circumference with radius r, between the minimum and maximum
polar angles θ1(r, t) and θ2(r, t). For the tests we set the weight function
β(r) = r

16R .

iv) Finally, the term v0(r) c(r, θ, t) represents the transport of the cells with
the unknown cell density c(r, θ, t) by the flow v0(r). This flow is due to the
normal renewal cell mechanism inside the colonic crypt (that includes the
proliferation, of the semi-differentiated and fully-differentiated cells, and also
their apoptosis, see for instance [1, 2]). In this model we set v0(r) = 0.8 r

R
(based on [2], page 161 : “cells produced at the bottom of the crypt move
upwards with increasing velocity, reaching a rate of 0.7-1 positions per hour
at the top of the crypt”).

By definition the divergence of F is divF = gr + g
r + hθ

r , where here, and
always hereafter in the text, the lower subscripts ”r” and ”θ” mean partial
derivative with respect to the variables r and θ, respectively. Using the
definitions of g and h, then

divF (r, θ, t) = −
(
α(r) + γ(r) + 2β(r)

)
ct(r, θ, t)− E(r, θ, t)

−A(r)

∫ r

r1(θ,t)
ct(s, θ, t) ds−B(r)

∫ r2(θ,t)

r

ct(s, θ, t) ds,
(2)

where, with the definitions of the parameters v0, α and γ, A =
(
αr + α

r

)
=

R−2r
4Rr , B = −

(
γr + γ

r

)
= − 1

4R , and E = −cr v0 − c
(
v0r + v0

r

)
= −cr r 0.8

R −
c 1.6
R .
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2.3. The coupled convection-diffusion level set model. In this model
there are two unknows: the cell density c(r, θ, t) and the domain D(t) (i.e.,
the location and geometry of the epithelial cell set at time t, inside the
crypt). We use a convection-diffusion type equation for determining c(r, θ, t),
coupled with a level set function φ(r, θ, t) (see [6, 7]) for representing D(t),
its boundary Γ(t) and time evolution. More exactly, the coupled model can
be summarized by the following system of partial differential equations: find
c(r, θ, t) and φ(r, θ, t), such that

φt(r, θ, t) + v(r, θ, t) · ∇φ(r, θ, t) = 0 in BR × (0, T ),

ct(r, θ, t) + div
(
F (r, θ, t)H(φ(r, θ, t))

)
= G(r, θ, t) in BR × (0, T ),

φ(r, θ, 0) = φ0(r, θ) in BR,

c(r, θ, 0) = c0(r, θ) in BR,
(3)

such that c0 6= 0 in D(0), c0 = 0 in BR \D(0), and with

D(t) :=
{

(r, θ) ∈ BR : φ(r, θ, t) ≤ 0
}

and Γ(t) :=
{

(r, θ) ∈ BR : φ(r, θ, t) = 0
}
, (4)

for each time t ∈ [0, T ]. In (3), F is the flux defined by (1), H(.) is the
Heaviside function (H(z) = 1, if z ≤ 0, and H(z) = 0 if z < 0), v is the
velocity of the boundary Γ(t) of D(t) and the function G(r, θ, t) is a cell
proliferation rate. The velocity v depends on the flux and cell density, and
is defined in D(t) by

v(r, θ, t) =
F (r, θ, t)

c(r, θ, t)
, (5)

in a neighbourhood of Γ(t) by a continuous extension of (5), and zero else-
where in BR. For the cell proliferation rate G(r, θ, t) we consider two cases
(see the numerical simulations in section 4): either G = 0, which means there
is no growth of cells within the region D(t), and so there is conservation of
the total number of cells in D(t), or

G(r, θ, t) := H(φ(r, θ, t))
Nt(t)

|D(t)|
, with

{
Nt = λN − k N2

1+mN , in (0, T )

N(0) =
∫
BR
c0(r, θ) r dr dθ.

(6)

Here |D(t)| is the area of D(t), and N is the number of cells generated in
D(t). The latter is obtained by solving the ordinary differential equation in
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(6) with λ = 0.9, and k = m = 0.01 (see [1]). From the convection-diffusion
type equation (second equation in (3)) we get∫

BR

c(x, y, t) dx dy = N(t)−
∫ t

0

(∫
∂BR

F (x, y, t)H(φ(x, y, t) · n dx dy
)

(7)

where n is the outward unit normal vector to the boundary ∂BR of BR.
In this last equation, the left hand side represents the total number of cells
belonging to D(t) at time t. As expressed in the above equation, this number
is equal to the number of cells N(t), generated inside D(t) at the time interval
[0, t], minus the total number of epithelial cells of D(t) that are shed into the
colon’s lumen in the same time interval. The motivation for the definition of
N is based on [1]. According to [1], the ordinary differential equation in (6)
is a feedback model, with saturating feedback, which expresses, in our case,
that the rate at which the epithelial cell density increases is not only linear
(which corresponds to the term λN), but there is also a maximum per-capita
rate of cell density (represented by the term −k N2

1+mN ).
Finally, we emphasize that the convection-diffusion type equation can be

written, in D(t), as ct = Lct, where the operator L is defined by

Lct(r, θ, t) =
4

3

(
A(r)

∫ r

r1(θ,t)
ct(s, θ, t) ds

+B(r)

∫ r2(θ,t)

r

ct(s, θ, t) ds+ E(r, θ, t)

)
+ G(r, θ, t). (8)

3. Numerical procedure
In this section we describe the numerical procedure used for solving the

coupled model (3). It involves a finite difference discretisation, for both the
convection-diffusion and the level set equations. In addition, we are able to
resolve the convection-diffusion type equation with a fixed-point algorithm,
since the associated operator L (see (8)) becomes a contraction, as shown in
step 3 below. This is due to the chosen discretization scheme.

In order to start with the numerical procedure, we first define a mesh in
the spatial domain BR = (0, R) × (0, 2π), using the radial and angular step
sizes, dr and dθ, respectively. The step size of the time interval [t0, T ] is
denoted by dt. In the numerical simulations we set t0 = 0.
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The following steps characterize the algorithm used for the numerical sim-
ulations of D(t) and the cell density c(r, θ, t).

Step 1: Set the initial conditions at time t = t0: D(t0), Γ(t0) and
c(r, θ, t0) = c0(r, θ), where c0 is non null only in D(t0).

Step 2: Measure the area |D(t0)| of the epithelial cell set and the total
number of cells inside D(t0), at time t0, using respectively∫

BR

H(φ(r, θ, t0) rdr dθ and

∫
BR

c(r, θ, t0) r dr dθ.

Step 3: Determine ct in D(t0), at time t = t0, using a fixed point iter-
ation method for the modified operator L, also denoted by L. This
means use the iterative algorithm ck+1

t = Lckt , for k = 1, 2, . . .. In ef-
fect, since the time t = t0 is fixed, in the definition (8) of L, the terms
E(r, θ, t) and G(r, θ, t) are considered as data, because they do not
involve the unknown ct, only the given cell density c(r, θ, t0). Thus,
from (8), for any scalar functions v and w

|Lv − Lw| ≤
∣∣∣∣R− 2r

3Rr

∣∣∣∣ ∣∣∣∣∫ r

r1(θ,t)
(v − w)(s, θ, t) ds

∣∣∣∣+
+

1

3R

∣∣∣∣∣
∫ r2(θ,t)

r

(v − w)(s, θ, t) ds

∣∣∣∣∣
≤
(∣∣∣∣R− 2r

3Rr

∣∣∣∣ r +
1

3R
(R− r)

)
max
(r,θ)
|v − w| .

(9)

But

|R− 2r|+R− r
3R

=


2R−3r

3R , if 0 ≤ r ≤ R
2

r
3R , if R

2 ≤ r ≤ R

 ≤ 2

3
< 1.

Therefore the modified operator L is a contraction and then it exists
a unique fixed point, which is the solution ct, for fixed time t = t0, of
the equation ct = Lct.

Step 4: Compute F , using (1), and also

Fε(r, θ, t0) = F (r, θ, t0)Hε(φ(r, θ, t0))
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in all BR. Here Hε(z) = 1 − 1
2

(
1 + 2

z arctan z
ε

)
is a smooth regular-

ization of the Heaviside function H(z) (defined before in (3)), for a
small ε (when ε goes to zero Hε(z) converges to H(z), see [8]). Fε is
now a regularized extension of F , defined in BR. Then, compute the
regularized velocity vε as in (5), using Fε instead of F .

Step 5: Solve the level set equation, using the velocity vε of step 4, to
determine φ(t0 +dt) and afterwards Γ(t0 +dt) and D(t0 +dt). We use
an integration forward in time to approximate the level set equation,
with CFL (Courant, Friedrichs and Lewy) constrained time-steps and
a first order forward Euler scheme, with upwind.

Step 6: Update ct in BR \D(t) at time t0, using the new level set func-
tion φ(t0 + dt), obtained in the previous step 5. That is, ct(r, θ, t0) =
−div(Fε(r, θ, t0 + dt)) + G(r, θ, t0), with G(t0) defined by (6), and
Fε(r, θ, t0 + dt) = F (r, θ, t0 + dt)Hε(φ(r, θ, t0 + dt)).

Step 7: Update the cell density c in all BR, at time t0 + dt, using
c(t0 + dt) = c(t0) + ct(t0) dt, with ct(t0) defined in steps 3 and 6.

Step 8: Set t0 := t0 + dt and repeat the steps 2− 7.

Step 9: The method proceeds until we get φ(T ), D(T ), and c(r, θ, T )
at the final time T of the simulation.

4. Numerical simulations
In the human colon epithelium there are millions of crypts (approximately

10 millions according to [9]). In each crypt, the cells are aligned along the
crypt wall and the average number in humans is about: 120 cells in height
(from the bottom to the top of the crypt) and 60 cells in perimeter. The cell
size is about 6 − 10 microns, thus the size of a crypt is approximately 900
microns, from the closed bottom to the orifice, and 150 microns in perimeter.

We recall that the main goal in this paper is to track the evolution of an
epithelial cell set D(t), at any time t, starting with a given initial set D(0)
and until a final prescribed time T . This is done tracking the zero level set of
the function φ(r, θ, t), which solves, with the unknown cell density c(r, θ, t),
the system (3).

We show the results of two numerical simulations: the first corresponding
to a null cell proliferation rate, G = 0, and the second with G defined in (6).
In both cases we take R = 20, which means we consider 20 levels of height in
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the colonic crypt (thus one level is associated to 6 levels of the human colonic
crypt). We also set T = 20, symbolizing 20 hours of simulation. Moreover,
we consider at the initial time t = 0 an epithelial cell set D(0) equal to a
circle of radius 4, and for the corresponding cell density, we take c0(r, θ) = 1,
if (r, θ) ∈ D(0) and c0(r, θ) = 0, if (r, θ) ∈ BR \D(0) (see the first picture in
the left, in Figures 2 and 3).

The numerical procedure described in the previous section 3 has been im-
plemented using the software MATLABr [10] and the level set toolbox
[11]. The simulations were obtained in a computer with an Intel Q9550 CPU
(quad-core at 2.83GHz).

For the first simulation, whose results are shown in Figure 2, G is zero, and
the cell density is depicted with a color proportional to its intensity: light

Figure 2. Simulation of the evolution of an epithelial cell set
and its cell density, when no extra cell proliferation rate is added.
The three pictures show, from left to right, the simulations ob-
tained at time t = 0, 10, 20 respectively. The computer simula-
tion time is 4719 secs.

color for a lower cell density and dark color for a higher density (the color bar
ranges from white, corresponding to c = 0, to the darkest color, for which
c = 2). As expected the cell density in D(t) decreases as time t increases.
In fact, the cells start to spread rapidly, due to the diffusion and convection,
and at time t = 10, we can observe they concentrate more at the top of
D(10), because there is an higher cell density (c=1.7). This behavior is in
good agreement with the natural renewal of the cells that move rapidly to
the top of the crypt and when they are close to it they decrease their velocity
and so they concentrate themselves in the higher parts of the epithelial cell



TRACKING EPITHELIAL CELLS IN COLONIC CRYPTS 11

set, before being released out of the crypt. We note that at time t = 20
the cells of D(20) have reached the top of the crypt, and some of them have
been already shed into the colon lumen. In effect, we obtain, numerically,
that the total number of cells (given by

∫
BR
c(r, θ, t) r dr dθ) is 50.52, 50.52,

for times t = 0, t = 10 (i.e. when the set D(t) is still inside the crypt there
is conservation of the total number of cells of D(t)) and 34.33 for time 20.

Still in Figure 2, the curve, surrounding the epithelial cell set D(t), repre-
sents the approximation of the boundary Γ(t) :=

{
(r, θ) ∈ BR : φ(r, θ, t) =

0
}

. We note that almost all the ”colored cells”, represented by the light
color, are contained inside the approximated Γ(t), except a few that are left
at the bottom of D(t) (see in Figure 2, the left part of D(t) for the cases
t = 10, 20). The coupling of the two models permits to determine, almost
accurately, the evolution of the region D(t) and its boundary Γ(t) in its for-
warding move up to the top of the crypt. The approximation is however not
fully accurate because some cells with a very small density that lay at the
bottom of the D(t) are not catched inside the simulated D(t). This problem
can be improved by refining the finite difference mesh. Actually, for the pic-
tures displayed in Figure 2 we have considered a 60× 60 grid for the spatial
domain [0, 20] × [−π/4, π/4]. This is a rather coarse grid for detecting all
the cells at the bottom of D(t), but is quite satisfactory to catch the large
number of cells (which are well marked by the dark color in the figures) that
are at the top of the epithelial cell set D(t).

In the second simulation, see Figure 3, we use the same initial conditions,
for time t = 0, as in the previous case, but now we suppose there is a non zero
cell proliferation rate G. The Figure 3 shows the evolution of the epithelial
cell set D(t), for time t = 0, t = 10, and t = 20. The color-bar in this Figure
3 goes from 0 (marked by the white color) to 20 (marked by the dark color).
We remark that at time t = 10 the cell density increases significantly. In fact,
at this time, the total number of cells (given by

∫
BR
c(r, θ, t) r dr dθ) is equal

to 467.5, which might disrupt the normal balance of cells in the crypt. As in
the previous simulation (without source term), the cells tend to accumulate
at the top (rightest part of D(t)). Moreover we observe that the epithelial
cell set D(t) reaches the top of the crypt before t = 20 with a slightly less
growth in the angular and radial directions, with respect the previous no-
source case. This can be explained because the cells are now more equally
distributed and more compacted with respect the first numerical simulation.
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Figure 3. Simulation of the evolution of an epithelial cell set
and its cell density, when an extra cell proliferation rate is added.
The three pictures show, from left to right, the simulations ob-
tained at time t = 0, 10, 20 respectively. The computer simula-
tion time is 9915 secs.

Finally, we note that in the two cases examined we are able to simulate
20 hours of a biological evolution in less than 2 and 3 hours of computing
simulation, respectively, in the first and in the second simulation considered.

5. Conclusion and future work
In this paper we have proposed a new coupled model to represent the time

evolution of an epithelial cell set in a colonic crypt. The numerical results
shown are quite satisfactory for tracking the contour of the epithelial cell set,
as well as, the evolution of its cell density. This model is able to reproduce
some particular aspects of the behavior of cells in colonic crypts, and to
reveal processes/mechanisms that would be impossible to reach with real-life
experiments.

One drawback of the model, observed in the numerical simulations, is that
for a rather coarse mesh, it is not possible to detect a small number of
cells that are always located at the bottom of the epithelial cell set. We
think that this problem could be solved using very fine and adaptive spatial
grids. However this will involve a larger computer simulation time. As
future work we intend to improve the efficiency and speed of our numerical
codes in order to better approximate the epithelial cell set using a smaller
computing simulation time. Moreover, another mathematical model, such as
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a pure diffusive-convective model, is under study in order to better track the
evolution of the epithelial cell set.

Extensions of the present work, interesting for medical doctors, focus on
numerical simulations able to predicting the appearance of aberrant crypt foci
(see [12]) and a posteriori colorectal polyps. This amounts to introducing
appropriate changes in the definition and values used for the parameters
involved in the coupled model. In particular we intend to apply multiscale
methods to account for the several events that can occur in colonic crypts,
at the very different cellular and tissue levels.
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