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Abstract: This paper deals with the algebra F(L) of real functions of a frame L
and its subclasses LSC(L) and USC(L) of, respectively, lower and upper semicontin-
uous real functions. It is well-known that F(L) is a lattice-ordered ring; this paper
presents explicit formulas for its algebraic operations which allow to conclude about
their behaviour in LSC(L) and USC(L).

As applications, idempotent functions are characterized and the results of [10]
about strict insertion of functions are significantly improved: general pointfree for-
mulations that correspond exactly to the classical strict insertion results of Dowker
and Michael regarding, respectively, normal countably paracompact spaces and per-
fectly normal spaces are derived.

The paper ends with a brief discussion concerning the frames in which every
arbitrary real function on the α-dissolution of the frame is continuous.
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Introduction
As is well-known, each frame L has associated with it the ring R(L) =

Frm(L(R), L) of its continuous real functions ([2, 3]). This is a commutative
archimedean (strong) f -ring with unit [2]. By the familiar (dual) adjunction

Top
O //

Frm
Σ

oo

between the categories of topological spaces and frames there is a bijection

Top(X,R) ' Frm(L(R),OX) (1)
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where OX is the frame of open sets of the topological space X and R is en-
dowed with its natural topology. Thus the classical ring C(X) [9] is naturally
isomorphic to R(OX) and the correspondence L R(L) for frames extends
that for spaces.

Now, replace the space X in (1) by a discrete space (X,P(X)). We get

RX ' Top((X,P(X)),R)) ' Frm(L(R),P(X)).

For any L in the category Frm, the role of the lattice P(X) of all subspaces
of X is taken by the lattice S(L) of all sublocales of L, which justifies to
think of the members of

Frm(L(R),S(L)) = R(S(L))

as arbitrary not necessarily continuous real functions [11] on the frame L.
The real functions on a frame L are thus the continuous real functions on
the sublocale lattice of L and therefore, from the results of [11], constitute a
commutative archimedean (strong) f -ring with unit that we denote by F(L).
It is partially ordered by

f ≤ g ≡ f(r,—) ≤ g(r,—) for all r ∈ Q
⇔ g(—, r) ≤ f(—, r) for all r ∈ Q.

Since any L is isomorphic to the subframe cL of S(L) of all closed sublocales,
the ringR(L) may be seen as the subring C(L) of all continuous real functions
of F(L): f ∈ F(L) is continuous if f(p, q) is a closed sublocale for every p, q,
i.e. f(L(R)) ⊆ cL.

Besides continuity, F(L) allows to distinguish the two types of semiconti-
nuity: f ∈ F(L) is lower semicontinuous if f(r,—) is a closed sublocale for
every r, and f is upper semicontinuous if f(—, r) is a closed sublocale for
every r. We shall denote by LSC(L) and USC(L) respectively the classes of
lower and upper semicontinuous functions. Hence, C(L) = LSC(L)∩USC(L).

The first approach to semicontinuity in pointfree topology was presented in
[12]. The approach here considered, summarized above, has wider scope and
was introduced recently [11]. The further development of it asks for a better
knowledge of the posets (LSC(L),≤) and (USC(L),≤) and the behaviour of
the lattice-ordered ring operations of F(L) on them. This is the original
motivation for this paper. We present explicit formulas for the algebraic
operations of F(L) that provide, as immediate corollaries, results about their
behaviour in LSC(L) and USC(L). Some of these formulas appear in a similar
form in [1, Section 3] but our treatment here, based on the use of scales,
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simplifies the presentation and proofs. This allows us to improve the study
in [10] of strict insertion of frame homomorphisms with very general pointfree
extensions of the classical strict insertion theorems for normal and countably
paracompact spaces (due to Dowker [6]) and perfectly normal spaces (due to
Michael [15]).

We begin this paper by reviewing all the required background material
(Section 1) and by providing (Section 2) a useful tool for generating the var-
ious types of real functions (general, semicontinuous and continuous). Then,
we present the new descriptions of the algebraic operations of F(L) (joins and
meets in Section 3, and sums and products in Section 4). Finally, we apply
the results of Section 4 to characterize idempotent functions (Section 5) and
to obtain the general formulations of the strict insertion theorems (Section
6) and we end with a very short section dealing with the natural question
concerning the frames L in which every real function on the α-dissolution
of L is continuous. Not surprisingly, this reveals to be related to one of the
most important and deep open problems in locale theory.

1. Background and notation
1.1. Frames and locales. In pointfree topology spaces are represented by
generalized lattices of open sets, called frames, defined as complete lattices L
in which the distributive law

a ∧
∨
S =

∨
{a ∧ s | s ∈ S}

holds for all a ∈ L and S ⊆ L. In particular, a classical space X is represented
by its lattice O(X) of open sets. Continuous maps are represented by frame
homomorphisms, that is, those maps between frames that preserve arbitrary
joins (hence 1, the top) and finite meets (hence 0, the bottom). The category
of frames and frame homomorphisms is denoted by Frm. The set of all
morphisms from L into M is denoted by Frm(L,M).

The above representation is contravariant: continuous maps f : X → Y are
represented by frame homomorphisms h = f−1[−] : O(Y )→ O(X). This can
be easily mended, in order to keep the geometric motivation, by considering,
instead of Frm simply its opposite category of locales and localic maps, and
we have “generalized continuous maps” f : L→ M that are precisely frame
homomorphisms h : M → L. Since we adopt along the paper the algebraic
(frame) approach and reasoning, the reader should keep in mind that the
geometric (localic) motivation reads backwards.
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Being a Heyting algebra, each frame L has the implication → satisfying
a ∧ b ≤ c iff a ≤ b→ c. The pseudocomplement of an a ∈ L is a∗ = a→ 0 =∨
{b ∈ L : a ∧ b = 0}. Then (

∨
A)∗ =

∧
a∈A a

∗ for all A ⊆ L. In particular,
(−)∗ is order-reversing.

For general notions concerning frames and locales the reader is referred to
[13] and [16]. In particular, regarding sublocales, we follow [16].

1.2. The frame of sublocales. A subset S of a locale L is a sublocale of L
if, whenever A ⊆ S, a ∈ L and b ∈ S, then

∧
A ∈ S and a→ b ∈ S. The set

of all sublocales of L forms a co-frame under inclusion, in which arbitrary
meets coincide with intersection, {1} is the bottom, and L is the top.

For notational reasons, it seems appropriate to make the co-frame of all
sublocales of L into a frame S(L) by considering the dual ordering: S1 ≤ S2

iff S2 ⊆ S1. Thus, given {Si ∈ S(L) : i ∈ I}, we have
∨
i∈I Si =

⋂
i∈I Si and∧

i∈I Si = {
∧
A : A ⊆

⋃
i∈I Si}. Also, {1} is the top and L is the bottom in

S(L) that we simply denote by 1 and 0, respectively.
For any a ∈ L, the sets

c(a) = ↑a and o(a) = {a→ b : b ∈ L}
are the closed and open sublocales of L, respectively. Their main properties
are subsumed in the following:

Proposition 1.1. For any a, b ∈ L and A ⊆ L:

(a) c(a ∧ b) = c(a) ∧ c(b),
(b) c(

∨
A) =

∨
a∈A c(a),

(c) o(a) ≥ c(b) if and only if a ∧ b = 0,
(d) o(a) ≤ c(b) if and only if a ∨ b = 1,
(e) c(a) = o(b) if and only if a and b are complements of each other,
(f) c(a) ∨ o(a) = 1 and c(a) ∧ o(a) = 0.

Thus c(a) and o(a) are complements of each other in S(L). This implies
that L is Boolean whenever all sublocales of L are clopen. Note also that the
map a 7→ c(a) is a frame embedding L ↪→ S(L), i.e. L and the subframe cL
of S(L) consisting of all closed sublocales, are isomorphic.

1.3. Frames of reals. There are various equivalent ways of introducing the
frame of reals L(R) (see e.g. [13] and [2, 5]). In [2, 5], L(R) is the frame
given by the generators (p, q) for p, q ∈ Q and the defining relations

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
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(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(R3) (p, q) =

∨
{(r, s) : p < r < s < q},

(R4)
∨
p,q∈Q(p, q) = 1.

Here it will be useful to adopt the equivalent description of L(R) intro-
duced in [14] (see also [12]) and to take the elements (r,—) =

∨
s∈Q(r, s) and

(—, s) =
∨
r∈Q(r, s) as primitive notions. Specifically, the frame of reals L(R)

is equivalently given by the generators (r,—) and (—, r) for r ∈ Q subject to
the defining relations

(r1) (r,—) ∧ (—, s) = 0 whenever r ≥ s,
(r2) (r,—) ∨ (—, s) = 1 whenever r < s,
(r3) (r,—) =

∨
s>r(s,—), for every r ∈ Q,

(r4) (—, r) =
∨
s<r(—, s), for every r ∈ Q,

(r5)
∨
r∈Q(r,—) = 1,

(r6)
∨
r∈Q(—, r) = 1.

With (p, q) = (p,—) ∧ (—, q) one goes back to (R1)-(R4).

1.4. Rings of real functions. For any frame L, the algebra R(L) of con-
tinuous real functions on L has as its elements the frame homomorphisms
f : L(R) → L. The operations are determined by the operations of Q as
lattice-ordered ring as follows (see [2] for more details):

(1) For � = +, ·,∧,∨:

(f � g)(p, q) =
∨
{f(r, s) ∧ g(t, u) | 〈r, s〉 � 〈t, u〉 ⊆ 〈p, q〉}

where 〈·, ·〉 stands for open interval in Q and the inclusion on the right
means that x � y ∈ 〈p, q〉 whenever x ∈ 〈r, s〉 and y ∈ 〈t, u〉.

(2) (−f)(p, q) = f(−q,−p).
(3) For each r ∈ Q, a nullary operation r defined by

r(p, q) =

{
1 if p < r < q

0 otherwise.

(4) For each 0 < λ ∈ Q, (λ · f)(p, q) = f( pλ ,
q
λ).

Indeed, these stipulations define maps from Q × Q to L and turn the
defining relations (R1)-(R4) of L(R) into identities in L and consequently
determine frame homomorphisms L(R) → L. The result that R(L) is an
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f -ring follows from the fact that any identity in these operations which is
satisfied by Q also holds in R(L).

Given a frame L, we denote Frm(L(R),S(L)) = R(S(L)) by F(L). In
particular, each F(L) is an f -ring with operations defined by the formulas
above. In Sections 3 and 4 we will provide explicit formulas formulas for
describing them.

An f ∈ F(L) is called an arbitrary real function [10] on L. Further f is:

(1) lower semicontinuous if f(p,—) is a closed sublocale for every p ∈ Q.
(2) upper semicontinuous if f(—, q) is a closed sublocale for every q ∈ Q.

The classes of lower and upper semicontinuous functions on L will be denoted
by LSC(L) and USC(L) respectively.

Since any L is isomorphic to the subframe cL of S(L) of all closed sublo-
cales, the ring R(L) may be seen as the subring C(L) of all continuous real
functions of F(L): f ∈ F(L) is continuous if f(p, q) is a closed sublocale for
every p, q.

Remark 1.2. (1) Each bijective and increasing map ϕ : Q→ Q determines a
bijection ϕ(·) : F(L)→ F(L) defined by

(ϕf)(r,—) = f(ϕ(r),—) and (ϕf)(—, r) = f(—, ϕ(r)) for every r ∈ Q.

When restricted to LSC(L) (resp. USC(L)) it becomes a bijection from
LSC(L) (resp. USC(L)) onto LSC(L) (resp. USC(L)). Moreover, ϕ(·) is
an order isomorphism.

(2) On the other hand, each bijective and decreasing map ϕ : Q → Q also
determines a bijection ϕ(·) : F(L)→ F(L) defined by:

(ϕf)(r,—) = f(—, ϕ(r)) and (ϕf)(—, r) = f(ϕ(r),—) for every r ∈ Q.

Now, when restricted to LSC(L) (resp. USC(L)) it becomes a bijection from
LSC(L) (resp. USC(L)) onto USC(L) (resp. LSC(L)), showing that the posets
(LSC(L),≤) and (USC(L),≤) are isomorphic. In this case ϕ(·) is order-
reversing and one has

ϕ(f ∧ g) = ϕf ∨ ϕg for each f, g ∈ F(L).

In particular, when ϕ(r) = −r for each r ∈ Q we shall denote this bijection
by −(·) (it evidently coincides with the −(·) of Subsection 1.4(2)).
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2. Scales in S(L)
In order to define a real function f ∈ F(L) it suffices to consider two

maps from Q to S(L) that turn the defining relations (r1)-(r6) of L(R) into
identities in S(L). This can be easily done with scales (trails in [2], cf. [10]):
a family {Sp | p ∈ Q} ⊆ S(L) is a scale in S(L) if

(S1) Sp ∨ Sq∗ = 1 whenever p < q, and
(S2)

∨
p∈Q Sp = 1 =

∨
p∈Q Sp

∗.

Remark 2.1. By condition (S1) a scale is necessarily an antitone family. Fur-
ther, if a family C consists of complemented sublocales, then C satisfies (S1)
if and only if it is antitone. Indeed, if C is antitone and each sublocale Sp
has a complement ¬Sp, then Sp ∨ Sq∗ = Sp ∨ ¬Sq ≥ Sp ∨ ¬Sp = 1 whenever
p < q.

The following lemma, essentially proved in [10], will play a key role in the
rest of the paper.

Lemma 2.2. Let C = {Sr : r ∈ Q} be a scale in S(L) and let

f(p,—) =
∨
r>p

Sr and f(—, q) =
∨
r<q

Sr
∗ (p, q) ∈ Q).

Then:

(a) The above two formulas determine an f ∈ F(L).
(b) If any Sr is closed then f ∈ LSC(L).
(c) If any Sr is open then f ∈ USC(L).
(d) If any Sr is clopen then f ∈ C(L).

Examples 2.3. As basic examples of real functions we list:

(1) Constant functions: For each r ∈ Q let Cr = {Srt | t ∈ Q} ⊆ S(L) be
defined by Srt = 1 if t < r and Srt = 0 if t ≥ r. Clearly, this is a scale in
S(L). The corresponding function in C(L) provided by Lemma 2.2 is given
for each p, q ∈ Q by

r(p,—) =

{
1 if p < r

0 if p ≥ r
and r(—, q) =

{
0 if q ≤ r

1 if q > r

and coincides with the r of 1.4(3).

(2) Characteristic functions: Let S be a complemented sublocale of L.
Then {Sr | r ∈ Q} ⊆ S(L) defined by Sr = 1 if r < 0, Sr = ¬S if 0 ≤
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r < 1 and Sr = 0 if r ≥ 1, is a scale in S(L). We shall denote by χS
the corresponding real function in F(L) and refer to it as the characteristic
function of S. It is defined for each p, q ∈ Q by

χS(p,—) =


1 if p < 0

¬S if 0 ≤ p < 1

0 if p ≥ 1

and χS(—, q) =


0 if q ≤ 0

S if 0 < q ≤ 1

1 if q > 1.

3. The posets LSC(L) and USC(L)
The aim of the following two sections is to provide alternative descrip-

tions to [2] of the lattice-ordered ring operations of F(L), by considering two
maps from Q to S(L) that turn the defining relations (r1)-(r6) of L(R) into
identities in S(L). We shall use these alternative descriptions to study the
behaviour of the operations in LSC(L) and USC(L). In this section we start
with the lattice operations.

3.1. Finite joins and meets. Given f, g ∈ F(L), if we define

Sp = f(p,—) ∨ g(p,—)

for each p ∈ Q then, for each p < q,

Sp ∨ Sq∗ = f(p,—) ∨ g(p,—) ∨
(
f(q,—)∗ ∧ g(q,—)∗

)
=
(
f(p,—) ∨ g(p,—) ∨ f(q,—)∗

)
∧
(
f(p,—) ∨ g(p,—) ∨ g(q,—)∗

)
= 1.

Consequently,

Cf∨g = {f(p,—) ∨ g(p,—) | p ∈ Q}
satisfies condition (S1) of a scale. Moreover∨

p∈Q
Sp =

∨
p∈Q

(
f(p,—) ∨ g(p,—)

)
=
( ∨
p∈Q

f(p,—)
)
∨
( ∨
p∈Q

g(p,—)
)

= 1

and ∨
p∈Q

Sp
∗ =

∨
p∈Q

(
f(p,—)∗ ∧ g(p,—)∗

)
≥
∨
p∈Q

(
f(—, p) ∧ g(—, p)

)
≥
∨

r,s∈Q

(
f(—, r) ∧ g(—, s)

)
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(since for any r, s ∈ Q, p = r∨s ∈ Q and f(—, r)∧g(—, s) ≤ f(—, p)∧g(—, p)),
from which it follows that∨

p∈Q
Sp
∗ =

( ∨
p∈Q

f(—, p)
)
∧
( ∨
p∈Q

g(—, p)
)

= 1.

Hence Cf∨g is a scale in S(L). It is straightforward to check that the real
function generated by Cf∨g is precisely the supremum f ∨ g in F(L).

Note also that, for each p, q ∈ Q,

(f ∨ g)(p,—) =
∨
r>p

(
f(r,—) ∨ g(r,—)

)
= f(p,—) ∨ g(p,—) and

(f ∨ g)(—, q) =
∨
r<q

(
f(r,—) ∨ g(r,—)

)∗
= f(—, q) ∧ g(—, q).

(For the latter identity, if r < q then (f(r,—)∨g(r,—))∗ = f(r,—)∗∧g(r,—)∗ ≤
f(—, q)∧g(—, q); conversely, f(—, q)∧g(—, q) =

∨
r1,r2<q

(f(—, r1)∧g(—, r2)) ≤∨
r<q(f(r,—)∗ ∧ g(r—)∗).)
Then, immediately, if f, g ∈ LSC(L) (resp. USC(L)) we have also f ∨ g ∈

LSC(L) (resp. USC(L)).

Concerning meets, since f ≤ g iff −g ≤ −f for every f, g ∈ F(L), the
infimum f ∧ g of f, g ∈ F(L) exists and is given by f ∧ g = −(−f ∨ −g).
Equivalently, f ∧ g is the real function defined by the scale

Cf∧g = {f(p,—) ∧ g(p,—) | p ∈ Q}.

Note also that, for each p, q ∈ Q,

(f ∧ g)(p,—) = (−f ∨ −g)(—,−p)
= −f(—,−p) ∧ −g(—,−p) = f(p,—) ∧ g(p,—)

and
(f ∧ g)(—, q) = (−f ∨ −g)(−q,—)

= −f(−q,—) ∨ −g(−q,—) = f(—, q) ∨ g(—, q).

Therefore, if f, g ∈ LSC(L) (resp. USC(L)) then f ∧ g ∈ LSC(L) (resp.
USC(L)).

In summary, we have:

Proposition 3.1. The poset F(L) has binary joins and meets; LSC(L),
USC(L) and C(L) are closed under these joins and meets.
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Remark 3.2. The lattice operations defined above on F(L), when applied to
elements of the form (p, q), coincide with those of [2] (see Subsection 1.4). In
fact, let f, g ∈ F(L) and p, q ∈ Q.

(1) Regarding joins we have

(f ∨ g)(p, q) = (f ∨ g)(p,—) ∧ (f ∨ g)(—, q)

=
(
f(p,—) ∨ g(p,—)

)
∧
(
f(—, q) ∧ g(—, q)

)
=
(
f(p, q) ∧ g(—, q)

)
∨
(
f(—, q) ∧ g(p, q)

)
=
(∨
s<q

f(p, q) ∧ g(s, q)
)
∨
(∨
r<q

f(r, q) ∧ g(p, q)
)
,

and the latter is equal to∨
{f(r, s) ∧ g(t, u) | 〈r, s〉 ∨ 〈t, u〉 = 〈r ∨ t, s ∨ u〉 ⊆ 〈p, q〉}.

Indeed:
If s < q, then 〈p, q〉 ∨ 〈s, q〉 = {x ∨ y | x ∈ 〈p, q〉, y ∈ 〈s, q〉} = 〈p ∨ s, q〉 ⊆
〈p, q〉. If r < q, then 〈r, q〉∨〈p, q〉 = {x∨y | x ∈ 〈r, q〉, y ∈ 〈p, q〉} = 〈r∨p, q〉 ⊆
〈p, q〉. Hence the inequality ≤ follows. Conversely, let r, s, t and u such that
〈r, s〉 ∨ 〈t, u〉 ⊆ 〈p, q〉, i.e. such that p ≤ r ∨ t and s ∨ u ≤ q. We distinguish
several cases: if p ≤ r and t ≥ q, then f(r, s)∧g(t, u) ≤ f(p, q)∧g(t, q) = 0; if
p ≤ r and t < q, then f(r, s)∧g(t, u) ≤ f(p, q)∧g(t, q) ≤

∨
s<q f(p, q)∧g(s, q);

if p ≤ t and r ≥ q, then f(r, s)∧g(t, u) ≤ f(r, q)∧g(p, q) = 0; finally, if p ≤ t
and r < q, then f(r, s) ∧ g(t, u) ≤ f(r, q) ∧ g(p, q) ≤

∨
r<q f(r, q) ∧ g(p, q).

(2) Concerning meets, it follows immediately from the bijection −(·) that

(f ∧ g)(p, q) = (−f ∨ −g)(−q,−p) =

=
∨
{−f(r, s) ∧ −g(t, u) | 〈r, s〉 ∨ 〈t, u〉 = 〈r ∨ t, s ∨ u〉 ⊆ 〈−q,−p〉}

=
∨
{f(−s,−r) ∧ g(−u,−t) | 〈r, s〉 ∨ 〈t, u〉 = 〈r ∨ t, s ∨ u〉 ⊆ 〈−q,−p〉}

=
∨
{f(r′, s′) ∧ g(t′, u′) | 〈r′, s′〉 ∧ 〈t′, u′〉 = 〈r′ ∨ t′, s′ ∧ u′〉 ⊆ 〈p, q〉}.

3.2. Arbitrary joins and meets. We now turn to the question about
arbitrary joins and meets in F(L), LSC(L) and USC(L).

Lemma 3.3. Let ∅ 6= F ⊆ F(L). If
∨
f∈F f(p,—) is a complemented sublo-

cale for every p ∈ Q and
∨
p∈Q
∧
f∈F f(—, p) = 1, then

∨
F exists in F(L).
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Proof : Let Sp =
∨
f∈F f(p,—) for each p ∈ Q and C∨F = {Sp | p ∈ Q}. Since

each Sp is complemented and C∨F is antitone, it follows from Remark 2.1
that C∨F satisfies condition (S1) of a scale. Moreover∨

p∈Q
Sp =

∨
p∈Q

∨
f∈F

f(p,—) =
∨
f∈F

∨
p∈Q

f(p,—) = 1 and∨
p∈Q

Sp
∗ =

∨
p∈Q

( ∨
f∈F

f(p,—)
)∗

=
∨
p∈Q

∧
f∈F

f(p,—)∗ =
∨
p∈Q

∧
f∈F

f(—, p) = 1.

Consequently, C∨F is a scale.
The real function generated by C∨F is precisely the supremum

∨
F of F

in F(L) and is given for each p, q ∈ Q by

(
∨
F)(p,—) =

∨
f∈F

f(p,—)

and

(
∨
F)(—, q) =

∨
r<q

∧
f∈F

f(r,—)∗ =
∨
r<q

∧
f∈F

f(—, r).

(For the latter identity let r < s < q. Then∨
s<q

∧
f∈F

f(—, s) ≥
∧
f∈F

f(—, s) ≥
∧
f∈F

f(r,—)∗.

The other inequality follows immediately since f(—, r) ≤ f(r,—)∗.)

Now we can prove the following completeness result:

Corollary 3.4. Let ∅ 6= F ⊆ LSC(L) and suppose there is a g ∈ F(L)
such that f ≤ g for every f ∈ F . Then

∨
F exists and belongs to LSC(L).

(Equivalently,
∨
F exists and belongs to LSC(L) if and only if

∨
F exists in

F(L).)
Dually, let ∅ 6= F ⊆ USC(L) and suppose there is a g ∈ F(L) such that g ≤

f for every f ∈ F . Then
∧
F exists and belongs to USC(L). (Equivalently,∧

F exists and belongs to USC(L) if and only if
∧
F exists in F(L).)

Proof : Let ∅ 6= F ⊆ LSC(L) and g ∈ F(L) such that f ≤ g for every
f ∈ F . Since

∨
f∈F f(p,—) is a closed (hence complemented) sublocale and∨

p∈Q
∧
f∈F f(—, p) ≥

∨
p∈Q g(—, p) = 1, the result follows immediately from

Lemma 3.3. The second assertion can be proved by a similar argument.

Finally, in the case of continuous real functions, we have the following:
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Corollary 3.5. Let ∅ 6= F ⊆ C(L). If there is a g ∈ F(L) such that f ≤ g
for every f ∈ F , then

∨
F exists and belongs to LSC(L). Dually, if there is

a g ∈ F(L) such that g ≤ f for every f ∈ F , then
∧
F exists and belongs to

USC(L).

3.3. Order-completeness. As is well-known (see e.g. [16]) the frame S(L)
is always completely regular and zero-dimensional. Therefore, by the identity
F(L) = R(S(L)), F(L) is an l-ring of continuous functions of a completely
regular and zero-dimensional frame. This means that any result concerning
R(L) for completely regular and zero-dimensional frames L is in particular
true for F(L). In a sense, for a given L, the study of F(L) is more general
than that of R(L) (since R(L) ' C(L) ⊆ F(L)), but on the other hand the
study of all F(L) is just a particular case of the study of all R(L) (for those
L which are completely regular and zero-dimensional).

Recall from [4] that an l-ring is called order complete if every non-void
subset S which is bounded above has a join

∨
S; similarly, it is called σ-

complete if
∨
S exists for any countable subset of this type. In Section 2 of

[4], the authors prove a series of results for a completely regular L. Now we
have:

Proposition 3.6. (Cf. [4, Proposition 1]) F(L) is order complete iff S(L) is
extremally disconnected.

Since S(L) is zero-dimensional, this means that F(L) is not, in general,
order complete: it is order complete precisely when every sublocale of L
is complemented (since in any extremally disconnected the second De Mor-
gan law (

∧
i∈I xi)

∗ =
∨
i∈I x

∗
i holds, every element of a zero-dimensional and

extremally disconnected frame is evidently complemented). Then, by [18,
Proposition 26], we may conclude that F(L) is order complete if and only if
the lattice of complemented sublocales of L is closed under arbitrary joins in
S(L).

Given a frame L, let BL denote the Boolean part of L, that is, the Boolean
algebra of complemented elements of L. Again by [4] we have the following

Corollary 3.7. (Cf. [4, Corollaries 1 and 2]) The following assertions are
equivalent for any frame L:

(i) F(L) is order complete.
(ii) S(L) is extremally disconnected.
(iii) B(S(L)) is complete.
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(iv) βS(L) is extremally disconnected.

Note that the equivalence (ii)⇔(iii) is a particular case of result III.3.5
of [13]: a zero-dimensional frame L is extremally disconnected iff BL is
complete.

There is also a corresponding result for σ-completeness:

Corollary 3.8. (Cf. [4, Proposition 2 and Corollary 3]) The following as-
sertions are equivalent for any frame L:

(i) F(L) is σ-complete.
(ii) S(L) is basically disconnected (i.e. coz(f)∗ ∨ coz(f)∗∗ = 1 for every

cozero element, coz(f) = f(—, 0) ∨ f(0,—), of S(L)).
(iii) βS(L) is basically disconnected.

Finally, by [4, Remark 3] we know that

F(L) is regular iff every coz(f) is complemented.

Thus, immediately:

F(L) is order complete⇒ F(L) is regular⇒ F(L) is σ-complete.

4. Algebraic operations in LSC(L) and USC(L)
We now pursue with the operations of scalar product, sum and product.

4.1. Product with a scalar. Given 0 < λ ∈ Q and f ∈ F(L), if we define
Sp = f( pλ ,—) for each p ∈ Q then we have that for each p < q

Sp ∨ Sq∗ = f( pλ ,—) ∨ f( qλ ,—)∗ ≥ f( pλ ,—) ∨ f(—, qλ) = 1,∨
p∈Q Sp =

∨
p∈Q f( pλ ,—) = 1 and

∨
p∈Q S

∗
p ≥

∨
p∈Q f(—, pλ) = 1. Conse-

quently, Cλ·f = {f( pλ ,—) | p ∈ Q} is a scale in S(L). The real function
generated by Cλ·f which we denote by λ · f is defined for each p, q ∈ Q as

(λ · f)(p,—) = f( pλ ,—) and (λ · f)(—, q) = f(—, qλ).

It coincides again with the corresponding operation in R(S(L)) (Subsection
1.4):

(λ · f)(p, q) = (λ · f)(p,—) ∧ (λ · f)(—, q) = f( pλ ,—) ∧ f(—, qλ) = f( pλ ,
q
λ).

Let f ∈ LSC(L) (resp. USC(L)) and 0 < λ ∈ Q. It follows immediately
that λ · f ∈ LSC(L) (resp. USC(L)).
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4.2. Sum. We first note the following:

Lemma 4.1. Let f, g ∈ F(L). For each p ∈ Q define

Sf+g
p =

∨
r∈Q

(
f(r,—)∧ g(p− r,—)

)
and T f+g

p =
∨
s∈Q

(
f(—, s)∧ g(—, p− s)

)
.

(a) If p ≥ q ∈ Q then Sf+g
p ∧ T f+g

q = 0.

(b) If p < q ∈ Q then Sf+g
p ∧T f+g

q =
∨
{f(r, s)∧g(t, u) | 〈r, s〉+〈t, u〉 ⊆ 〈p, q〉}

and Sf+g
p ∨ T f+g

q = 1.

Proof : (a) Let p, q, r, s ∈ Q with p ≥ q. Then either s ≤ r or q − s < p − r
and so either f(r,—) ∧ f(—, s) = 0 or g(p − r,—) ∧ g(—, q − s) = 0. Hence
Sf+g
p ∧ T f+g

q = 0.

(b) Let p, q, r, s ∈ Q with p < q. Since 〈r, s〉+ 〈t, u〉 = 〈r+ t, s+u〉, it follows
that 〈r, s〉 + 〈t, u〉 ⊆ 〈p, q〉 if and only if p ≤ r + t and q ≥ s + u, that is, if
and only if p− r ≤ t and q − s ≥ u. Consequently

Sf+g
p ∧ T f+g

q =
∨

r,s∈Q

(
f(r,—) ∧ g(p− r,—) ∧ f(—, s) ∧ g(—, q − s)

)
=

∨
r,s∈Q

(
f(r, s) ∧ g(p− r, q − s)

)
=
∨
{f(r, s) ∧ g(t, u) | 〈r, s〉+ 〈t, u〉 ⊆ 〈p, q〉}.

Regarding the second assertion, let p < q ∈ Q and t = q−p
2 > 0. Then∨

r∈Q f(r, r + t) =
∨
s∈Q g(s, s + t) = 1. Let r, s ∈ Q. If r + s > p then

f(r, r+ t)∧ g(s, s+ t) ≤ f(r,—)∧ g(p− r,—) ≤ Sf+g
p . Otherwise, if r+ s ≤ p

then s+t ≤ q−r−t and so f(r, r+t)∧g(s, s+t) ≤ f(—, r+t)∧g(—, q−(r+t)) ≤
T f+g
q . Hence

1 =
∨

r,s∈Q

(
f(r, r + t) ∧ g(s, s+ t)

)
≤ Sf+g

p ∨ T f+g
q .

Proposition 4.2. For any f, g ∈ F(L) the family {Sf+g
p | p ∈ Q} is a scale

in S(L).

Proof : Let p < q ∈ Q. Take r ∈ Q such that p < r < q. It follows
immediately from Lemma 4.1 (a) and (b) that Sf+g

p ∨
(
Sf+g
q

)∗ ≥ Sf+g
p ∨

T f+g
r = 1. On the other hand

∨
p∈Q S

f+g
p =

∨
p,r∈Q

(
f(r,—) ∧ g(p − r,—)

)
=∨

r∈Q
(
f(r,—) ∧

∨
p∈Q g(p − r,—)

)
=
∨
r∈Q f(r,—) = 1 and

∨
p∈Q
(
Sf+g
p

)∗ ≥∨
p∈Q T

f+g
p =

∨
p,s∈Q

(
f(—, s) ∧ g(—, p − s)

)
=
∨
s∈Q
(
f(—, s) ∧

∨
p∈Q g(—, p −

s)
)

=
∨
s∈Q f(—, s) = 1.
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We shall write f + g (the sum of f and g) to denote the real function
generated by the scale {Sf+g

p | p ∈ Q}. It coincides with the sum operation
in R(S(L)) (Subsection 1.4):

Corollary 4.3. Let f, g ∈ F(L). Then:

(a) (f + g)(p,—) =
∨
r∈Q
(
f(r,—) ∧ g(p− r,—)

)
for every p ∈ Q.

(b) (f + g)(—, q) =
∨
s∈Q
(
f(—, s) ∧ g(—, q − s)

)
for every q ∈ Q.

(c) (f + g)(p, q) =
∨
{f(r, s) ∧ g(t, u) | 〈r, s〉 + 〈t, u〉 ⊆ 〈p, q〉} for every

p, q ∈ Q.

Proof : (a) By Lemma 2.2,

(f + g)(p,—) =
∨
t>p

Sf+g
t =

∨
t>p

∨
r∈Q

(
f(r,—) ∧ g(t− r,—)

)
=

=
∨
r∈Q

(
f(r,—) ∧ g(p− r,—)

)
.

(b) By Lemma 2.2, (f+g)(—, q) =
∨
r<q(S

f+g
r )∗ and therefore (f+g)(—, q) ≤

T f+g
q (since by Lemma 4.1(b), Sf+g

r ∨ T f+g
q = 1 for r < q). On the other

hand, T f+g
q =

∨
s∈Q
∨
r<q

(
f(—, s) ∧ g(—, r − s)

)
=
∨
r<q T

f+g
r ≤

∨
r<q(S

f+g
r )∗.

Hence (f + g)(—, q) = T f+g
q =

∨
s∈Q
(
f(—, s) ∧ g(—, q − s)

)
.

(c) It follows immediately from Lemma 4.1(b).

Hence we have:

Corollary 4.4. Let f, g ∈ F(L).

(a) If f, g ∈ LSC(L) then f + g ∈ LSC(L).
(b) If f, g ∈ USC(L) then f + g ∈ USC(L).
(c) If f, g ∈ C(L) then f + g ∈ C(L).

Given f, g ∈ F(L), since f − g = f + (−g) we also have:

Corollary 4.5. Let f, g ∈ F(L).

(a) (f − g)(p,—) =
∨
r∈Q f(r,—) ∧ g(—, r − p) for every p ∈ Q.

(b) (f − g)(—, q) =
∨
s∈Q f(—, s) ∧ g(s− q,—) for every q ∈ Q.

(c) If f ∈ LSC(L) and g ∈ USC(L) then f − g ∈ LSC(L).
(d) If f ∈ USC(L) and g ∈ LSC(L) then f − g ∈ USC(L).
(e) If f, g ∈ C(L) then f − g ∈ C(L).
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4.3. Product. We now turn to the product, starting with the case f, g ≥ 0:

Lemma 4.6. Let 0 ≤ f, g ∈ F(L). For each p ∈ Q define

Sf ·gp =


∨
r>0

(
f(r,—) ∧ g(pr ,—)

)
if p ≥ 0

1 if p < 0
and

T f ·gq =


∨
s>0

(
f(—, s) ∧ g(—, qs)

)
if q > 0

0 if q ≤ 0.

(a) If p ≥ q ∈ Q then Sf ·gp ∧ T f ·gq = 0.

(b) If p < q ∈ Q then Sf ·gp ∧ T f ·gq =
∨
{f(r, s)∧ g(t, u) | 〈r, s〉 · 〈t, u〉 ⊆ 〈p, q〉}

and Sf ·gp ∨ T f ·gq = 1.

Proof : (a) Let p, q, r, s ∈ Q with p ≥ q > 0 (the case q ≤ 0 is trivial) and
r, s > 0. Then either s ≤ r or q

s ≤
p
r and so either f(r,—) ∧ f(—, s) = 0 or

g(pr ,—) ∧ g(—, qs) = 0. Hence Sf+g
p ∧ T f+g

q = 0.

(b) Let p, q ∈ Q with 0 ≤ p < q (the case p < 0 is similar). Then

Sf ·gp ∧ T f ·gq =
∨
r,s>0

(
f(r,—) ∧ g(pr ,—) ∧ f(—, s) ∧ g(—, qs)

)
=
∨
{(f(r, s) ∧ g(pr ,

q
s) | 0 < r < s, 0 ≤ p

r <
q
s}

≤
∨
{f(r, s) ∧ g(t, u) | 〈r, s〉 · 〈t, u〉 ⊆ 〈p, q〉}

since 〈r, s〉 · 〈pr ,
q
s〉 = 〈p, q〉 for 0 < r < s and 0 ≤ p

r <
q
s . Conversely, if

〈r, s〉 · 〈t, u〉 ⊆ 〈p, q〉 then either s, u < 0 or r, t > 0. If s, u < 0, then
f(r, s)∧ g(t, u) = 0; on the other hand, if r, t > 0 we have that 〈r, s〉 · 〈t, u〉 =
〈rt, su〉 ⊆ 〈p, q〉 and so p ≤ rt and q ≥ su. Hence

f(r, s) ∧ g(t, u) ≤ f(r, s) ∧ g(pr ,
q
s) ≤

∨
0<r,s

(
f(r, s) ∧ g(pr ,

q
s)
)

= Sf ·gp ∧ T f ·gq .

Regarding the second assertion, let 0 ≤ p < q ∈ Q (the case p < 0 is
trivial) and t ∈ Q such that 1 < t2 ≤ q

p . We have that
∨
r>0 f(r, rt) =

f(0,—) and
∨
s>0 g(s, st) = g(0,—). Let 0 < r, s ∈ Q. If rs > p then

f(r, rt)∧g(s, st) ≤ f(r,—)∧g(pr ,—) ≤ Sf ·gp . Otherwise, if rs ≤ p then st ≤ q
rt

and so f(r, rt) ∧ g(s, st) ≤ f(—, rt) ∧ g(—, qrt) ≤ T f ·gq . Hence

f(0,—) ∧ g(0,—) =
∨
r,s>0

(
f(r, rt) ∧ g(s, st)

)
≤ Sf ·gp ∨ T f ·gq .
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On the other hand,

T f ·gq ∨ f(0,—) =
∨
s>0

(
(f(—, s) ∨ f(0,—)) ∧ (g(—, qs) ∨ f(0,—))

)
=
∨
s>0

(
g(—, qs) ∨ f(0,—)

)
= 1

and, similarly, T f ·gq ∨ g(0,—) = 1, hence

1 =
(
T f ·gq ∨f(0,—)

)
∧
(
T f ·gq ∨g(0,—)

)
= T f ·gq ∨

(
f(0,—)∧g(0,—)

)
≤ Sf ·gp ∨T f ·gq .

Proposition 4.7. For any 0 ≤ f, g ∈ F(L) the family {Sf ·gp | p ∈ Q} is a
scale in S(L).

Proof : Let p < q ∈ Q. Take r ∈ Q such that p < r < q. It follows
immediately from Lemma 4.6 (a) and (b) that Sf ·gp ∨

(
Sf ·gq

)∗ ≥ Sf ·gp ∨T f ·gr = 1.

On the other hand,
∨
p∈Q S

f ·g
p = 1 and∨

p∈Q

(
Sf ·gp

)∗ ≥ ∨
p∈Q

T f ·gp =
∨

p,s>0

(
f(—, s) ∧ g(—, ps)

)
=

=
∨
s>0

(
f(—, s) ∧

∨
p>0

g(—, ps)
)

=
∨
s>0

f(—, s) = 1.

Let 0 ≤ f, g ∈ F(L). We shall write f ·g (the product of f and g) to denote
the real function generated by the scale {Sf ·gp | p ∈ Q}. It coincides with the
product operation in R(S(L)) (Subsection 1.4):

Corollary 4.8. Let 0 ≤ f, g ∈ F(L). Then:

(a) (f · g)(p,—) =


∨
r>0

(
f(r,—) ∧ g(pr ,—)

)
if p ≥ 0

1 if p < 0.

(b) (f · g)(—, q) =


∨
s>0

(
f(—, s) ∧ g(—, qs)

)
if q > 0

0 if q ≤ 0.

(c) (f ·g)(p, q) =
∨
{f(r, s)∧g(t, u) | 〈r, s〉 ·〈t, u〉 ⊆ 〈p, q〉} for every p, q ∈ Q.

Proof : (a) If p < 0 then (f · g)(p,—) =
∨
r>p S

f ·g
r = 1. On the other hand,

if p ≥ 0 then (f · g)(p,—) =
∨
t>p S

f ·g
t =

∨
t>p

∨
r>0

(
f(r,—) ∧ g( tr ,—)

)
=∨

r>0

(
f(r,—) ∧ g(pr ,—)

)
.
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(b) By Lemma 2.2, (f ·g)(—, q) =
∨
p<q

(
Sf ·gp

)∗ ≤ T f ·gq . On the other hand, let

q > 0. It follows then, using Lemma 4.6(b), that
∨
s>0

(
f(—, s) ∧ g(—, qs)

)
=∨

s>0

∨
0<p<q

(
f(—, s)∧g(—, ps)

)
=
∨

0<p<q T
f ·g
p ≤

∨
0<p<q

(
Sf ·gp

)∗
= (f ·g)(—, q).

(c) It follows immediately from Lemma 4.6(b).

Hence we have:

Corollary 4.9. Let 0 ≤ f, g ∈ F(L).

(a) If f, g ∈ LSC(L) then f · g ∈ LSC(L).
(b) If f, g ∈ USC(L) then f · g ∈ USC(L).
(c) If f, g ∈ C(L) then f · g ∈ C(L).

In order to extend this result to the product of two arbitrary f and g let

f+ = f ∨ 0 and f− = (−f) ∨ 0

for any f ∈ F(L). Note that f = f+ − f−. Since R(S(L)) is an `-ring, from
general properties of `-rings we have that

f · g =
(
f+ · g+)− (f+ · g−)− (f− · g+) + (f− · g−).

In particular, if f, g ≤ 0, then f · g = f− · g− = (−f) · (−g). Hence:

Corollary 4.10. Let f, g ∈ F(L).

(a) If f, g ∈ LSC(L) and f, g ≤ 0 then f · g ∈ USC(L).
(b) If f, g ∈ USC(L) and f, g ≤ 0 then f · g ∈ LSC(L).
(c) If f, g ∈ C(L) then f · g ∈ C(L).

Remark 4.11. Replacing the frame L(R) of reals by the frame L(R) of ex-
tended reals (defined by dropping conditions (r5) and (r6) in 1.3) we may
deal with rings of extended real functions. Their study, more difficult, is left
for a subsequent paper.

5. An application to idempotent functions
An f ∈ F(L) is idempotent if f · f = f . Obvious examples of idempotents

in F(L) are the characteristic functions χS (for complemented sublocales S
of L).

By using the new descriptions of the algebraic operations of F(L) obtained
in Section 4, the following properties are now easy to check.
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Properties 5.1. The following hold for any f, g ∈ F(L):

(a) (f · g)(0,—) =
(
f(0,—) ∧ g(0,—)

)
∨
(
f(—, 0) ∧ g(—, 0)

)
.

(b) (f · g)(—, 0) =
(
f(0,—) ∧ g(—, 0)) ∨

(
f(—, 0) ∧ g(0,—)

)
.

(c) (1− f)(0,—) = f(—, 1) and
(
1− f)(—, 0) = f(1,—).

With them at hand we can easily prove the following result that strengthens
Lemma 2.5 of [7].

Proposition 5.2. An f ∈ F(L) is idempotent if and only if f(0, 1) =
f(—, 0) = f(1,—) = 0.

Proof : Clearly f · f = f if and only if f · (1− f) = 0 if and only if(
f · (1− f)

)
(0,—) = 0 =

(
f · (1− f)

)
(—, 0).

But by the preceding properties we have(
f · (1− f)

)
(0,—) =

(
f(0,—) ∧ (1− f)(0,—)

)
∨
(
f(—, 0) ∧ (1− f)(—, 0)

)
=
(
f(0,—) ∧ f(—, 1)

)
∨
(
f(—, 0) ∧ f(1,—)

)
= f(0, 1)

and(
f · (1− f)

)
(—, 0) =

(
f(0,—) ∧ (1− f)(—, 0)

)
∨
(
f(—, 0) ∧ (1− f)(0,—)

)
=
(
f(0,—) ∧ f(1,—)

)
∨
(
f(—, 0) ∧ f(—, 1)

)
= f(1,—) ∨ f(—, 0).

Corollary 5.3. Let L be a frame. Then:

(a) An f ∈ F(L) is idempotent iff f = χS for some complemented sublocale
S of L.

(b) An f ∈ C(L) is idempotent iff f = χc(a) for some complemented element
a of L.

Proof : (a) We only need to prove necessity. Let f ∈ F(L) be idempotent and
S = f(−, 1). Since f(−, 1)∨f(0,−) = 1 and f(−, 1)∧f(0,−) = f(0, 1) = 0,
it follows that S is a complemented sublocale of L with complement f(0,−).
It is easy to check now that f = χS.

(b) This is obvious since we have that f ∈ C(L) if and only if f ∈ F(L) and
f(p, q) is a closed sublocale of L for each p, q ∈ Q. It follows that f must be
of the form χS with both S and ¬S being closed sublocales of L.
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We can now conclude from Proposition 2.2 of [7]) that:

(1) There exists a Boolean isomorphism between idempotent real func-
tions on L and the complemented sublocales of L.

(2) There exists a Boolean isomorphism between idempotent continuous
real functions on L and the complemented elements of L.

6. Applications to strict insertion
The results in the preceding section allow now to improve the study in

the previous paper [10] with the pointfree assertions corresponding exactly
to the following classical insertion theorems of Dowker [6] and Michael [15]
regarding, respectively, normal countably paracompact spaces and perfectly
normal spaces:

(Dowker) A topological space X is normal and countably para-
compact if and only if, given f, g : X → R such that f < g, f
is upper semicontinuous and g is lower semicontinuous, there
is a continuous h : X → R such that f < h < g.

(Michael) A topological space X is perfectly normal if and only
if, given f, g : X → R such that f ≤ g, f is upper semicon-
tinuous and g is lower semicontinuous, there is a continuous
h : X → R such that f ≤ h ≤ g and f(x) < h(x) < g(x)
whenever f(x) < g(x).

To begin with, we recall from [11] the fundamental pointfree Katětov-Tong
insertion theorem:

(Pointfree Katětov-Tong) A frame L is normal if and only if,
given f ∈ USC(L) and g ∈ LSC(L) with f ≤ g, there exists an
h ∈ C(L) such that f ≤ h ≤ g.

Now let f, g ∈ F(L) and define

ι(f, g) =
∨
p∈Q

(
f(—, p) ∧ g(p,—)

)
∈ S(L).



RINGS OF REAL FUNCTIONS IN POINTFREE TOPOLOGY 21

One writes f < g whenever ι(f, g) = 1 [10]. Note that the relation < is
indeed stronger than ≤: if f < g then, for every r ∈ Q,

f(r,—) = f(r,—) ∧
∨
p∈Q

(
f(—, p) ∧ g(p,—)

)
≤
∨
p≥r

(f(—, p) ∧ g(p,—)) ≤

≤ g(r,—) ∧
∨
p∈Q

(
f(—, p) ∧ g(p,—)

)
= g(r,—).

Moreover:

Lemma 6.1. For any r ∈ Q and any f, g, fi, gi ∈ F(L) (i = 1, 2) we have:

(a) ι(r, f) = f(r,—); in particular, r < f iff f(r,—) = 1.
(b) ι(f, r) = f(—, r); in particular, f < r iff f(—, r) = 1.
(c) ι(f, g) = ι(0, g − f); in particular, f < g iff 0 < g − f .
(d) ι(λ · f, λ · g) = ι(f, g); in particular, f < g iff λ · f < λ · g for every

0 < λ ∈ Q.
(e) ι(f1, g1) ≤ ι(f2, g2) whenever f2 ≤ f1 and g1 ≤ g2.

Proof : (a) ι(r, f) =
∨
p∈Q
(
r(—, p) ∧ f(p,—)

)
=
∨
p>r f(p,—) = f(r,—).

(b) It may be proved in a similar way.

(c) ι(0, g−f) =
∨
p∈Q
(
0(—, p)∧(g−f)(p,—)

)
=
∨
p>0

∨
r∈Q
(
g(r,—)∧f(—, r−

p)
)

=
∨
r∈Q
(
g(r,—)∧

(∨
p>0 f(—, r−p)

))
=
∨
r∈Q
(
g(r,—)∧f(—, r)

)
= ι(f, g).

(d) and (e) are clear.

We shall also need the following:

Remark 6.2. (Cf. Remark 1.2) Each bijective and increasing map ϕ from
{q ∈ Q | 0 ≤ q < 1} into {q ∈ Q | 0 ≤ q} determines a bijection ϕ(·) from
the set of all f ∈ F(L) such that 0 ≤ f into the set of all f ∈ F(L) such that
0 ≤ F(L) < 1, defined by:

(ϕf)(r,—) =


1 if r < 0

f(ϕ(r),—) if 0 ≤ r < 1

0 if r ≥ 1,
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and

(ϕf)(—, r) =


0 if r < 0

f(—, ϕ(r)) if 0 ≤ r < 1

1 if r ≥ 1.

Indeed,

0 ≤ f ⇔ f(—, 0) = 0

⇔ (ϕf)(—, 0) = 0 and ι(ϕf,1) = ϕf(—, 1) = 1

⇔ 0 ≤ ϕf and ϕf < 1.

Also, ι(0, f) = ι(0, ϕf) and so 0 < f iff 0 < ϕf . Finally, f ∈ LSC(L) iff
ϕf ∈ LSC(L), and f ∈ USC(L) iff ϕf ∈ USC(L).

We shall denote the inverse of ϕ(·) by ϕ−1(·).

The following result was proved in [10] and shown to be a (pointfree) gen-
eralization of Dowker’s Theorem above.

Proposition 6.3. The following are equivalent for a normal frame L:

(i) L is countably paracompact.
(ii) For each g ∈ LSC(L) with 0 < g ≤ 1, there exists an h ∈ C(L) such

that 0 < h < g.

We can now generalize it in the following sense:

Theorem 6.4 (Pointfree Dowker insertion theorem). A frame L is normal
and countably paracompact if and only if, given f ∈ USC(L) and g ∈ LSC(L)
with f < g, there exists an h ∈ C(L) such that f < h < g.

Proof : Assume L is a normal and countably paracompact frame and consider
f ∈ USC(L) and g ∈ LSC(L) with f < g. By Corollary 4.5(c) and Lemma
6.1(c), 0 < g − f ∈ LSC(L). Let ϕ be a bijective and increasing map from
{q ∈ Q | 0 ≤ q < 1} into {q ∈ Q | 0 ≤ q}. By Remark 6.2 we have
that 0 < ϕ(g − f) ≤ 1 and ϕ(g − f) ∈ LSC(L). Therefore by Proposition
6.3 there exists a continuous k > 0 such that 0 < k ≤ ϕ(g − f) and so

0 < ϕ−1(k) ≤ g − f . Then f + ϕ−1(k)
2 ≤ g − ϕ−1(k)

2 and by Katětov-Tong
insertion there is a continuous h such that

f + ϕ−1(k)
2 ≤ h ≤ g − ϕ−1(k)

2 .
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This is the required continuous h since k > 0 implies g− h ≥ ϕ−1(k)
2 > 0 and

h − f ≥ ϕ−1(k)
2 > 0 and hence f < h < g (by Lemma 6.1(c) and (d) and

Remark 6.2).

Conversely, we only need to show that L is normal (and use then Propo-
sition 6.3). Let a ∨ b = 1 in L. We need to prove that there exist u, v ∈ L
satisfying u∧v = 0 and a∨u = b∨v = 1. Consider f = χc(a) and g = χo(b)+1.
We know that f is upper semicontinuous and g is lower semicontinuous. Fur-
ther,

ι(f, g) ≥
(
χc(a)(—,

1
2) ∧ (χo(b) + 1)(1

2 ,—)
)
∨
(
χc(a)(—,

3
2) ∧ (χo(b) + 1)(3

2 ,—)
)

=
(
c(a) ∧ 1

)
∨
(
1 ∧ c(b)

)
= 1,

that is, f < g. Hence, by hypothesis, there is a continuous h satisfying
f < h < g. In particular, h(1,—) = c(u) and h(—, 1) = c(v) for some
u, v ∈ L. Clearly, u ∧ v = 0. Moreover, from f < h it follows that

1 =
∨
p∈Q

(
f(—, p)∧ h(p,—)

)
=

∨
0<p≤1

(
c(a)∧ h(p,—)

)
∨
∨
p>1

h(p,—) ≤ c(a)∨ c(u),

which shows that a ∨ u = 1. Similarly, h < g implies b ∨ v = 1. Hence L is
normal.

Remark 6.5. Theorem 6.4 applied to L = OX, for a normal and countably
paracompact space X, yields the result of Dowker quoted earlier in a very
straightforward way:

Let f, g : X → R such that f < g, f is upper semicontinuous and g is lower
semicontinuous. To begin with, observe that g : X → R induces a lower
semicontinuous g̃ : L(R) → S(OX) via the scale {c(g−1(]p,+∞[)) | p ∈ Q}
(see [11, Section 6] for the details). By Lemma 2.2,

g̃(p,—) =
∨
r>p

c(g−1(]r,+∞[)) = c(g−1(]p,+∞[)) for each p ∈ Q.

Similarly, f : X → R induces an upper semicontinuous f̃ : L(R) → S(OX)
(via the scale {o(f−1(]−∞, q[)) | q ∈ Q}) satisfying

f̃(—, q) =
∨
s<q

c(f−1(]−∞, s[)) = c(f−1(]−∞, q[)) for each q ∈ Q.
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Further

f̃ < g̃ ⇔ ι(f̃ , g̃) = 1 ⇔
∨
p∈Q

(
c(f−1(]−∞, p[)) ∧ c(g−1(]p,+∞[))

)
= 1

⇔ c
( ⋃
p∈Q

(
f−1(]−∞, q[) ∩ g−1(]p,+∞[)

))
= 1

⇔
⋃
p∈Q

(
f−1(]−∞, q[) ∩ g−1(]p,+∞[)

)
= X

⇔ f(x) < g(x) for every x ∈ X.

So by Theorem 6.4 there is a continuous h̃ such that f̃ < h̃ < g̃. It is
now a straightforward exercise to conclude that the h : X → R defined by
h(x) ∈]p, q[ iff x ∈ h̃(p, q) (for any p, q ∈ Q) is a continuous map satisfying
f < h < g.

The following result was proved in [10].

Proposition 6.6. A frame L is perfectly normal if and only if it is normal
and given g ∈ LSC(L) with 0 ≤ g ≤ 1 there exists an h ∈ C(L) such that
0 ≤ h ≤ g and ι(0, h) = h(0,—) = g(0,—) = ι(0, g).

We can also generalize it as follows:

Theorem 6.7 (Pointfree Michael insertion theorem). A frame L is perfectly
normal if and only if, given f ∈ USC(L) and g ∈ LSC(L) with f ≤ g, there
exists an h ∈ C(L) such that f ≤ h ≤ g and ι(f, h) = ι(h, g) = ι(f, g).

Proof : We only need to prove necessity. Assume L is a perfectly normal
frame and consider f ∈ USC(L) and g ∈ LSC(L) wit f ≤ g. By Corollary
4.5(c) and Lemma 6.1(c), 0 ≤ g − f ∈ LSC(L). Let ϕ be a bijective and
increasing map from {q ∈ Q | 0 ≤ q < 1} into {q ∈ Q | 0 ≤ q}. By Remark
6.2 we have that 0 ≤ ϕ(g − f) ≤ 1 and ϕ(g − f) ∈ LSC(L). Therefore
by Proposition 6.6 there exists a continuous k such that 0 ≤ k ≤ ϕ(g − f)
and ι(0, k) = ι(0, ϕ(g − f)). It follows that 0 ≤ ϕ−1(k) ≤ g − f and so

f + ϕ−1(k)
2 ≤ g− ϕ−1(k)

2 . Then by Katětov-Tong insertion there is a continuous
h such that

f + ϕ−1(k)
2 ≤ h ≤ g − ϕ−1(k)

2 .

This is the required continuous h since, by Lemma 6.1 and Remark 6.2,

ι(0, k) = ι(0, k2) = ι(0, ϕ
−1(k)

2 ) ≤ ι(0, h − f) = ι(f, h) ≤ ι(f, g) = ι(0, g −
f) = ι(0, ϕ(g − f)) = ι(0, k), hence ι(f, h) = ι(f, g). Similarly, ι(0, k) ≤
ι(0, g − h) = ι(h, g) ≤ ι(f, g) = ι(0, k) and so ι(h, g) = ι(f, g).
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Just as in Remark 6.5, it can be shown that Theorem 6.7 applied to OX
for a perfectly normal space X, yields the original result for spaces.

7.When is every real function continuous?
Since the sublocale lattice S(L) of a frame L is also a frame, the second

sublocale lattice S2(L) and an embedding S(L) ↪→ S2(L) exist. In fact, for
each frame L there is a tower

L ↪→ S(L) ↪→ S2(L) ↪→ S3(L) ↪→ · · · (2)

of sublocale lattices Sα(L) ([13, 19]) over all ordinals α. Each Sα(L) is the
α-dissolution of L and a frame L is called α-soluble [17] if its α-dissolution is
Boolean.

Not much is known about the tower (2) (in fact this is one of the most
deep and hard open problems in locale theory). It is known that the tower
can continue into the transfinite and, in some cases, may never stop. It
certainly stops when a Boolean frame is reached (because a frame is 0-soluble
iff it is Boolean [13]). Furthermore, a frame is 1-soluble iff it is scattered
(equivalently, if all its (Boolean) sublocales are complemented) and it is 2-
soluble iff each sublocale S 6= 0 of L has a nonzero complemented Boolean
sublocale [17].

Applying the functor R to (2) we get the tower

R(L) ↪→ F(L) = R(S(L)) ↪→ F(S(L)) = R(S2(L)) ↪→
↪→ F(S2(L)) = R(S3(L)) ↪→ · · ·

and it seems then natural to ask, for each ordinal α, which frames L satisfy
the identity F(Sα(L)) = R(Sα(L)).

For each ordinal α, the α-soluble frames are precisely the frames L for
which

F(Sα(L)) = R(Sα(L)).

Indeed: if Sα(L) is Boolean then Sα+1(L) = Sα(L) and so F(Sα(L)) =
R(Sα+1(L)) = R(Sα(L)); conversely, if F(Sα(L)) = R(Sα(L)), then for each
complemented sublocale S of Sα(L) the characteristic function χS belongs
to F(Sα(L)) = R(Sα(L)), from which it follows that S is a clopen sublocale;
but by zero-dimensionality any sublocale is a join of complemented sublocales
thus any sublocale of Sα(L) is clopen and, consequently, Sα(L) is Boolean.

In particular, Boolean frames are precisely the frames L where F(L) =
R(L), that is, where every real function on L is continuous. In this case
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the insertion theorems of the preceding section and of the papers[11] and
[8] trivialize (and L is immediately extremally disconnected, monotonically
normal, perfectly normal, completely normal, etc.).
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