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Abstract: We prove the semiclassical character of some sequences of orthogo-
nal polynomials, say {Pn}, {Rn}, related through relations of the following type:
∑N

k=0 ζn,kR
(α)
n+i−k =

∑M
k=0 ξn,kPn+j−k, where i, j,M,N,α are non-negative integers,

ζn,k, ξn,k are complex numbers, and R(α) denotes the α-derivative of R. The case
M = j = 0, α = 2, i = 2 is studied for a pair of orthogonal polynomials whose cor-
responding orthogonality measures are coherent. The relation

∑s
k=0 ξn,kPn+s−k =

∑s+2
k=0 ζn,kP

′

n+s+1−k is shown to give a characterization for the semiclassical charac-
ter of {Pn}.
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1. Introduction

This paper is devoted to the study of sequences of orthogonal polynomials
on the real line, say {Rn}, {Pn}, satisfying differential-difference equations
of the following type:

N
∑

k=0

ζn,kR
(α)
n+i−k =

M
∑

k=0

ξn,kPn+j−k , (1)

where i, j,M,N, α are non-negative integers, ζn,k, ξn,k are complex numbers,
and R(α) denotes the α-derivative of R. These type of relations are members
of the well-known structure relations for orthogonal polynomials.

The structure relations appear in a wide range of topics in the literature of
orthogonal polynomials. For example, they appear in the study of coherent
pairs of measures, arising within the theory of Sobolev inner products [11,
12] (see also [3], where a variational isoperimetric problem is studied in the
context of the Sobolev orthogonality). Further, the structure relations have
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been used in the study of orthogonal polynomials associated with exponential
weights, for example, in the study of the asymptotic, of estimates for the
orthogonal polynomials, and second-order differential equations satisfied by
these polynomials (see [4, 5, 9] and the references therein).

A theme of research in the theory of orthogonal polynomials is the char-
acterization of orthogonal polynomial sequences satisfying a given structure
relation. In this issue we refer the reader to [1, 2], [4]-[8], [16]-[19] (see
also [13], one of the first papers formulating inverse problems for orthogonal
polynomials).

In the present paper we are interested in the analysis of the semiclassical
character of orthogonal polynomial sequences satisfying structure relations
of the above referred type, which will be specified later in the text. Before
proceeding to the results of the present paper let us give a brief account on
some of the known results in this topic.

We begin by mentioning [4, 5], where it was given a characterization for
the orthogonal polynomials related through structure relations

φR(α)
n =

n−α+s
∑

k=n−α−t

ξn,kPk , n = 0, 1, . . . , (2)

where φ is a fixed polynomial, ξn,k are real numbers, and s, t are non-negative
integers. In [4] (see also [5]), the measures of orthogonality for pairs of
orthogonal polynomial sequences related through (2) are given explicitly,
where it turns out its semiclassical character, that is, the log-derivative of
the absolutely continuous parts is a rational function. The analogue result
in the setting of the theory of distributions was established in [7].

Note that the structure relation (2) with α = 1 and Pn = Rn, known as
first structure relation for semiclassical orthogonal polynomial, generalizes
the well-known first structure relation with deg(φ) ≤ 2, t = 0, s ≤ 2, that
characterizes the classical orthogonal polynomials (that is, semiclassical of
class zero) [1, 2, 8, 17, 18].

Another well-known characterization in the theory of orthogonal polyno-
mials is the one of the classical orthogonal polynomials, {Pn}, in terms of
the second structure relation

Pn(x) =

2
∑

k=0

ξn,kP
[1]
n−k(x) , n ≥ 2 , (3)
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where P
[1]
n = P ′

n+1/(n+ 1), n ≥ 0 (see [8, 18]).
Recently, in [16], it was formulated the structure relation

2σ
∑

k=0

ξn,kPn+σ−k(x) =
σ+t
∑

k=0

ςn,kP
[1]
n+σ−k(x) , n ≥ max{t+ 1, σ} ,

that, under certain conditions, establishes the semiclassical character of or-
thogonal polynomial sequences {Pn}, and which generalizes the above men-
tioned second structure relation for classical orthogonal polynomials.

In the present paper we establish the semiclassical character of sequences
of monic orthogonal polynomials satisfying structure relations of the same
type as (1). We begin by establishing the semiclassical character of pairs of
orthogonal polynomial sequences, say {Pn}, {Rn}, associated with a coherent
pair of measures arising from a Sobolev inner product specified in §3, related
trough

Rn(x) =
s

∑

k=0

ζn,k P
′′
n+2−k(x) , n ≥ s

(cf. Lemma 5). We will use an analytic method based on the recurrence
relation satisfied by the orthogonal polynomials written in the matrix form
(cf. § 2). Then, we prove that the structure relation

s
∑

k=0

ξn,kPn+s−k =

s+2
∑

k=0

ζn,kP
[1]
n+s−k , n ≥ 1 , (4)

where s is some non-negative integer, and ξn,k, ζn,k are complex numbers,
is sufficient to establish the semiclassical character of {Pn}. The converse
result is also established, that is, semiclassical sequences of monic orthogonal
polynomials of class s, s ≥ 0, are shown to satisfy structure relations such
as (4) (cf. Theorem 1). Note that when s = 0 in (4) we recover the above-
mentioned characterization of classical orthogonal polynomials in terms of
structure relations (3).

This paper is organized as follows. In §2 we give the definitions and
state the basic results which will be used in the forthcoming sections. In
§3 we study the semiclassical character of the coherent pairs arising from the
above mentioned Sobolev inner product. In § 4 we establish the characteri-
zation of semiclassical orthogonal polynomials in terms of structure relations
such as (4).
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2. Preliminary results and notations

Let P = span {zk : k ∈ N0} be the space of polynomials with complex
coefficients, and let P′ be its algebraic dual space, that is, the linear space of
linear functionals defined on P. We will denote by 〈u, f〉 the action of u ∈ P′

on f ∈ P. For a polynomial g, we define the linear functional gu as

〈g u, f〉 = 〈u, gf〉 , f ∈ P ,

and we define Du as

〈Du, f〉 = −〈u, f ′〉 , f ∈ P ,

where f ′ denotes the derivative of f .
Given the sequence of moments (cn) of u, cn = 〈u, xn〉, n ≥ 0, the minors of

the corresponding Hankel matrix are defined by Hn = det(((c)i+j)
n
i,j=0), n ≥

0. The linear functional u is said to be quasi-definite (respectively, positive-
definite) if Hn 6= 0 (respectively, Hn > 0), for all integer n ≥ 0.

Definition 1. Let u ∈ P′. A sequence {Pn}n≥0 is said to be orthogonal with
respect to u if the following two conditions hold:
(i) deg(Pn) = n, n ≥ 0 ,
(ii) 〈u, PnPm〉 = knδn,m, kn = 〈u, P 2

n〉 6= 0, n ≥ 0 .
If the leading coefficient of each Pn is 1, then {Pn} is said to be a sequence
of monic orthogonal polynomials with respect to u, and it will be referred to
as SMOP.

If u is quasi-definite, then there exists a unique SMOP with respect to u
(see, for example, [10, 20]).

The SMOP {Pn} satisfies a three-term recurrence relation

Pn+1 = (x− βn)Pn − γnPn−1, n ≥ 0, (5)

with P−1(x) = 0, P0(x) = 1, and γn 6= 0, n ≥ 1. The converse result, known
as the Favard Theorem (see [10]), is also true, that is, given a SMOP {Pn}
satisfying a three-term recurrence relation of the preceding type, there exists
a unique quasi-definite linear functional u such that {Pn} is the SMOP with
respect to u. The γn’s and βn’s in (5) are given by

γ0 = c0 , γn = Hn−2Hn/H
2
n−1 , βn = 〈u, xP 2

n〉/〈u, P
2
n〉 , n ≥ 1 .

Furthermore, the linear functional u is positive-definite if, and only if, γn >
0, n ≥ 1 . In this case, u has an integral representation in terms of a positive
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Borel measure, µ, supported on the real line with an infinite set of points of
increase, S, such that 〈u, xn〉 =

∫

S x
n dµ , n ≥ 0 .

Definition 2. (see [2, 17]) A quasi-definite linear functional u ∈ P
′ is said

to be semiclassical if there exist φ, ϕ ∈ P, deg(ϕ) ≥ 1 , such that u satisfies
D(φu) = ϕu. The corresponding sequence of orthogonal polynomials is
called semiclassical.

The pair of polynomials (φ, ϕ) satisfying D(φu) = ϕu is not unique (see
[17, 18]). To a semiclassical functional u one associates the class of u, defined
as the minimum value of max{deg(φ)−2, deg(ϕ)−1}, for all pairs of polyno-
mials (φ, ϕ) satisfying D(φu) = ϕu , deg(ϕ) ≥ 1 , and nφ(s+2)(0)/(s+ 2)! +
ϕ(s+1)(0)/(s+ 1)!, n ≥ 1 (i.e. the admissibility condition of the pair (φ, ϕ)).

When the class of u is zero, that is, deg(ϕ) = 1 and deg(φ) ≤ 2, the well-
known classical orthogonal polynomials appear, and these are, up to a linear
change of the variables, members of one of the Hermite, Laguerre, Jacobi or
Bessel families.

In the sequel we will use the vectors defined by

ψn(x) = [Pn+1(x) Pn(x)]
T , n ≥ 0 , (6)

where T denotes the transpose. With this notation, the recurrence rela-
tion (5) can be written as

ψn(x) = Anψn−1(x) , An =

[

x− βn −γn

1 0

]

, n ≥ 0 , (7)

with initial conditions ψ−1 = [1 0]T . Notice that the matrices An are non-
singular, as det(An) = γn 6= 0 , ∀n ≥ 0. As a consequence of (7) the follow-
ing holds.

Lemma 1. Let {Pn} be a SMOP and {ψn} the corresponding sequence given
by (6). For any fixed integers s,m, λ,M, the following holds, for all n ≥ 1:

ψn−m = (
λ−m−1
∏

l=0

An−m−l)ψn−λ , m < λ , (8)

ψn−λ−M = (
M−1
∏

l=0

An−λ−l)
−1ψn−λ , M ≥ 1 . (9)
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The lemmas that follow will be used in the forthcoming sections. Hence-
forth we will write X(i,j) to denote the element of a matrix X in the posi-
tion (i, j).

Lemma 2. Let {Pn} be a SMOP and {ψn} the corresponding sequence given
by (6). If {ψn} satisfies

φn,1ψ
′
n = Ln,1ψn (10)

φn,2ψ
′
n = Ln,2ψn (11)

where φn,1, φn,2 ∈ P and and Ln,1,Ln,2 are matrices of order two whose entries
are polynomials with degree uniformly bounded by a number independent of n,
then

φn,1

φn,2
=

L
(i,j)
n,1

L
(i,j)
n,2

, i, j = 1, 2. (12)

Proof : If we multiply (10) by φn,2, (11) by φn,1, and subtract the resulting
equations, we get

(φn,2Ln,1 − φn,1Ln,2)ψn = 0 ,

thus

(φn,2L
(1,1)
n,1 − φn,1L

(1,1)
n,2 )Pn+1 = (φn,1L

(1,2)
n,2 − φn,2L

(1,2)
n,1 )Pn ,

(φn,2L
(2,1)
n,1 − φn,1L

(2,1)
n,2 )Pn+1 = (φn,1L

(2,2)
n,2 − φn,2L

(2,2)
n,1 )Pn .

Since Pn and Pn+1 do not share zeroes (see, for example, [10]), then we
conclude that there exist polynomials π, η such that

φn,2L
(1,1)
n,1 − φn,1L

(1,1)
n,2 = πPn , φn,1L

(1,2)
n,2 − φn,2L

(1,2)
n,1 = πPn+1 ,

φn,2L
(2,1)
n,1 − φn,1L

(2,1)
n,2 = ηPn , φn,1L

(2,2)
n,2 − φn,2L

(2,2)
n,1 = ηPn+1 .

But this is a contradiction to the fact that the degrees of φn,1L
(i,2)
n,2 −φn,2L

(i,2)
n,1

and φn,2L
(i,1)
n,1 − φn,1L

(i,1)
n,2 , i = 1, 2, are bounded. Therefore, π and η must be

identically zero, hence

φn,2L
(1,1)
n,1 − φn,1L

(1,1)
n,2 ≡ 0 , φn,1L

(1,2)
n,2 − φn,2L

(1,2)
n,1 ≡ 0 ,

An,2L
(2,1)
n,1 −An,1L

(2,1)
n,2 ≡ 0 , An,1L

(2,2)
n,2 −An,2L

(2,2)
n,1 ≡ 0 ,

and (12) follows.

Now we follow [14].
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Lemma 3. Let {Pn} be a SMOP and let {ψn} be the corresponding sequence
given by (6). Let {ψn} satisfy

φ̃nψ
′
n = L̃nψn , n ≥ 1 , (13)

where φ̃n ∈ P and the degrees of the entries of L̃n are uniformly bounded by
a number independent of n. Then, (13) is equivalent to

φψ′
n = Lnψn (14)

where φ is a polynomial that does not depend on n. Thus, {Pn} is semi-
classical.

Furthermore, the matrix Ln satisfies:

Ln+1An+1 −An+1Ln = φA′
n+1 , (15)

det(Ln+1) = det(L1) + φ

n
∑

k=1

L
(1,2)
k /γk+1 , (16)

tr(Ln) = tr(L1) . (17)

where An are the matrices of the recurrence relation (7), and the γn’s are
the parameters appearing in (7), det and tr denote the determinant and the
trace, respectively.

Proof : If we write (13) to n+1 and use the recurrence relations for ψn we get

φ̃n+1ψ
′
n = A−1

n+1(L̃n+1An+1 − φ̃n+1A
′
n+1)ψn . (18)

Now, from (13) and (18) we conclude that there exists a polynomial ln
such that

φ̃n+1 = lnφ̃n , A−1
n+1(L̃n+1An+1 − φ̃n+1A

′
n+1) = lnL̃n , ∀n ≥ 1,

because the first order differential equation for ψn is unique, up to a multi-
plicative factor. But from φ̃n+1 = lnφ̃n we obtain

φ̃n+1 = (ln · · · l2) φ̃1 , ∀n ≥ 1 .

Since, for all n ≥ 1, the degree of φ̃n is bounded by a number independent
of n, then the degree of the ln’s must be zero, that is, ln is constant, for all
n ≥ 1. Hence we obtain (14) with

φ = φ̃1 , Ln = A−1
n+1(L̃n+1An+1 − φ̃n+1A

′
n+1)/(ln · · · l2) .

The semi-classical character of SMOP satisfying an equation such as (14) is
established in [17, 18].
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To obtain (15) we take derivatives on ψn+1 = An+1ψn and multiply the
result by φ, to get

φψ′
n+1 = φA′

n+1ψn + An+1φψ
′
n .

Using (36) in the previous equation we get

Ln+1ψn+1 = φA′
n+1ψn + An+1Lnψn .

From the recurrence relation (7) there follows

Ln+1An+1ψn = φA′
n+1ψn + An+1Lnψn ,

and, since ψn is nonsingular, for all n ∈ N, as γn 6= 0, then (15) follows.
Now we prove (16). From (15) we have

det(Ln+1An+1) = det(An+1Ln + φA′
n+1) .

Taking into account that det(An) = γn and A′
n =

[

1 0
0 0

]

, ∀n ∈ N, we obtain

det(Ln+1) det(An+1) = det(An+1) det(Ln) + φL(1,2)
n ,

hence

det(Ln+1) = det(Ln) +
φ

γn+1
L(1,2)

n ,

and (16) follows.
To prove (17) we begin by writing (15) as























φ = (x− βn+1)(L
(1,1)
n+1 −L

(1,1)
n ) + L

(1,2)
n+1 + γn+1L

(2,1)
n ,

−γn+1L
(1,1)
n+1 − (x− βn+1)L

(1,2)
n + γn+1L

(2,2)
n = 0 ,

(x− βn+1)L
(2,1)
n+1 + L

(2,2)
n+1 −L

(1,1)
n = 0 ,

−γn+1L
(2,1)
n+1 − L

(1,2)
n = 0 .

If we multiply the third equation of the above system by γn+1 and add to the
second one we get

(x− βn+1)(γn+1L
(2,1)
n+1 + L(1,2)

n ) = γn+1(L
(1,1)
n + L(2,2)

n −L
(1,1)
n+1 − L

(2,2)
n+1 ).

Taking into account the fourth equation of the above system we obtain

γn+1(L
(1,1)
n + L(2,2)

n − L
(1,1)
n+1 − L

(2,2)
n+1 ) = 0,

that is, γn+1(tr(Ln) − tr(Ln+1)) = 0. Since γn 6= 0 , ∀n ≥ 1 , there follows
tr(Ln+1) = tr(Ln) , ∀n ≥ 1 , thus we get (17).
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3. The semiclassical character of coherent pairs of mea-

sures

In this section we study the semiclassical character of the coherent pairs
that emerge from a Sobolev inner product given below. A background for
Sobolev inner products and related problems can be found in [11, 12] and
also in [15, Lesson V].

Let µ0 and µ1 be positive Borel measures supported on the real line. Con-
sider the following inner product in P,

(f, g) =

∫

R

fg dµ0 + λ

∫

R

f ′′g′′ dµ1 , f, g ∈ P, λ > 0 . (19)

We shall denote by {Pn}, {Rn}, {Qλ
n} the sequences of monic polynomials

orthogonal with respect to µ0, µ1 and (·, ·), respectively.
Let cm,n = (xm, xn) be the moment of order (m,n) associated with the

inner product (19) and let us denote by (c
(i)
j ), i = 0, 1, the moments of the

measures µ0, µ1, respectively. Then, for every m,n = 1, 2, . . . , we have

cm,n = c
(0)
m+n + λℓm,nc

(1)
m+n−4, ℓm,n = m(m− 1)n(n− 1).

Let us determine the Fourier coefficients of

Qλ
n =

n
∑

k=0

ξn,kx
k , ξn,n = 1 .

By Cramer’s rule we obtain the following representation for Qλ
n, for all n ≥ 1:

Qλ
n =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c
(0)
0 c

(0)
1 c

(0)
2 · · · c

(0)
m

c
(0)
1 c

(0)
2 c

(0)
3 · · · c

(0)
m+1

c
(0)
2 c

(0)
3 c

(0)
4 + λℓ2,2c

(1)
0 · · · c

(0)
m+2 + λℓm,2c

(1)
m−2

...
...

...
...

1 x x2 · · · xn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c
(0)
0 c

(0)
1 c

(0)
2 · · · c

(0)
m

c
(0)
1 c

(0)
2 c

(0)
3 · · · c

(0)
m+1

c
(0)
2 c

(0)
3 c

(0)
4 + λℓ2,2c

(1)
0 · · · c

(0)
m+2 + λℓm,2c

(1)
m−2

...
...

...
...

c
(0)
n−1 c

(0)
n c

(0)
n+1 + λℓ2,n−1c

(1)
n−3 · · · c

(0)
m+n−1 + λℓm,n−1c

(1)
m+n−5

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (20)
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Lemma 4. Let {Qn} be the sequence of polynomials defined by

Qn(x) = lim
λ→∞

Qλ
n(x) , n ≥ 1 .

Then, for each n ≥ 1, Qn is monic of degree n, and it satisifes:
∫

R

Qn dµ0 = 0, n = 1, 2, . . . (21)

∫

R

xQn dµ0 = 0, n = 2, 3, . . . (22)

∫

R

(Qn)
′′(xk)′′ dµ1 = 0, k = 0, 1, . . . , n− 1, n ≥ 2 . (23)

Proof : If we divide both determinants of (20) by λ, from the second to the
nth-row, and take limits when λ→ ∞, we get the result.

Now, (23) implies

Q′′
n = n(n− 1)Rn−2 .

Let

Rn−2 =

n
∑

k=2

ln,k
P ′′

k

k(k − 1)
.

Then,

Q′′
n

n(n− 1)
=

n
∑

k=2

ln,k
P ′′

k

k(k − 1)
.

If we integrate twice we get

Qn

n(n− 1)
=

n
∑

k=2

ln,k
Pk

k(k − 1)
+ ln,1x+ ln,0 , (24)

with ln,1 = ln,0 = 0 (this follows from (21) and (22)).
On the other hand, we have that

Qn = Qλ
n +

n−1
∑

j=0

βj Q
λ
j , βj =

(Qn, Q
λ
j )

(Qλ
j , Q

λ
j )
. (25)

Therefore, if ln,k = 0, k = 2, . . . , n−s−1 and ln,n−s 6= 0, for some s ≥ 1, then,
taking into account (24) and (25), there follows βj = 0, k = 2, . . . , n− s− 1,
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and βn,n−s 6= 0, for some s ≥ 1, that is,

n
∑

k=n−s

ln,k
Pk

k(k − 1)
= Qλ

n +
n−1
∑

j=n−s

ln,kβj Q
λ
j , n ≥ s .

Thus we have the following definition.

Definition 3. A pair of positive Borel measures (µ0, µ1) is said to be qua-
dratic s-coherent if

Rn =
n+2
∑

k=n+2−s

ln,k
P ′′

k

k(k − 1)
. (26)

Without loss of generality we consider the case s = 1 in (26), that is,

Rn =
P ′′

n+2

(n+ 2)(n+ 1)
+ an

P ′′
n+1

(n+ 1)n
. (27)

We define the vectors ψn =
[

Pn+1 Pn

]T
, ηn =

[

Rn+1 Rn

]T
, n ≥ 0, which

satisfy the recurrence relations

ψn = Anψn−1 , ηn = Bnηn−1 n ≥ 1 ,

with

An =

[

x− β0,n −γ0,n

1 0

]

, Bn =

[

x− β1,n −γ1,n

1 0

]

, n ∈ N .

Lemma 5. Let (µ0, µ1) be a pair of quadratic 1-coherent measures. Then,
µ0 is semiclassical and µ1 is a rational modification of µ0, thus it is also
semi-classical.

Proof : Let {Pn}, {Rn} be the sequences of monic orthogonal polynomials
with respect to µ0 an dµ1, respectively, related through (27). Let us write (27)
in the equivalent matrix form

ηn = Mnψ
′′
n+2 +Nnψ

′′
n ,

withMn =

[

1
(n+3)(n+2)

an+1

(n+2)(n+1)

0 1
(n+2)(n+1)

]

, Nn =

[

0 0
an

(n+1)n 0

]

. Using the recurrence

relations for ψn we get

ηn = Gn,1ψ
′′
n+1 +Gn,2ψ

′
n+1 , (28)

where Gn,1 = MnAn+2 +Nn(An+1)
−1 , Gn,2 = 2(MnA′

n+2 +Nn((An+1)
−1)′).
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The multiplication of (28) by the adjoint matrix of Gn,1, adj(Gn,1), yields

adj(Gn,1)ηn = det(Gn,1)ψ
′′
n+1 + adj(Gn,1)Gn,2ψ

′
n+1 . (29)

If we take n + 1 in the above equation and use the recurrence relations for
ψn and ηn we obtain

det(Gn+1,1)An+2ψ
′′
n+1 = adj(Gn+1,1)Bn+1ηn

− {2 det(Gn+1,1)A
′
n+2 + adj(Gn+1,1)Gn+1,2An+2}ψ

′
n+1

− adj(Gn+1,1)Gn+1,2A
′
n+2ψn+1 . (30)

Now we eliminate ψ′′
n+1 between (29) and (30), which gives us

Lnηn = Ln,1ψ
′
n+1 + Ln,2ψn+1 (31)

with

Ln = det(Gn,1) adj(Gn+1,1)Bn+1 − det(Gn+1,1)An+2 adj(Gn,1) ,

Ln,1 = det(Gn,1)(2 det(Gn+1,1)A
′
n+2 + adj(Gn+1,1)Gn+1,2An+2)

− det(Gn+1,1)An+2 adj(Gn,1)Gn,2 ,

Ln,2 = det(Gn,1) adj(Gn+1,1)Gn+1,2A
′
n+2 .

But det(Ln) = det(Ln,1) = det(Ln,2) = 0. If we consider the second line
of (31), for n and n+ 1, we get

Snηn = Sn,1ψ
′
n+1 + Sn,2ψn+1 (32)

where

Sn =

[

L
(2,1)
n+1 L

(2,2)
n+1

0 L
(2,1)
n

]

Bn+1 +

[

0 0

L
(2,2)
n 0

]

B−1
n ,

Sn,1 =

[

L
(2,1)
n+1,1 L

(2,2)
n+1,1

0 L
(2,1)
n,1

]

An+2 +

[

0 0

L
(2,2)
n,1 0

]

A−1
n+1 ,

Sn,2 =

[

L
(2,1)
n+1,1 L

(2,2)
n+1,1

0 L
(2,1)
n,1

]

A′
n+2 +

[

0 0

L
(2,2)
n,1 0

]

(A−1
n+1)

′

+

[

L
(2,1)
n+1,2 L

(2,2)
n+1,2

0 L
(2,1)
n,2

]

An+2 +

[

0 0

L
(2,2)
n,2 0

]

A−1
n+1 .

Now we multiply (32) by adj(Sn) to get

Tnηn = Tn,1ψ
′
n+1 + Tn,2ψn+1 , (33)
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with Tn = det(Sn), Tn,1 = adj(Sn)Sn,1, Tn,2 = adj(Sn)Sn,2.
Now we take (33) to n and to n+1 and use the recurrence relations for ψn

and ηn to eliminate ηn, thus obtaining

Unψ
′
n+1 = Vnψn+1

with

Un = Tn+1Bn+1Tn,1 − TnTn+1,1An+2 ,

Vn = Tn(Tn+1,1A
′
n+2 + Tn+1,2An+2) − Tn+1Bn+1Tn,2 ,

thus

det(Un)ψ
′
n+1 = adj(Un)Vnψn+1 .

Taking into account the Lemma 3 we conclude that there exist φ ∈ P and a
matrix Ln such that

φψ′
n = Lnψn , n ≥ 1 , (34)

and, consequently, the semiclassical character of µ0 follows. Furthermore, ta-
king into account (34), the measure µ1 is a rational modification of µ0, hence
semiclassical (see [4], where a representation for the measures is given).

4. A characterization for semiclassical orthogonal poly-

nomials

Our goal is to establish the following theorem.

Theorem 1. Let {Pn} be a SMOP with respect to a linear functional u. Let

{ψn} be the corresponding sequence given by (6), and let P
[1]
n =

P ′

n+1

n+1 , n ≥ 0.
The following statements are equivalent:
a) There exist a non-negative integer s and sequences (an,k) and (bn,k) such
that {Pn} satisfies the structure relation

s
∑

k=0

bn+s,kPn+s−k =

s+2
∑

k=0

an+s,kP
[1]
n+s−k , bn+s,0 = an+s,0 = 1 , ∀n ≥ 1 . (35)

b) {Pn} satisfies

φψ′
n = Lnψn , ∀n ≥ 1 .

where φ is a polynomial with degree less or equal than s+2, and Ln is a 2×2
matrix whose entries are polynomials with degrees less or equal than s+ 1.
c) ∃φ, ϕ ∈ P, deg(φ) ≤ s + 2, 1 ≤ deg(ϕ) ≤ s + 1, such that D(φu) = ϕu.
Furthermore, if bn+s,s an+s−1,s+2 6= 0 , then deg(φ) = s+ 2 , deg(ϕ) = s+ 1.
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The proof of the previous theorem will use the lemmas that follow.

Lemma 6. Let {Pn} be a SMOP with respect to a linear functional u. Let
{Pn} satisfy (35) for some s ≥ 0,

s
∑

k=0

bn+s,kPn+s−k =

s+2
∑

k=0

an+s,kP
[1]
n+s−k, ∀n ≥ 1 .

Then, for each λ in {0, . . . , s + 2} (when s is even) or λ in {0, . . . , s + 3}
(when s is odd), there exist a polynomial, φ̃n(·, λ), and a matrix of order two
with polynomial entries, L̃n+s−λ, such that

φ̃n(x, λ)ψ′
n+s−λ(x) = L̃n+s−λ(x)ψn+s−λ(x) , n ≥ 1 . (36)

where deg(φ̃n) ≤ 2s+2, deg(L̃
(i,j)
n+s−λ) ≤ 2s+1, i, j = 1, 2, when s is even, and

deg(φ̃n) ≤ 2s+3, deg(L̃
(i,j)
n+s−λ) ≤ 2s+2, i, j = 1, 2, when s is odd. Moreover,

if an+s−1,s+2 6= 0, n ∈ N, then the following holds: when λ = s+2
2
, s even, or

λ = s+3
2 , s odd, deg(φ̃n) is exactly s+ 2.

Proof : Step 1. We deduce nonsingular matrices of order two, Mn+s−λ and
Nn+s−λ, with polynomial entries whose degree is uniformly bounded by a
number independent of n, such that

Mn+s−λψ
′
n+s−λ = Nn+s−λψn+s−λ . (37)

Case 1: s is even. If we write (35) to n and to n − 1 in the matrix form we
get, using the notation introduced in (6),

s/2
∑

k=0

Bn,s−2kψn+s−2k−1 =

s/2
∑

k=−1

Cn,s−2k−1ψ
′
n+s−2k−2 , (38)

where

Bn,s =

[

1 bn+s,1

0 1

]

, Bn,s−2k =

[

bn+s,2k bn+s,2k+1

bn+s−1,2k−1 bn+s−1,2k

]

, k = 1, . . . , s/2 − 1 ,

Bn,0 =

[

bn+s,s 0
bn+s−1,s−1 bn+s−1,s

]

, Cn,s+1 =

[

1
n+s+1

an+s,1

n+s

0 1
n+s

]

,

Cn,s−2k−1 =

[ an+s,2k+2

n+s−2k−1
an+s,2k+3

n+s−2k−2
an+s−1,2k+1

n+s−2k−1
an+s−1,2k+2

n+s−2k−2

]

, k = 0, . . . , s/2 − 1 ,
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Cn,−1 =

[ an+s,s+2

n−1 0
an+s−1,s+1

n−1
an+s−1,s+2

n−2

]

.

Our next step is to deduce Mn+s−λψ
′
n+s−λ = Nn+s−λψn+s−λ, where Mn+s−λ

and Nn+s−λ are matrices, and λ is some fixed integer, 0 ≤ λ ≤ s+ 2. To this
end we shall write the vectors ψn+s−l , l = 0, . . . , s+ 2, appearing in (38), as
multiples of ψn+s−λ. We consider the two sub-cases that follow.
Sub-case 1.1: s and λ are even. The Eq. (38) can be split as follows

s/2
∑

k=0

n+s−2k−1>n+s−λ

Bn,s−2kψn+s−2k−1 +

s/2
∑

k=0

n+s−2k−1<n+s−λ

Bn,s−2kψn+s−2k−1

=

s/2
∑

k=−1

n+s−2k−2>n+s−λ

Cn,s−2k−1ψ
′
n+s−2k−2 + Cn,s−λ+1ψ

′
n+s−λ

+

s/2
∑

k=−1

n+s−2k−2<n+s−λ

Cn,s−2k−1ψ
′
n+s−2k−2 ,

thus we have

λ/2−1
∑

k=0

Bn,s−2kψn+s−2k−1 +

s/2
∑

k=λ/2

Bn,s−2kψn+s−2k−1

=

λ/2−2
∑

k=−1

Cn,s−2k−1ψ
′
n+s−2k−2 + Cn,s−λ+1ψ

′
n+s−λ +

s/2
∑

k=λ/2

Cn,s−2k−1ψ
′
n+s−2k−2 ,

that is,

λ/2−1
∑

k=0

Bn,s−2kψn+s−2k−1+

(s−λ)/2
∑

j=0

Bn,s−λ−2j ψn+s−λ−2j−1 =

λ/2−2
∑

k=−1

Cn,s−2k−1ψ
′
n+s−2k−2

+ Cn,s−λ+1ψ
′
n+s−λ +

(s−λ)/2
∑

j=0

Cn,s−λ−2j−1ψ
′
n+s−λ−2j−2 . (39)
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The use of (8) with m = 2k + 1, m = 2k + 2 and (9) with M = 2j + 1,M =
2j + 2 in (39) yields (37), Mn+s−λψ

′
n+s−λ = Nn+s−λ ψn+s−λ, with

Mn+s−λ =

λ/2−2
∑

k=−1

Cn,s−2k−1

λ−3−2k
∏

l=0

An+s−2k−2−l

+ Cn,s−λ+1 +

(s−λ)/2
∑

j=0

Cn,s−λ−2j−1(

2j+1
∏

l=0

An+s−λ−l)
−1 , (40)

Nn+s−λ =

λ/2−1
∑

k=0

Bn,s−2k

λ−2−2k
∏

l=0

An+s−2k−1−l +

(s−λ)/2
∑

j=0

Bn,s−λ−2j(

2j
∏

l=0

An+s−λ−l)
−1

−

λ/2−2
∑

k=−1

Cn,s−2k−1(
λ−3−2k
∏

l=0

An+s−2k−2−l)
′−

(s−λ)/2
∑

j=0

Cn,s−λ−2j−1{(

2j+1
∏

l=0

An+s−λ−l)
−1}′.

Sub-case 1.2: s is even and λ is odd. The Eq. (38) can be split as follows

(λ−3)/2
∑

k=0

Bn,s−2kψn+s−2k−1 +Bn,s−λ+1ψn+s−λ +

(s−λ−1)/2
∑

j=0

Bn,s−λ−2j−1ψn+s−λ−2j−2

=

(λ−3)/2
∑

k=−1

Cn,s−2k−1ψ
′
n+s−2k−2 +

(s−λ+1)/2
∑

j=0

Cn,s−λ−2jψ
′
n+s−λ−2j−1 .

From the recurrence relations for ψn (cf. Lemma 1) we get (37), with

Mn+s−λ =

(λ−3)/2
∑

k=−1

Cn,s−2k−1(

λ−3−2k
∏

l=0

An+s−2k−2−l)

+

(s−λ+1)/2
∑

j=0

Cn,s−λ−2j(

2j
∏

l=0

An+s−λ−l)
−1, (41)
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Nn+s−λ =

(λ−3)/2
∑

k=0

Bn,s−2k(

λ−2−2k
∏

l=0

An+s−2k−1−l) + Bn,s−λ+1

+

(s−λ−1)/2
∑

j=0

Bn,s−λ−2j−1(

2j+1
∏

l=0

An+s−λ−l)
−1−

(λ−3)/2
∑

k=−1

Cn,s−2k−1(
λ−3−2k
∏

l=0

An+s−2k−2−l)
′

−

(s−λ+1)/2
∑

j=0

Cn,s−λ−2j{(

2j
∏

l=0

An+s−λ−l)
−1}′.

Case 2: s is odd. If we write (35) to n and to n − 1 in the matrix form we
get, using the notation introduced in (6),

(s+1)/2
∑

k=0

Bn,s−2kψn+s−2k−1 =

(s+1)/2
∑

k=−1

Cn,s−2k−1ψ
′
n+s−2k−2 , (42)

where

Bn,s =

[

1 bn+s,1

0 1

]

, Bn,s−2k =

[

bn+s,2k bn+s,2k+1

bn+s−1,2k−1 bn+s−1,2k

]

, k = 1, . . . ,
s− 1

2
,

Bn,−1 =

[

0 0
bn+s−1,s 0

]

, Cn,s+1 =

[

1
n+s+1

an+s,1

n+s

0 1
n+s

]

,

Cn,s−2k−1 =

[ an+s,2k+2

n+s−2k−1
an+s,2k+3

n+s−2k−2
an+s−1,2k+1

n+s−2k−1
an+s−1,2k+2

n+s−2k−2

]

, k = 0, . . . ,
s− 1

2
,

Cn,−2 =

[

0 0
an+s−1,s+2

n−2 0

]

.

Sub-case 2.1: s is odd and λ is even. The Eq. (42) can be split as follows

λ/2−1
∑

k=0

Bn,s−2kψn+s−2k−1 +

(s+1−λ)/2
∑

j=0

Bn,s−λ−2j ψn+s−λ−2j−1 = Cn,s−λ+1ψ
′
n+s−λ

+

λ/2−2
∑

k=−1

Cn,s−2k−1ψ
′
n+s−2k−2 +

(s+1−λ)/2
∑

j=0

Cn,s−λ−2j−1ψ
′
n+s−λ−2j−2 .
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From the recurrence relation for ψn (cf. Lemma 1) we get (37), with

Mn+s−λ =

λ/2−2
∑

k=−1

Cn,s−2k−1(
λ−3−2k
∏

l=0

An+s−2k−2−l)

+ Cn,s−λ+1 +

(s+1−λ)/2
∑

j=0

Cn,s−λ−2j−1(

2j+1
∏

l=0

An+s−λ−l)
−1, (43)

Nn+s−λ =

λ/2−1
∑

k=0

Bn,s−2k

λ−2−2k
∏

l=0

An+s−2k−1−l

+

(s+1−λ)/2
∑

j=0

Bn,s−λ−2j(

2j
∏

l=0

An+s−λ−l)
−1 −

λ/2−2
∑

k=−1

Cn,s−2k−1(

λ−3−2k
∏

l=0

An+s−2k−2−l)
′

−

(s+1−λ)/2
∑

j=0

Cn,s−λ−2j−1{(

2j+1
∏

l=0

An+s−λ−l)
−1}′.

Sub-case 2.2: s and λ are odd. The Eq. (42) can be split as follows

(λ−3)/2
∑

k=0

Bn,s−2kψn+s−2k−1 + Bn,s−λ+1ψn+s−λ +

(s−λ)/2
∑

j=0

Bn,s−λ−2j−1ψn+s−λ−2j−2

=

(λ−3)/2
∑

k=−1

Cn,s−2k−1ψ
′
n+s−2k−2 +

(s−λ+2)/2
∑

j=0

Cn,s−λ−2jψ
′
n+s−λ−2j−1 .

From the recurrence relation for ψn (cf. Lemma 1) we get (37), with

Mn+s−λ =

(λ−3)/2
∑

k=−1

Cn,s−2k−1(

λ−3−2k
∏

l=0

An+s−2k−2−l)

+

(s−λ+2)/2
∑

j=0

Cn,s−λ−2j(

2j
∏

l=0

An+s−λ−l)
−1, (44)



ORTHOGONAL POLYNOMIALS SATISFYING STRUCTURE RELATIONS 19

Nn+s−λ =

(λ−3)/2
∑

k=0

Bn,s−2k(

λ−2−2k
∏

l=0

An+s−2k−1−l) + Bn,s−λ+1

+

(s−λ)/2
∑

j=0

Bn,s−λ−2j−1(

2j+1
∏

l=0

An+s−λ−l)
−1 −

(λ−3)/2
∑

k=−1

Cn,s−2k−1(
λ−3−2k
∏

l=0

An+s−2k−2−l)
′

−

(s−λ+2)/2
∑

j=0

Cn,s−λ−2j{(

2j
∏

l=0

An+s−λ−l)
−1}′.

Step 2. We obtain (36).
From Step 1 we have (37), Mn+s−λψ

′
n+s−λ = Nn+s−λψn+s−λ, where the

matrices Mn+s−λ and Nn+s−λ are nonsingular. If we multiply the previous
equation by the adjoint of Mn+s−λ then we get

det(Mn+s−λ)ψ
′
n+s−λ = adj(Mn+s−λ)Nn+s−λψn+s−λ ,

and we obtain (36) with φ̃n = det(Mn+s−λ), L̃n+s−λ = adj(Mn+s−λ)Nn+s−λ.
Furthermore, an inspection of Eqs. (40), (41), (43), and (44) shows the

assertion concerning the degrees of det(Mn+s−λ). When λ = s+2
2 , s even, or

λ = s+3
2 , s odd, then det(Mn+s−λ) is exactly s+ 2, since an+s−1,s+2 6= 0.

Now we discuss the structure relations (36) obtained in the preceding
lemma.

Lemma 7. Let {Pn} be a SMOP with respect to a linear functional u satis-
fying (35). Let a structure relation of type (36) hold for two indexes λ1, λ2,
with λ1, λ2 ∈ {0, . . . , s+ 3}, that is,

φ̃n(x, λ1)ψ
′
n+s−λ1

(x) = L̃n+s−λ1
(x)ψn+s−λ1

(x) , (45)

φ̃n(x, λ2)ψ
′
n+s−λ2

(x) = L̃n+s−λ2
(x)ψn+s−λ2

(x) , (46)

where, without loss of generality, we assume λ1 > λ2. Then, the following
holds:

φ̃n(·, λ2)

φ̃n(·, λ1)
=

H
(i,j)
n

L
(i,j)
n+s−λ1

, i, j = 1, 2 , (47)
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with

Hn = (

λ−λ2−1
∏

l=0

An+s−λ2−l)
−1

× {L̃n+s−λ2
(

λ1−λ2−1
∏

l=0

An+s−λ2−l) − φ̃n(·, λ2)(

λ1−λ2−1
∏

l=0

An+s−λ2−l)
′} , (48)

where An are the matrices of the recurrence relation (7).

Proof : Let us assume, without loss of generality, that λ1 > λ2. Then, from
the recurrence relation for ψn (cf. Lemma 1) we have

ψn+s−λ2
= (

λ1−λ2−1
∏

l=0

An+s−λ2−l)ψn+s−λ1
.

The use of the previous equality in (46) yields

φ̃n(·, λ2)(

λ1−λ2−1
∏

l=0

An+s−λ2−l)ψ
′
n+s−λ1

= {L̃n+s−λ2
(

λ1−λ2−1
∏

l=0

An+s−λ2−l)

− φ̃n(·, λ2)(

λ1−λ2−1
∏

l=0

An+s−λ2−l)
′}ψn+s−λ1

,

thus,

φ̃n(·, λ2)ψ
′
n+s−λ1

= Hn ψn+s−λ1
, (49)

where Hn is given by (48). From (45) and (49), and taking into account the
Lemma 2, the relation (47) follows.

In the next lemma we follow the same approach as [6].

Lemma 8. Let {Pn} be a SMOP with respect to a linear functional u. Let u
be semiclassical of class s, satisfying

D(φu) = ϕu . (50)

Then there exist sequences (an,s), (bn,s) such that

s
∑

k=0

bn+s,kPn+s−k =
s+2
∑

k=0

an+s,kP
[1]
n+s−k , ∀n ≥ 1 . (51)
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Proof : Let us write

Pn+l =
n+l
∑

j=0

cn+l,jP
[1]
n+l−j , l = 0, . . . , s,

where the cn+l,j satisfy, for each l = 0, . . . , s,

0 =

n+l
∑

j=n+l+1−(k+s+1)

cn+l,j 〈φu, P
[1]
n+l−j Pk〉 , k = 0, 1, . . . , n+ l − (s+ 2) − 1

(one has n+ l − (s+ 2) equations in n+ l − 3 unknowns).
Thus,

Pn+s + bn+s,1Pn+s−1 + . . .+ bn+s,sPn = P
[1]
n+s +

n+s−1
∑

j=0

µn+s−1,jP
[1]
n+s−1−j (52)

where

µn+s−1,j =

{

cn+s,j+1 +
∑j+1

k=1 bn+s,kcn+s−k,j+1−k , j = 0, . . . , s− 1 ,

cn+s,j+1 +
∑s

k=1 bn+s,k cn+s−k,j−(k−1) , j = s, . . . , n+ s− 1 .

(53)
Let us multiply (52) by Pk and apply φu. Then, the left-hand side gives us

〈φu, (Pn+s + bn+s,1Pn+s−1 + · · · + bn+s,sPn)Pk〉 = 0, k + s+ 2 < n .

Furthermore, since

〈φu, P
[1]
n+s−1−j Pk〉 =

1

n+ s− j
(〈φu, (Pn+s−j Pk)

′〉 − 〈φu, Pn+s−j P
′
k〉)

and 〈φu, (Pn+s−j Pk)
′〉 = −〈D(φu), Pn+s−j Pk〉 , taking into account (50), the

right-hand side gives us

〈φu, P
[1]
n+s−1−j Pk〉 =

1

n+ s− j
(−〈ψ u, Pn+s−j Pk〉 − 〈φu, Pn+s−j P

′
k〉) ,

hence 〈φu, P
[1]
n+s−1−j Pk〉 = 0, k+s+1 < n+s−j . Therefore, the coefficients

µn+s−1,j in (52) satisfy

0 =

n+s−1
∑

j=n−k−1

µn+s−1,j ξk,j, k = 0, 1, . . . , n− s− 3 , (54)

where ξk,j = (〈ψu, Pn+s−j Pk〉 + 〈φu, Pn+s−j P
′
k〉)/(n+ s− j).



22 BRANQUINHO AND M.N. REBOCHO

Our goal is to prove that there exist bn+s,k, k = 1, . . . , s, such that only s+3
non-zero summands appear in the right-hand side of (52), with µn+s−1,s+2 =
µn+s−1,s+3 = · · · = µn+s−1,n+s−1 = 0.

Let us expand (54). We get Fn,s−1 Un,s−1 = 0n−2×1, with

Fn,s−1 =





ξn−s−3,s+2 · · · ξn−s−3,n−1 · · · ξn−s−3,n+s−1
. . . ...

...
ξ0,n−1 · · · ξ0,n+s−1





and Un,s−1 =
[

µn+s−1,s+2 · · · µn+s−1,n+s−1

]T
(notice that in the above, and

hereafter, the convention that the elements under the diagonal (ξn−s−3,s+2;
. . . ; ξ0,n−1) are zero is adopted). Furthermore, this system can be written as





ξn−s−3,s+2 · · · ξn−s−3,n−1
. . . ...

ξ0,n−1









µn+s−1,s+2
...

µn+s−1,n−1





+





ξn−s−3,n · · · ξn−s−3,n+s−1
...

...
ξ0,n · · · ξ0,n+s−1









µn+s−1,n
...

µn+s−1,n+s−1



 =





0
...
0



 . (55)

We remark that

µn+s−1,n = µn+s−1,n+1 = · · · = µn+s−1,n+s−1 = 0 (56)

implies

µn+s−1,s+2 = µn+s−1,s+3 = · · · = µn+s−1,n−1 = 0 ,

because if (56) holds then (55) becomes




ξn−s−3,s+2 · · · ξn−s−3,n−1
. . . ...

ξ0,n−1









µn+s−1,s+2
...

µn+s−1,n−1



 =





0
...
0



 , (57)

where the matrix of the system (57) is nonsingular (upper triangular), as

ξj,n−1−j = 〈u, (ψ Pj + φP ′
j)Pj+s+1〉 6= 0 , j = 0, . . . , n− s− 3 ,

because deg(ψPj + φP ′
j) = j + s + 1 , j = 0, . . . , n− s− 3 (note that this is

the admissibility condition).
Let us return to (56). Taking into account (53) one can write (56) as

Gn,s−1 Bn,s = −
[

cn+s,n+1 · · · cn+s,n+s

]T
, (58)
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where

Gn,s−1 =





cn+s−1,n · · · cn,n−(s−1)
... . . . ...

cn+s−1,n+s−1 · · · cn,n



 , Bn,s =





bn+s,1
...

bn+s,s



 .

Now we discuss the system (58). Let us denote by G̃n,s−1 the s × (s + 1)
matrix given by





| −cn+s,n+1

Gn,s−1 |
...

| −cn+s,n+s



 .

If det(Gn,s−1) 6= 0, then (58) has a solution, and this means that there exist
bn+s,1, . . . , bn+s,s such that µn+s−1,n = µn+s−1,n+1 = · · · = µn+s−1,n+s−1 = 0 ,
thus, from our previous discussion, there follows µn+s,s+2 = µn+s,s+3 = · · · =
µn+s,n−1 = 0, and (51) holds.

If det(Gn,s−1) = 0 , then (58) is possible iff the matrices Gn,s−1, G̃n,s−1 have
precisely the same number of independent rows.

Let us assume, without loss of generality, that the i-th and the j-th rows
of Gn,s−1 are linearly dependent, that is,

cn+s−1,n+i

cn+s−1,n+j
=
cn+s−2,n+i−1

cn+s−2,n+j−1
= · · · =

cn,n+i−(s−1)

cn,n+j−(s−1)
. (59)

Note that n is arbitrary and the algorithm described above can be carried out
to n+ 1, thus the same proportion as above appears to the matrix Gn+1,s−1,
thus we can take n+ 1 in (59),

cn+s,n+i+1

cn+s,n+j+1
=
cn+s−1,n+i

cn+s−1,n+j
= · · · =

cn+1,n+1+i−(s−1)

cn+1,n+1+j−(s−1)
,

and we get
cn+s,n+i+1

cn+s,n+j+1
=
cn+s−1,n+i

cn+s−1,n+j
= · · · =

cn,n+i−(s−1)

cn,n+j−(s−1)
,

that is, the i-th and the j-th rows of G̃n,s−1, are linearly dependent. With

a similar reasoning one concludes that Gn,s−1, G̃n,s−1 have precisely the same
number of independent rows. Consequently, (58) is possible and, similarly
to the previous discussion in the case det(Gn,s−1) 6= 0, we conclude that (51)
holds.

Proof of the Theorem 1. Lemma 6 combined with the first part of Lemma 3
proves a) ⇒ b); b) ⇒ c) is proved in [17, 18]; Lemma 8 proves c) ⇒ a).
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Corollary 1. Let {Pn} be a SMOP with respect to a linear functional u, let

{ψn} be the corresponding sequence given by (6), and let P
[1]
n = P ′

n+1/(n+ 1),
n ≥ 0. The following statements are equivalent:
a) There exist (an), (bn) such that {Pn} satisfies

Pn+1 + bn+1,1Pn = P
[1]
n+1 + an+1,1P

[1]
n + an+1,2P

[1]
n−1 + an+1,3P

[1]
n−2 , ∀n ≥ 1 , (60)

b) there exist φ ∈ P, deg(φ) ≤ 3, and a matrix Ln with polynomial entries
whose degree is less or equal than two, such that

φψ′
n−1 = Ln−1ψn−1 , n ≥ 1 . (61)

c) u satisfies

D(φu) = ϕu , (62)

where deg(φ) ≤ 3, 1 ≤ deg(ϕ) ≤ 2. Furthermore,

deg(φ) =



















3 iff an+1,3 6= 0

2 iff an+1,3 = 0, an+1,2 6= 0

1 iff an+1,3 = an+1,2 = 0, an+1,1 6= 0

0 iff an+1,3 = an+1,2 = an+1,1 = 0

. (63)

Proof : Taking into account the preceding results, we just have to prove a) ⇒
b) and c) ⇒ a).
a) ⇒ b). From Lemma 6 we obtain, for s = 1 and λ = 2 (cf. (43)),

Mn−1ψ
′
n−1 = Nn−1ψn−1 , (64)

where

Mn−1 = Cn,2An+1An + Cn,0 + Cn,−2(An−1An−2)
−1 ,

Nn−1 = Bn,1An + Bn,−1A
−1
n−1 − Cn,2(An+1An)

′ − Cn,−2((An−1An−2)
−1)′ ,

Cn,2 =

[

1
n+2

an+1,1

n+1

0 1
n+1

]

, Cn,0 =

[an+1,2

n
an+1,3

n−1
an,1

n
an,2

n−1

]

, Cn,−2 =

[

0 0
an,3

n−2 0

]

,

Bn,1 =

[

1 bn+1,1

0 1

]

, Bn,−1 =

[

0 0
bn,1 0

]

.

Therefore, we obtain

φn−1ψ
′
n−1 = adj(Mn−1)Nn−1ψn−1 , (65)
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where φn−1 = det(Mn−1), with

det(Mn−1) =
an,3

γn−1(n+ 2)(n− 2)
(x− βn+1)(x− βn)(x− βn−1)

+
an,2

(n+ 2)(n− 1)
(x− βn+1)(x− βn)

+ en,0(x− βn+1) +
an+1,1an,2 − an+1,3

(n+ 1)(n− 1)
(x− βn) + en,2(x− βn−1)

+(
an+1,2

n
−
γn+1

n+ 2
)(
an,2

n− 1
−

γn

n+ 1
)−(

an+1,3

n− 1
−
γnan+1,1

n+ 1
)(
an,1

n
−

an,3

γn−1(n− 2)
) ,

where

en,0 =
γn

n+ 2
(
an,1

n
−

an,3

(n− 2)γn−1
) , en,2 =

an,3

γn−1(n− 2)
(
an+1,2

n
−

γn+1

n+ 2
) .

Therefore we have deg(φn−1) =



















3 iff an,3 6= 0

2 iff an,3 = 0, an,2 6= 0

1 iff an,3 = an,2 = 0, an,1 6= 0

0 iff an,3 = an,2 = an,1 = 0 ,

and (63)

follows.
Finally, from Lemma 3 we obtain that (65) is equivalent to (61) where the

polynomial φ is independent of n.
c) ⇒ a). Let us write

Pn+1 =

n+1
∑

j=0

cn+1,jP
[1]
n+1−j , Pn =

n
∑

j=0

cn,jP
[1]
n−j .

Thus,

Pn+1 + bn+1,1Pn = P
[1]
n+1 +

n
∑

j=0

µn,jP
[1]
n−j (66)

where

µn,l = cn+1,l+1 + bn+1,1 cn,l , l = 0, . . . , n . (67)

Let us multiply (66) by Pk and apply φu. Then, the left-hand side gives us
〈φu, (Pn+1 + bn+1,1Pn)Pk〉 = 0, k + 3 < n . Furthermore, since

〈φu, P
[1]
n−j Pk〉 =

1

n+ 1 − j
(〈φu, (Pn+1−j Pk)

′〉 − 〈φu, Pn+1−j P
′
k〉)
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and 〈φu, (Pn+s−j Pk)
′〉 = −〈D(φu), Pn+s−j Pk〉 , taking into account (62), the

right-hand side gives us

〈φu, P
[1]
n−j Pk〉 =

1

n+ 1 − j
(−〈ψ u, Pn+1−j Pk〉 − 〈φu, Pn+1−j P

′
k〉) ,

hence 〈φu, P
[1]
n−j Pk〉 = 0, k + 2 < n + 1 − j . Therefore, the coefficients µn,j

satisfy

0 =

n
∑

j=n−k−1

µn,j ξk,j, k = 0, 1, . . . , n− 4 , (68)

where ξk,j = (〈ψ u, Pn+1−j Pk〉 + 〈φu, Pn+1−j P
′
k〉)/(n+ 1 − j).

Our goal is to prove that there exists bn+1,1 such that only 4 non-zero
summands appear in (66), with µn,3 = µn,4 = · · · = µn,n = 0.

Let us expand (68). We get Fn,0 Un,0 = 0n−2×1, where

Fn,0 =





ξn−4,3 · · · ξn−4,n−1 ξn−4,n
. . . ...

...
ξ0,n−1 ξ0,n



 , Un,0 =





µn,3
...

µn,n



 .

Furthermore, this system can be written as




ξn−4,3 · · · ξn−4,n−1
. . . ...

ξ0,n−1









µn,3
...

µn,n−1



 +





ξn−4,n
...
ξ0,n





[

µn,n

]

= 0 . (69)

Note that µn,n = 0 implies µn,3 = µn,4 = · · · = µn,n−1 = 0 .
Taking into account Eqs. (67), we get µn,n = 0 if, and only if, bn+1,1 =

−cn+1,n+1/cn,n. Hence, if we choose bn+1,1 = −cn+1,n+1/cn,n, from our previous
discussion there follows that the coefficients µk’s in (66) satisfy µn,3 = µn,4 =
· · · = µn,n−1 = 0 , thus (60) holds.

Example 1. Let {Pn} be the SMOP with respect to the linear functional u
that satisfies D(u) = ϕu, ϕ(x) = −ix2 + 2x− i(α− 1), where α 6∈

⋃

n≥0En,

where E0 = {α ∈ C : F (α) = 0}, F (α) =
∫ +∞
∞ eix3/3−x2+i(α−1)dx, and, for

n ≥ 1, En = {α ∈ C : Hn(α) = 0}, with Hn the Hankel determinant associ-
ated with u (these are the quasi-definiteness conditions) [19]. The functional
u is semi-classical of class s = 1 . From corollary 1 we obtain that the cor-
responding SMOP {Pn} is characterized by:
a) The structure relation

Pn+1 + bn+1,1Pn = P
[1]
n+1 , n ≥ 1 ; (70)
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b) The equations φψ′
n−1 = Ln−1ψn−1, where φ ≡ 1 and

L
(1,1)
n−1 = −nλn−1/γn−1 ,

L
(1,2)
n−1 = n(γn−1 + λn−1(x− βn−1))/γn−1 ,

L
(2,1)
n−1 = −(n− 1)/γn−1 − (n− 1)λn−2(x− βn−2)/(γn−1γn−2) ,

L
(2,2)
n−1 =

(n− 1)(x− βn−1)

γn−1
+

(n− 1)λn−2((x− βn−1)(x− βn−2) − γn−1)

γn−1γn−2
,

where λn = −iγnγn+1/(n+ 1), n ≥ 0.
Notice that the structure relation (70) leads to the structure relation for

{Pn} studied in [19],

(x+ ϑn,0)Pn(x) = P
[1]
n+1(x) + ̺nP

[1]
n (x) , n ≥ 1 , (71)

where

ϑn,0 = −iγn+1γn+2/(n+ 2) + i(n+ 1)/γn+1 − βn , ̺n = i(n+ 1)/γn+1 . (72)

To that end we write (70) to n and to n− 1,

Pn+1 + bn+1,1Pn = P
[1]
n+1, Pn + bn,1Pn−1 = P [1]

n .

If we multiply the second equation by sn, with sn = γn/bn,1, and add to the first

one we get Pn+1+(bn+1,1+sn)Pn+snbn,1Pn−1 = P
[1]
n+1+snP

[1]
n , and the use of the

recurrence relation for Pn+1 yields (71) with ϑn,0 = bn+1,1+sn−βn , ̺n = sn .
Furthermore, if bn+1,1 = −iγn+1γn+2/(n+ 2), then we obtain the ϑn,0 and ̺n

given by (72).
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Pura ed Appli. 149 (1987), pp. 165-184.
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