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Abstract: We prove a series of results concerning the emptiness and non-emptiness
of a certain set of Sobolev functions related to the well-posedness of a two-phase
minimization problem, involving both the p(x)-norm and the infinity norm. The
results, although interesting in their own right, hold the promise of a wider applica-
bility since they can be relevant in the context of other problems where minimization
of the p-energy in a part of the domain is coupled with the more local minimization
of the L∞-norm on another region.
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1. Introduction
Let D and Ω, D ⊂ Ω, be bounded and convex domains in RN , with C1-

smooth boundaries, and consider the elliptic problem{
−div |∇u(x)|p(x)−2∇u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ ∂Ω,
(1)

where the boundary data f is Lipschitz and the variable exponent p(x) is a
continuously differentiable bounded function in Ω \D that satisfies the two
conditions

p− := inf
x∈Ω

p(x) > N (2)

and

p(x) = +∞, x ∈ D. (3)

The problem was recently studied in [5], where the existence of a suit-
able solution is obtained, together with its characterization as the unique

Received January 22, 2010.
The authors thank Juan J. Manfredi for an enlightening conversation on some aspects of this pa-

per. Research partially supported by CMUC/FCT and FCT project UTAustin/MAT/0035/2008.

1



2 J.M. URBANO AND D.VOROTNIKOV

minimizer of the variational problem

min
u∈S

∫
Ω\D

|∇u|p(x)

p(x)
dx

in the admissible set

S =
{
u ∈ W 1,p−(Ω) : u|Ω\D ∈ W 1,p(x)(Ω \D), ‖∇u‖L∞(D) ≤ 1

and u|∂Ω = f
}
, (4)

which is, in addition, ∞-harmonic within D, i.e., a viscosity solution of
−∆∞u = 0, where

∆∞u :=
N∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj

is the infinity Laplacian. This nonlinear and strongly degenerate elliptic
PDE seems to be ubiquitous and has recently been connected to yet another
application, namely the probabilistic description of certain tug-of-war games
[7]. Questions related to the behavior of p-harmonic functions in the limit as
p→∞ have been widely studied after the pioneering findings of [2].

A crucial role in [5], where the limit problem the solution solves (in the
viscosity sense) is also identified, is played by the set S since the main results
depend critically on whether it is non-empty or not. Thus, the well-posedness
of this two-phase minimization problem is directly related to understanding
when exactly that happens. It is obvious that the non-emptiness of S will
depend on the geometry of the problem and on the boundary data f . For
example, if ∂Ω ∩D = ∅, S is always non-empty, an element in it being very
easy to obtain extending a constant function in D. When ∂Ω ∩ D 6= ∅,
the condition that the Lipschitz constant of f |∂Ω∩D is less than or equal to
one is necessary but, in general, it is not sufficient for the non-emptiness
of S (cf. section 4 in [5], where it is explained by counter-example why
the obvious approach does not necessarily work; our Theorem 4.1 provides
explicit counter-examples). As it happens, what at first was overlooked as a
straightforward matter became an interesting challenge.

In this note we shed further light into the problem, identifying conditions
that guarantee the non-emptiness (and the emptiness) of the set S. A char-
acterization, in its full generality, remains open. We feel the results hold the
promise of a wider applicability although they are interesting in their own



ON THE WELL-POSEDNESS OF A TWO-PHASE MINIMIZATION PROBLEM 3

right. Indeed, similar questions are bound to arise in relation to other prob-
lems where minimization of the p-energy in a part of the domain is coupled
with the more local minimization of the L∞-norm on another region. Of
particular interest seem to be certain relations, like (10) below, between the
variable exponent p(·) and some geometric properties related to the way the
boundaries of Ω and D interact.

The paper is organized as follows: section 2 collects the notation used
throughout the paper; section 3 identifies conditions that guarantee the non-
emptiness of S; section 4 treats the emptiness case; finally, in section 5, we
present several examples illustrative of the main results. We suggest the
reader starts out with reading the examples in the last section of the paper.
Although that is where they belong in the context of a consistently written
text, mainly for notational and definiteness reasons, it can be a significant
help in the understanding of the proofs to have prior contact with concrete
examples of the objects involved. Another source of simplification is to con-
sider, on first reading, that the exponent p(·) is constant and sufficiently
large; in fact, as is clear from the proofs, the general case is reduced essen-
tially to this one. We opted to present the proofs in the general setting to
avoid an unnecessary duplication of arguments.

2. Notation
In this section, we collect a set of notation that will be used in the sequel.

Since the matter is quite technical, we thought it would help the reader to
resort to this section whenever notational doubts arise.

For N > 1, let RN
+ be the half-space consisting of the vectors with positive

N -th coordinate and let RN−1
∗ be its boundary.

We also define the following sets (and assume all are non-empty to avoid
trivialities):

Ω∗ = Ω\D

Q := ∂D ∩ ∂Ω

Q∗ = Q ∩ ∂Ω∗
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Wε :=
⋃
x∈Q

Bε(x)

where Bε(x) is the open ball of radius ε, centered at x.
For z ∈ RN , define the set

Uz(Q) =
{
x ∈ RN : |x− z| ≤ |x− y|, ∀y ∈ Q

}
of the points which are closer or at the same distance to z than to the points
of Q.

For z ∈ RN\D, let d(z) be the point of ∂D which is closest to z; it is unique
due to the convexity of D.

For z ∈ Q∗, we define

γ(z) := sup{γ ∈ [0, 1] : ∃C > 0 and an open neighbourhood W (z) of z,

|w − z| ≤ C|w − d(w)|γ, ∀w ∈ ∂Ω ∩W (z) ∩ Uz(Q)} (5)

and

γ(z) := inf{γ ∈ [0, 1] : ∃C > 0 and an open neighbourhood W (z) of z,

|w − z| ≥ C|w − d(w)|γ, ∀w ∈ ∂Ω ∩W (z) ∩ Uz(Q)}. (6)

Let f be a fixed Lipschitz scalar function defined on ∂Ω. For any subset
K of RN , let

L(K) := min {L : |f(x)− f(y)| ≤ L|x− y|, ∀x, y ∈ K ∩ ∂Ω} .
It is easy to see that the minimum always exists. We say that

(A) f is of type A if L(W ) ≤ 1 for some open neighborhood W of Q;

(B) f is of type B if L(Q) ≤ 1, f is not of type A, and

∀ε > 0,∃δ > 0 : |f(x)− f(q)| ≤ (1 + ε)|x− q|, ∀q ∈ Q, ∀x ∈ ∂Ω ∩Wδ;

(C) f is of type C if L(Q) ≤ 1, and

∃ε > 0 : ∀δ > 0,∃q ∈ Q, ∃x ∈ ∂Ω ∩Wδ : |f(x)− f(q)| > (1 + ε)|x− q|.

Finally, let SL be the subset of S consisting of all functions which are
Lipschitz in Ω.

The symbol c may stand for a generic positive constant that can take
different values in different lines.
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3. Non-emptiness of S
We start with a result that holds for D and Ω not necessarily of class C1.

Theorem 3.1. Assume there are an open neighborhood W of Q and mutually
disjoint sets W1 and W2 such that W ∩ ∂Ω = W1 ∪W2, Q ⊂ W1, L(W1) ≤ 1
and

∃C > 0 : min
z∈Q
|x− z| ≤ C|x− y|, ∀x ∈ W2,∀y ∈ ∂D ∩W.

Then SL (and, consequently, S) is non-empty.

Proof : Let f1 be a minimal Lipschitz extension [6, 8, 3] (see also [1]) of
f |W1

to Ω. Then its Lipschitz constant (which coincides with the L∞-norm
of its gradient) does not exceed one. It suffices to prove that the function
f2 : ∂Ω ∪D → R defined by

f2(x) =


f(x) if x ∈ ∂Ω

f1(x) if x ∈ D
is Lipschitz, for in this case its Lipschitz extension to Ω is an element of SL.
Let x ∈ ∂Ω, y ∈ D. We have to check whether

|f2(x)− f2(y)| ≤ c|x− y|, (7)

for some constant c, independent of x, y. Without loss of generality, we
assume y ∈ ∂D (if not, we can replace it by the point of intersection of ∂D
with the segment [x, y]) and x, y ∈ W (a loss of the Lipschitz property of f2
can only happen near Q). If x ∈ W1, then (7) is clear (since f1 is Lipschitz),
whereas if x ∈ W2, then for z ∈ Q which has minimal (in Q) distance to x,
one has

|f2(x)− f2(y)| ≤ |f2(x)− f2(z)|+ |f2(z)− f2(y)|
= |f(x)− f(z)|+ |f1(z)− f1(y)|
≤ c(|x− z|+ |z − y|)
≤ c(2|x− z|+ |x− y|)
≤ (2C + 1)c|x− y|.

Remark 3.1. Observe that W2 is always empty when D and Ω are of class
C1, so in this case W1 = W . If D is not C1-smooth, W1 can even be Q (see
Section 5).
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We now identify several situations that guarantee that S is non-empty.

Theorem 3.2. i) If f is of type A, then SL 6= ∅ (and, hence, S 6= ∅).

ii) Let f be of type B. Assume that f may be decomposed as f = fA + f0,
where fA is of type A. Assume further that, for any ε > 0 and any x ∈
(∂Ω\Q) ∩Wε, there exist z = z(x) ∈ Q∗, γ = γ(x) > 0, and two constants
c1, c2 > 0, that do not depend on x, such that

|x− z| ≤ c1|x− d(x)|γ (8)

and
|f0(x)| ≤ c2|x− z|

1
γ . (9)

Then SL 6= ∅.
iii) Let f be of type B or C and assume the set Q∗ is finite. If

p(z)(1− γ(z)) < 1 + (N − 1)γ(z), ∀ z ∈ Q∗ (10)

then S 6= ∅.

Remark 3.2. Since p(z) is greater than N , condition (10) can only be ful-
filled if γ(z) > N−1

2N−1 .

Proof : i) This is a particular case of Theorem 3.1 (cf. the remark that follows
its proof).

ii) Due to part i), we may assume that fA is defined in Ω and belongs to
SL. Consider the function f2 : ∂Ω ∪D → R defined by

f2(x) =


f(x) if x ∈ ∂Ω

fA(x) if x ∈ D.
As in the proof of Theorem 3.1, it suffices to prove that this function is
Lipschitz; moreover, it is enough to check (7) for x ∈ ∂Ω ∩ Wε and y ∈
∂D ∩Wε. If x is from Q, then (7) holds trivially, for fA is Lipschitz. If not,
then

|f2(x)− f2(y)| = |f(x)− fA(y)|
≤ |f0(x)|+ |fA(x)− fA(y)|
≤ c |x− d(x)|+ c |x− y|
≤ c |x− y| ,

due to (8) and (9).
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iii) Let f1 be a minimal Lipschitz extension of f |Q to Ω. Then, in particular,
‖∇f1‖L∞(D) ≤ 1.

We will construct a function f2 which is defined on a small neighbourhood
Z of Q, coincides with f1 and f , respectively, on D ∩ Z and ∂Ω ∩ Z, and
belongs to W 1,p(x)(Z ∩Ω∗) (see [4] for the definition of the variable exponent
Sobolev spaces).

For any z ∈ Q∗, denote Yz = Ω∗ ∩ Zz, where Zz is a fixed and sufficiently
small neighbourhood of z. Let H be the tangent hyperspace to ∂Ω at the
point z. For any s ∈ Yz, let l(s) be the point of H which is closest to s
(obviously unique), and let m(s) and k(s) be, respectively, the intersections
of ∂D and ∂Ω with the straight line (s, l(s)). Finally, we define

f2(s) =
|s− k(s)|f1(m(s)) + |s−m(s)|f(k(s))

|k(s)−m(s)|
(11)

as a convex combination.
The key point of the proof is to check if f2 ∈ W 1,p(x)(Yz). We may suppose,

w.l.o.g., that z = 0, H = RN−1
∗ and Ω ⊂ RN

+ . Note that if we add the same
Lipschitz function to f1 and f , then, by (11), it would also be added to f2,
and this does not change the W 1,p(x)-regularity of f2. Therefore we can also
assume that f1 ≡ 0 (if not, we may subtract f1 from f and f1).

Assume first that N = 2. Each point of R2 can be considered as a vector
(x, y). The sets ∂D and ∂Ω are (locally, near z) graphs of C1-smooth func-
tions φ(x) and ψ(x), respectively, with φ′(0) = ψ′(0) = 0 and φ(x) ≥ ψ(x).
Then we rewrite (11) as

f2(x, y) =
(φ(x)− y)f(k(x, y))

φ(x)− ψ(x)
, (x, y) ∈ Yz. (12)

Observe that k(x, y) = (x, ψ(x)) does not depend on y and is a C1−function
of x. Since f is Lipschitz, we also have

|f2(x, y)| ≤ |f(k(x, y))| ≤ c|k(x, y)| ≤ c|x|, |f ′x(k(x, y))| ≤ c. (13)

Since z ∈ ∂Ω∗, the set Q ∩ Zz is either a graph of ψ, on an interval of the
form [0, a) or (−a, 0] (a > 0), or coincides with {z} = {(0, 0)}. In the first
two cases, both Yz and Uz(Q) lie, respectively, in the left or right half-planes.
Moreover, Y z ⊂ Uz(Q). In each of these cases, for any γ < γ(z), by (5) with
w = k(x, y), we have

φ(x)− ψ(x) = |k(x, y)−m(x, y)| ≥ |k(x, y)− d(k(x, y))|
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≥ c|k(x, y)|
1
γ ≥ c|x|

1
γ , (x, y) ∈ Yz. (14)

Fix some such γ sufficiently close to γ(z). By (10), there exists p1 > p(z)
such that

p1(1− γ) < 1 + γ. (15)

Passing to a smaller neighbourhood Zz if necessary, we may assume that
p(x, y) < p1. Thus, it suffices to prove f2 ∈ W 1,p1(Yz).

Taking into account (12) and (13), we get the bounds∣∣∣∣∂f2

∂x
(x, y)

∣∣∣∣ ≤ c
|x|

φ(x)− ψ(x)
(16)

and ∣∣∣∣∂f2

∂y
(x, y)

∣∣∣∣ ≤ c
|x|

φ(x)− ψ(x)
. (17)

Thus, f2 ∈ W 1,p1(Yz) provided

a∫
−a

φ(x)∫
ψ(x)

[
|x|

φ(x)− ψ(x)

]p1

dy dx <∞, (18)

for some small a > 0 (here we assume for definiteness that Q∩Zz = {z}; the
other cases can be treated analogously). But (18) holds since, due to (14),

φ(x)∫
ψ(x)

[
|x|

φ(x)− ψ(x)

]p1

dy =
|x|p1

(φ(x)− ψ(x))p1−1 ≤ c|x|p1+ 1
γ−

p1
γ

and the exponent p1 + 1
γ −

p1

γ is greater than −1 due to (15).

Let now N > 2. Each element of RN may be identified with a vector
(x, y), where x ∈ RN−1

∗ and y ∈ R. The sets ∂D and ∂Ω near z are now
graphs of C1-smooth functions φ(x) and ψ(x) defined for small x ∈ RN−1.
The proof of the statement that f2 ∈ W 1,p1(Yz) is, essentially, analogous to
the case N = 2. Let us briefly describe the differences with respect to the
two-dimensional proof. For N > 2, ∂Ω is a manifold of dimension greater
than one. Therefore Q is finite (if it is infinite, its boundary in the topology
of ∂Ω is infinite as well, but this boundary should belong to Q∗, which is
finite). Then the set Q ∩ Zz coincides with {z}, and Y z ⊂ Uz(Q), so (5)
again implies (14). Furthermore, (15) becomes

p1(1− γ) < 1 + (N − 1)γ. (19)
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Finally, (18) is replaced with

∫
O

φ(x)∫
ψ(x)

[
|x|

φ(x)− ψ(x)

]p1

dy dx ≤ c

∫
O

|x|p1+ 1
γ−

p1
γ dx <∞,

where O is a small neighbourhood of the origin in RN−1
∗ , and this holds since

p1 +
1

γ
− p1

γ
> 1−N

due to (19).
For every z ∈ Q\Q∗, define Zz as some small neighbourhood of z which

has no intersection with Ω∗ and let Yz = ∅ (remember that the sets Zz and
Yz are already defined for z ∈ Q∗). Now the sets Zz, z ∈ Q, form an open
covering of Q. Due to the compactness of Q, it can be covered by a finite
number of sets Zz, and, w.l.o.g., Z belongs to the union of this finite number
of Zz. Then Z ∩Ω∗ belongs to the union of the corresponding sets Yz. Thus,
f2 ∈ W 1,p(x)(Z ∩ Ω∗).

Define the function f3 : Z ∪D∪∂Ω→ R as f2 on Z, f1 on D and f on ∂Ω.
The function f3 is Lipschitz on (Z ∪D ∪ ∂Ω)\WQ, where WQ ⊂ Z is a small
neighbourhood of Q∗. Then we can continue it from its range of definition
to a function f4 defined on Ω and which is Lipschitz on Ω\WQ. But, since
the function f4 is continuous in Ω, and belongs to W 1,p(x)(WQ ∩ Ω∗) and
W 1,∞(WQ ∩D), one has f4 ∈ W 1,p−(WQ ∩ Ω). Thus, f4 ∈ S.

4. Emptiness of S
This section deals with sufficient conditions for S to be empty. We stress

that none of these conditions is the negation of the conditions of the previous
section so finding a necessary and sufficient condition for the non-emptiness
of S is still an open problem.

Theorem 4.1. i) If f is of type C, then SL = ∅.

ii) Let the set Q∗ be finite. If

p(z)(1− γ(z)) > 1 + (N − 1)γ(z), (20)

for some z ∈ Q∗, then there exists a function f of type C so that S = ∅.
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iii) If

p(z)(1− γ(z)) > N, (21)

for some z ∈ Q∗, then there exists a function f of type C so that S = ∅.
iv) If f is not of types A,B and C, then S = ∅.

Remark 4.1. Since p(z) is greater than N , condition (20) always holds
provided γ(z) ≤ N−1

2N−1 .

Proof : i) Let ε > 0 be such that for all δ > 0 there exist qδ ∈ Q and
xδ ∈ ∂Ω ∩Wδ, with

|f(xδ)− f(qδ)| > (1 + ε)|xδ − qδ|.
Let yδ = d(xδ) and sδ be any of the points of Q which are closest to xδ. Simple
geometrical analysis of the triangle qδxδyδ shows that |yδ − qδ| ≤ |xδ − qδ|
(since the largest side of any triangle opposes the largest angle). Further
analysis of the geometry yields that the value of the angle xδsδyδ vanishes as
δ → 0, and thus

lim
δ→0

|xδ − yδ|
|xδ − sδ|

= 0.

If there exists an element f1 ∈ SL, then f1 is Lipschitz, its Lipschitz con-
stant is not greater than one on ∂D and it coincides with f on ∂Ω. But, on
the one hand,

|f1(xδ)− f1(yδ)|
|xδ − qδ|

≤ c
|xδ − yδ|
|xδ − sδ|

→ 0 as δ → 0,

and, on the other hand,

|f1(xδ)− f1(yδ)|
|xδ − qδ|

≥ |f1(xδ)− f1(qδ)|
|xδ − qδ|

− |f1(yδ)− f1(qδ)|
|xδ − qδ|

≥ (1 + ε)− |yδ − qδ|
|xδ − qδ|

≥ ε,

so we arrive at a contradiction.

ii) Let Yz = Ω∗ ∩ Zz, where Zz is some fixed and sufficiently small neigh-
bourhood of the point z for which (20) holds. Let f(w) = 2|w− z|, w ∈ ∂Ω.
It suffices to prove that, for any f0 ∈ S, f0 6∈ W 1,p(x)(Yz). Let f1 be a
minimal Lipschitz extension of f0|D to Ω. Then it is enough to check that
f2 = f0 − f1 6∈ W 1,p(x)(Yz).
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Note that f2 ≡ 0 on D and

|f2(w)| ≥ |f(w)− f(z)| − |f1(w)− f1(z)|
≥ 2|w − z| − |w − z|
= |w − z|, w ∈ ∂Ω. (22)

The proof follows closely that of Theorem 3.2 - iii) and the notation is the
same. Without loss of generality, we can suppose that z = 0, H = RN−1

∗
and Ω ⊂ RN

+ . Let N = 2 (the generalization to higher dimensions is again
straightforward). We are given the functions φ and ψ and coordinates (x, y).
Putting w = k(x, y) in (6), we get

φ(x)− ψ(x) = |k(x, y)−m(x, y)|
≤ c|k(x, y)− d(k(x, y))|
≤ c|k(x, y)|

1
γ

≤ c|x|
1
γ , (x, y) ∈ Yz,

for any γ > γ(z). Fix some such γ sufficiently close to γ(z). By (20), there
exists p1 < p(z) such that

p1(1− γ) > 1 + γ. (23)

Without loss of generality, p(x, y) > p1. Thus, it suffices to prove that
f2 6∈ W 1,p1(Yz).

Assume the contrary. Then, in particular, for some small a > 0,

a∫
−a

φ(x)∫
ψ(x)

∣∣∣∣∂f2

∂y
(x, y)

∣∣∣∣p1

dy dx ≤ ∞.

As before, we assume for definiteness that Q ∩ Zz = {z}. A variational
argument shows that the minimum of the functional

a∫
−a

φ(x)∫
ψ(x)

∣∣∣∣∂g∂y (x, y)

∣∣∣∣p1

dy dx (24)

for

g ∈ W 1,p1(Yz), g|∂Ω∪∂D = f2|∂Ω∪∂D (25)
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is achieved at a g that solves the PDE

∂

∂y

(∣∣∣∣∂g∂y
∣∣∣∣p1−2

∂g

∂y

)
= 0.

Clearly, such a g should be linear in y, so

g(x, y) =
(φ(x)− y)f2(k(x, y))

φ(x)− ψ(x)

due to (25). But this g cannot minimize (24). Indeed, due to (22),

φ(x)∫
ψ(x)

∣∣∣∣∂g∂y (x, y)

∣∣∣∣p1

dy ≥
φ(x)∫

ψ(x)

[
|k(x, y)|

φ(x)− ψ(x)

]p1

dy

≥ |x|p1

(φ(x)− ψ(x))p1−1

≥ c|x|p1+ 1
γ−

p1
γ ;

as the exponent p1 + 1
γ −

p1

γ is less than −1 by (23), the value of functional

(24) on g is infinite.

iii) Let Yz = Ω∗ ∩Zz, where Zz is a fixed and sufficiently small neighbour-
hood of the point z for which (21) holds. Let

f(w) = 2 min
v∈Q
|w − v|, w ∈ ∂Ω.

Assume that there exists f0 ∈ S. Let f1 be a minimal Lipschitz extension of
f0|D to Ω, and f2 = f0 − f1. Observe that f2 ≡ 0 on D and

|f2(w)| ≥ |f(w)| − |f1(w)− f1(z)|
≥ 2|w − z| − |w − z|
= |w − z|, w ∈ ∂Ω ∩ Uz(Q). (26)

There exists a neighbourhood of z, Cz ⊂ RN , with a C1-smooth boundary,
such that

Zz ∩ Ω ⊂ Cz ⊂ Ω.

Fix some γ > γ(z) sufficiently close to γ(z). By (21), there exists p1 < p(z)
such that

p1(1− γ) > N.
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We may suppose that p(x) > p1, x ∈ Cz. Then, f2 ∈ W 1,p1(Cz). By Sobolev
embedding, f2 belongs to the Hölder class Cβ(Cz), with β = 1− N

p1
> γ.

For any small neighbourhood W (z) of z there exists w ∈ ∂Ω∩W (z)∩Uz(Q)
such that

|w − z| > |w − d(w)|γ.
By (26),

|f2(w)| > |w − d(w)|γ.
On the other hand,

|f2(w)| = |f2(w)− f2(d(w))| ≤ c|w − d(w)|β,

and thus

|w − d(w)|γ−β ≤ c;

so the distance between w and d(w) is bounded from below, which contradicts
the fact that W (z) can be arbitrarily small.

iv) If, on the contrary, S 6= ∅, then L(Q) ≤ 1 (cf. [5]). Therefore, f has to
be of one of the types A, B or C.

5. Examples
We finally gather a few examples that illustrate the findings of the previous

sections and shed further light into its intricate reasonings.

Example 5.1. Let Ω be the unit disc {(x, y) ∈ R2 : x2 + y2 < 1}, and let

D =

{
(x, y) ∈ R2 :

(
x− 1

2

)2

+ y2 <
1

4

}
.

Then Q = Q∗ = {(1, 0)} and L(Q) = 0 for any f . Consider the particular
choice

f(x, y) = α arcsin |y|, (x, y) ∈ ∂Ω (α > 0).

Thus, for α < 1, this function is of type A, since

|f(x1, y1)− f(x2, y2)| = α |arcsin |y1| − arcsin |y2||
≤ ||y1| − |y2||
≤ |(x1, y1)− (x2, y2)|,

for small y1 and y2 (because arcsin′(0) = 1).
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For α = 1, f is of type B. Indeed, it is not of type A since arcsin |y| > |(x, y)|
for (x, y) ∈ ∂Ω, y 6= 0. Moreover, for any ε > 0, arcsin |y| ≤ (1 + ε)|y| ≤
(1+ε)|(x, y)|, for small y. Furthermore, it can be decomposed as f = fA+f0,
fA = f − f 2, f0 = f 2. The derivative of arcsin t− arcsin2 t is

1− 2 arcsin t√
1− t2

and, since it does not exceed one near zero, fA is of type A. Conditions (8)
and (9) hold with γ = 1

2 . The second one is clear, and the first follows from
a more general reasoning (cf. the next example), although it can also be
checked directly. Thus, Theorem 3.2 - ii) is applicable in this case.

For α > 1, f is of type C (we can take ε = α − 1). But (cf. the next
example)

γ(1, 0) = γ(1, 0) =
1

2
.

Thus, (10) holds if p(1, 0) < 3, and (20) is true for p(1, 0) > 3.
In conclusion, we have:

• SL 6= ∅ for α ≤ 1;
• S 6= ∅ but SL = ∅ for p(1, 0) < 3 and α > 1;
• S is empty when p(1, 0) > 3 and α > 1.

The proof of the last statement follows closely that of Theorem 4.1 - ii), with
the inequality

|f2(x, y)| ≥ |f(x, y)| − |f1(x, y)− f1(1, 0)|
≥ α|(x− 1, y)| − |(x− 1, y)|
= (α− 1)|(x, y)− (1, 0)|

replacing (22).

Example 5.2. Now we consider a more general example. Assume that Q
consists of only one point z. Let H be the tangent hyperspace to ∂Ω at the
point z. We may assume, w.l.o.g., that z = 0, H = RN−1

∗ and Ω ⊂ RN
+ . Each

element of RN may be identified with a vector (x, y), where x ∈ RN−1
∗ and

y ∈ R. Assume that ∂D and ∂Ω are C2-smooth. Then the sets ∂D and ∂Ω
near z are graphs of certain C2-smooth functions φ(x) and ψ(x) defined for
small x ∈ RN−1, with φ(x) ≥ ψ(x). Assume that the contact of ∂D and ∂Ω
is simple in the sense that the quadratic form (φ− ψ)′′(0) is non-degenerate
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(and thus positive-definite). Then

γ(z) = γ(z) =
1

2
.

Indeed, for any w = (x, ψ(x)) ∈ ∂Ω, we have

|w|2 ≤ c|x|2 ≤ c(φ(x)− ψ(x))

≤ c|w − d(w)| ≤ c(φ(x)− ψ(x))

≤ c|x|2 ≤ c|w|2.

Therefore, by Theorem 3.2 - i) and iii), S is always non-empty for p(z) < N+1
(f is of type A,B or C since L(Q) = 0). By Theorem 4.1 - ii), S is empty for
some f of type C when p(z) > N + 1.

Example 5.3. We remain in the framework of the previous example, but
now the sets ∂D and ∂Ω, and the functions φ(x) and ψ(x) may be only C1-
smooth (and we do not know if the contact is simple). Assume that there
exist α > 1 and positive constants C1 and C2 such that

C1|x|α ≤ φ(x)− ψ(x) ≤ C2|x|α. (27)

Then

γ(z) = γ(z) =
1

α
.

In fact, for any w = (x, ψ(x)) ∈ ∂Ω, we have

|w|α ≤ c|x|α ≤ c(φ(x)− ψ(x))

≤ c|w − d(w)| ≤ c(φ(x)− ψ(x))

≤ c|x|α ≤ c|w|α.

Thus, the value of p(z) determines whether Theorem 3.2 - iii) or Theorem
4.1 - ii) is applicable.

Example 5.4. A limiting case of the previous example arises when α = 1 in
(27). In this case, ∂D and ∂Ω can only be topological manifolds (for φ(x)−
ψ(x) cannot be differentiable at zero). We fix some small neighbourhood W
of z, and put W1 = Q = {z}, W2 = (∂Ω ∩W )\Q. Then L(W1) = 0 and

|w| ≤ c|x| ≤ c(φ(x)− ψ(x))

≤ c|w − d(w)|
≤ c|w − v|,
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for all w = (x, ψ(x)) ∈ ∂Ω ∩W and v = (x, φ(x)) ∈ ∂D ∩W . We can apply
Theorem 3.1 to conclude that SL 6= ∅, for any f and p.

Example 5.5. A related smooth example, which can also be considered a
limiting case of Example 5.3, is the following:

φ(x)− ψ(x) =
|x|

ln(|x|ζ)
, ζ < 0.

For all γ < 1 and w = (x, ψ(x)), we have

|w| ≤ c|x| ≤ c
|x|γ

(ln(|x|ζ))γ
= c(φ(x)− ψ(x))γ

≤ c|w − d(w)|γ.
Hence, γ(z) = 1, and (10) is always valid. Therefore S 6= ∅, for every f and
p.
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