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Abstract: In this paper we study sequences of matrix polynomials that satisfy a
non-symmetric recurrence relation. To study this kind of sequences we use a vector
interpretation of the matrix orthogonality. In the context of these sequences of
matrix polynomials we introduce the concept of the generalized matrix Nevai class
and we give the ratio asymptotics between two consecutive polynomials belonging to
this class. We study the generalized matrix Chebyshev polynomials and we deduce
its explicit expression as well as we show some illustrative examples. The concept of
a Dirac delta functional is introduced. We show how the vector model that includes
a Dirac delta functional is a representation of a discrete Sobolev inner product. It
also allows to reinterpret such perturbations in the usual matrix Nevai class. Finally,
the relative asymptotics between a polynomial in the generalized matrix Nevai class
and a polynomial that is orthogonal to a modification of the corresponding matrix
measure by the addition of a Dirac delta functional is deduced.
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1. Introduction

In the last decade the asymptotic behavior of matrix orthonormal polyno-
mials, the distribution of their zeros as well as their connection with matrix
quadrature formulas have paid a increasing attention by many researchers. A
big effort was done in this direction in the framework of the analytic theory
of such polynomials by A. J. Durán, W. Van Assche and coworkers, among
others (cf. [9, 13, 14, 16, 25]).

In this work we study outer ratio asymptotics for matrix orthogonal poly-
nomials belonging to a new class, the so called generalized matrix Nevai class,

and for these matrix orthogonal polynomials we obtain some new analytic
results.
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Definition 1. Let A, B, and C be matrices, with A and C non-singular
matrices of dimension N × N . A sequence of matrix polynomials {Vm}m∈N

defined by

zVm(z) = AmVm+1(z) + BmVm(z) + CmVm−1(z), m ≥ 0, (1)

with Am a non-singular lower triangular matrix and Cm a non-singular upper-
triangular matrix, belongs to the generalized matrix Nevai class M(A, B, C) if

lim
m→∞

Am = A, lim
m→∞

Bm = B, and lim
m→∞

Cm = C.

We say that a matrix of measures M belongs to the generalized matrix Nevai

class M(A, B, C) if some of the corresponding sequences of matrix orthogonal
polynomials belongs to M(A, B, C).

In order to to study the generalized matrix Nevai class we will recover a vec-
tor interpretation of the matrix orthogonality that was presented for the first
time in [7]. Let (PN)∗ be the linear space of vector linear functionals defined
on the linear space PN of vector polynomials with complex coefficients.(PN)∗

is said to be the dual space. A vector of functionals U = [u1 · · · uN ]T acting
in P

N over MN×N(C) is defined by

U(P) := (U.PT )T =



〈u1, p1〉 · · · 〈uN , p1〉

... . . . ...
〈u1, pN〉 · · · 〈uN , pN〉


 ,

where “.” means the symbolic product of the vectors U and PT , where
PT = [p1 · · · pN ], pi ∈ P, the standard linear space of polynomials with
complex coefficients. The degree of P is given by

deg(P) = ⌊( max
j=1,...,N

{deg pj})/N⌋,

where ⌊...⌋ represents the integer part of a real number.
Given a polynomial h, with deg h = N, the set

{1, x, . . . , xN−1, h(x), xh(x), . . . , xN−1h(x), h2(x), xh2(x), . . .}
is a basis for the linear space of polynomials, P. Furthermore, {Pj}j∈N, with
Pj defined by Pj(x) = (h(x))jP0(x), where P0(x) = [1 x · · · xN−1]T , is also a
basis for the linear space of vector polynomials P

N .
The vector of linear functionals (xkU) acting in P

N over MN×N(C) is de-
fined by

(xk
U)(P) := ((xk

U).PT )T = U(xk
P).
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So, with this definition and taking into account that {Pj}j∈N is a basis for
the linear space of vector polynomials PN , the j-th moment associated with
the vector of linear functionals xkU is given by (xkU)(Pj) = Uk

j .
The Hankel matrices associated with U are the matrices

Dm =




U0 · · · Um
... . . . ...

Um · · · U2m



 , m ∈ N,

where Uj is the j-th moment associated with the vector of linear functionals
U. U is said to be quasi-definite if all the leading principal submatrices of
Dm, m ∈ N, are non-singular.

A vector sequence of polynomials {Bm}m∈N, with degree of Bm equal to m,
is said to be left-orthogonal with respect to the vector of linear functionals U if

(hk
U) (Bm) = ∆mδk,m, k = 0, . . . , m − 1, m ∈ N,

where δk,m is the Kronecker delta and ∆m is a non-singular upper triangular
matrix.

Notice that, we can always write Bm in the matrix form

Bm(x) = Vm(h(x))P0(x),

where Vm is a m degree N×N matrix polynomial and P0(x) = [1 x · · · xN−1]T .
Similarly, a sequence of matrix polynomials {Gm}m∈N, with degree of Gm

equal to m, is said to be right-orthogonal with respect to the vector of linear
functionals U if

(GT
m(h(x))U) (Pj) = Θmδj,m, j = 0, 1, . . . , m − 1, m ∈ N

where Θm is a non-singular lower triangular matrix.
In [7] necessary and sufficient conditions for the quasi-definiteness of U, i.e.,

for the existence of a vector (matrix) sequence of polynomials left-orthogonal
(right-orthogonal) with respect to the vector of linear functionals U are ob-
tained.

These sequences of polynomials satisfy non-symmetric three-term recur-
rence relations. So, if {Bm}m∈N is a vector sequence of polynomials left-
orthogonal with respect to U and if {Gm}m∈N is a sequence of matrix polyno-
mials, then there exist sequences of numerical matrices {Am}m∈N, {Bm}m∈N,
and {Cm}m∈N, with Am a non-singular lower triangular matrix and Cm a
non-singular upper triangular matrix, such that

h(x)Bm(x) = AmBm+1(x) + BmBm(x) + CmBm−1(x), m ≥ 1, (2)
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with B−1(x) = 01×N and B0(x) = P0(x) , where P0(x) = [1 x · · · xN−1]T and

zGn(z) = Gn−1(z)An−1 + Gn(z)Bn + Gn+1(z)Cn+1, n ≥ 1 , (3)

with G−1(z) = 0N×N and G0(z) = U(P0)
−1.

Notice that these three-term recurrence relations completely characterize
each type of orthogonality.

Furthermore, right and left vector orthogonality are connected with right
and left matrix orthogonality. Indeed, consider the generalized Markov ma-

trix function F associated with U defined by

F(z) := Ux

(
P0(x)

z − h(x)

)
=



〈u1

x,
1

z−h(x)〉 · · · 〈uN
x , 1

z−h(x)〉
... . . . ...

〈u1
x,

xN−1

z−h(x)〉 · · · 〈uN
x , xN−1

z−h(x)〉


 ,

with z such that |h(x)| < |z| for every x ∈ L where L = ∪j=1,...,N supp uj
x .

Here Ux represents the action of U on the variable x and P0(x) the same as
before. In fact, see [7], the matrix sequence {Gn}n∈N and the vector sequence
{Bm}m∈N are bi-orthogonal with respect to U, i.e.,

((Gn(h(x)))T
Ux)(Bm) = IN×N δn,m, n, m ∈ N,

if and only if matrix the sequences {Gn}n∈N and {Vm}m∈N, where

Bm(z) = Vm(h(z))P0(z), (4)

are bi-orthogonal with respect to F, i.e.,

1

2πi

∫

C

Vm(z)F(z)Gn(z)dz = IN×N δn,m, n, m ∈ N ,

where C is a closed path in {z ∈ C : |z| > |h(x)|, x ∈ L}.
The sequences of matrix polynomials {Vm}m∈N and {Gm}m∈N presented

here are orthogonal with respect to a matrix of measures which is not nec-
essarily positive definite. These sequences satisfy the three-term recurrence
relations (1) and (3), respectively. On the other hand, these recurrence rela-
tions yield a characterization of right and left matrix orthogonality.

The sequences of matrix polynomials {B(1)
m }m∈N and {G(1)

m }m∈N given by

B
(1)
m (z) = Ux

(
Vm+1(z) − Vm+1(h(x))

z − h(x)
P0(x)

)
,

G(1)
m (z) =

[(
GT

m+1(z) − GT
m+1(h(x))

z − h(x)

)
Ux

]
(P0(x)),
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are said to be the sequences of associated polynomials of the first kind for U

and {Bm}m∈N and {Gm}m∈N, respectively.
As a consequence of the definition of associated polynomials of the first

kind for Bm and Gm, we get

Vm+1(z)F(z) − B
(1)
m (z) = Ux

(
Bm+1(x)

z − h(x)

)
, (5)

F(z)Gm+1(z) − G(1)
m (z) =

(
GT

m+1(h(x))Ux

) (
P0(x)

z − h(x)

)
. (6)

The sequences, {B(1)
m }m∈N, {G(1)

m }m∈N, of associated polynomials of the
first kind, satisfy respectively the three-term recurrence relations (1) and (3)

with initial conditions B
(1)
−1(z) = 0N×N , B

(1)
0 (z) = A−1

0 and G
(1)
−1(z) = 0N×N ,

G
(1)
0 (z) = C−1

1 .
The sequences of matrix polynomials {Vm}m∈N and {Gm}m∈N satisfy a

Christoffel-Darboux type formula

(x − z)

m∑

k=0

Gk(z)Vk(x) = Gm(z)AmVm+1(x) − Gm+1(z)Cm+1Vm(x), (7)

with x, z ∈ C and its confluent form

m∑

k=0

Gk(x)Vk(x) = Gm(x)AmV ′
m+1(x) − Gm+1(x)Cm+1V

′
m(x), (8)

with x ∈ C. The Christoffel-Darboux formula characterizes the matrix or-
thogonality (cf. [6]) and allows us to deduce the following result.

Theorem 1 (Liouville-Ostrogradski type formula). Let {Vm}m∈N, {Gm}m∈N

be the sequences of matrix polynomials bi-orthogonal with respect to F with

{Vm}m∈N defined by (4). Let {B(1)
m }m∈N and {G(1)

m }m∈N be, respectively, the

sequences of associated matrix polynomials of the first kind for {Bm}m∈N and

{Gm}m∈N. Then,

B
(1)
m Gm − Vm+1G

(1)
m−1 = A−1

m (9)

where Am is the non-singular coefficient that appears in the recurrence rela-

tion (2).
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Proof : The sequences of polynomials {Vm}m∈N, {Gm}m∈N, {B(1)
m−1}m∈N, and

{G(1)
m−1}m∈N satisfy, respectively, the recurrence relations (1) and (3) with

standard initial conditions.
To prove this result we proceed by induction. For m = 0 the result follows

from the initial conditions. We assume the formula

B
(1)
p Gp − Vp+1G

(1)
p−1 = A−1

p ,

is true for p = 1, . . . , m−1. To prove that this relation is also valid for p = m

we consider the following steps. First, we use the recurrence relation in B
(1)
m

and in Vm+1, i.e.,

B
(1)
m Gm − Vm+1G

(1)
m−1 = A−1

m (zIN×N − Bm)(B
(1)
m−1Gm − VmG

(1)
m−1)

− A−1
m Cm(B

(1)
m−2Gm − Vm−1G

(1)
m−1).

Second, we prove that B
(1)
m−1Gm − VmG

(1)
m−1 = 0N×N .

Multiplying by Gm in the right side of (5) and multiplying by Vm in the
left side of (6), changing m by m − 1 in the relations (5) and (6), and then
subtracting these equations, we get

B
(1)
m−1(z)Gm(z) − Vm(z)G

(1)
m−1(z).

Then,

B
(1)
m−1(z)Gm(z) − Vm(z)G

(1)
m−1(z)

= Vm(z)(GT
m(h(x))Ux)

(
P0(x)

z − h(x)

)
− Ux

(
Bm(x)

z − h(x)

)
Gm(z).

Adding and subtracting (GT
m(h(x))Ux)

(
Bm(x)
z−h(x)

)
in the last relation and taking

in consideration the left and right orthogonalities, the result follows.
Using the above result we have

B
(1)
m Gm − Vm+1G

(1)
m−1 = −A−1

m Cm

(
B

(1)
m−2Gm − Vm−1G

(1)
m−1

)
. (10)

Again, using the recurrence relations for Gm and G
(1)
m−1 in B

(1)
m−2Gm −

Vm−1G
(1)
m−1 we get

B
(1)
m−2Gm − Vm−1G

(1)
m−1 = (B

(1)
m−2Gm−1 − Vm−1G

(1)
m−2)(zIN×N − Bm−1)C

−1
m

+ (Vm−1G
(1)
m−3 − B

(1)
m−2Gm−2)Am−2C

−1
m .
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Since B
(1)
m−2Gm−1 − Vm−1G

(1)
m−2 = 0N×N , we get

B
(1)
m−2Gm − Vm−1G

(1)
m−1 = (Vm−1G

(1)
m−3 − B

(1)
m−2Gm−2)Am−2C

−1
m .

Using this relation in (10) we obtain

B
(1)
m Gm − Vm+1G

(1)
m−1 = −A−1

m Cm(Vm−1G
(1)
m−3 − B

(1)
m−2Gm−2)Am−2C

−1
m .

According to the hypothesis of induction the result follows.

Let U be a quasi-definite vector of linear functionals and let {Vm}m∈N and
{Gm}m∈N be sequences of bi-orthogonal polynomials. We denote the kernel

polynomial by

Km(x, y) =

m−1∑

k=0

Gk(h(y))Vk(h(x)).

Notice that, even though we don’t have Km(x, y) = KT
m(y, x) like in the

matrix symmetric case, the reproducing property for the kernel holds.

Theorem 2. Let U be a quasi-definite vector of linear functionals, {Bm}m∈N

and {Gm}m∈N be, respectively, the left vector and right matrix orthogonal

polynomials with respect to U. Given a vector polynomial π ∈ PN of de-

gree m, i.e.,

π(x) =

m∑

k=0

βm
k Bk(x), βm

k ∈ MN×N(C), (11)

then π(x) = (KT
m+1(x, z)Uz)(π(z))P0(x).

Proof : From (11), using the bi-orthogonality and taking into account Ln =
GT

nU, we get βm
k = Lk(π(z)) = (GT

k (h(z))Uz)(π(z)). Then,

π(x) =
m∑

k=0

(GT
k (h(z))Uz)(π(z))Bk(x).

But,

(GT
k (h(z))Uz)(π(z))Bk(x) = ((Gk(h(z))Vk(h(x)))T

Uz))(π(z))P0(x).

Hence, the result follows.
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Let J be the block matrix defined by

J =




B0 A0 0

C1 B1 A1
. . .

0 C2 B2
. . .

. . . . . .


 (12)

that is known in the literature as N-Jacobi matrix. When the matrix poly-
nomials satisfy a symmetric recurrence relation, it was proved in [15] that
the zeros of the m-th orthogonal polynomial are the eigenvalues of Jm. This
result can be generalized for sequences of orthogonal polynomials satisfying
non-symmetric recurrence relations. Thus, for m ∈ N, the zeros of the matrix
polynomials Gm and Vm are the zeros of the polynomial det(tImN×mN −Jm),
with the same multiplicity, where ImN×mN is the identity matrix of dimen-
sion mN ×mN and Jm is the truncated N -block Jacobi matrix of dimension
mN × mN .

Also, for a matrix of measures W and for any polynomial V with degree
less than or equal to 2m − 1 the following quadrature formula holds

∫
V (h(x))dW (h(x)) =

s∑

k=1

V (xm,k)Γm,k

where xm,k, k = 1, . . . , s, are the zeros of the matrix polynomial Vm, in
general, complex numbers as well as s ≤ mN , and Γm,k are the matrices

Γm,k =
lk

(det (Vm(x)))(lk)(xm,k)
(Adj (Vm(x)))(lk−1)(xm,k)B

(1)
m−1(xm,k),

for k = 1, . . . , s, where lk is the multiplicity of the zero xm,k.
Using the above quadrature formula, in [7] we have obtained the following

asymptotic result:

lim
m→∞

V −1
m (z)B

(1)
m−1(z) = F(z)

locally uniformly in C \ Γ, where Γ = ∩N≥0MN , MN = ∪n≥N{zeros of Vn} .
The structure of the manuscript is as follows. In section 2, sequences of ma-

trix orthogonal polynomials belonging to the generalized matrix Nevai class
are studied. Furthermore, the outer ratio asymptotics of two consecutive
polynomials belonging to this class is obtained. We also study the general-
ized matrix Chebyshev polynomials and we present their explicit formulas
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as well as the corresponding generalized Markov function. The example pre-
sented in this section does not belong to the cases studied by A. J. Durán
in [12] and also can’t be converted in these cases by the method presented
by H. Dette and coworkers (see [8]).

In section 3, we introduce a modification of a vector of linear functionals
by adding a Dirac delta. This yields a reinterpretation and an extension of
a perturbation in the usual matrix Nevai class (see [24, 27, 28]). On the
other hand, the meaning of any discrete Sobolev inner product in vector
terms is clarified and this is clearly related with sequences of polynomials
satisfying higher order recurrence relations (cf. [7, 9, 13, 23, 29, 30, 31, 32]).
We also find necessary and sufficient conditions for the quasi-definiteness
of the modified functional. The quasi-definiteness conditions obtained by
the authors in [1, 2, 21] for some special examples coincide with our general
result. To conclude this section, we describe the generalized Markov function
associated to a modification by a Dirac delta functional.

Finally, in section 4 we present the relative asymptotics between a sequence
of matrix polynomials that belongs to the generalized matrix Nevai class

and a sequence of matrix polynomials that is orthogonal with respect to a
modification by a Dirac delta functional of this class. This result generalizes
those obtained by F. Marcellán and coworkers (see [27]).

2. Generalized matrix Nevai class

Let M be a matrix of measures in the generalized matrix Nevai class
M(A, B, C). Notice that M can belong to several Nevai classes because of the
non-uniqueness of the corresponding sequences of orthogonal polynomials.

If A and C are non-singular matrices we can introduce the sequence of
matrix polynomials {UA,B,C

m }m∈N defined by the recurrence formula

zUA,B,C
m (z) = AUA,B,C

m+1 (z) + BUA,B,C
m (z) + CUA,B,C

m−1 (z), m ≥ 1, (13)

with initial conditions UA,B,C
0 (z) = IN×N and UA,B,C

−1 (z) = 0N×N . According
to an extension of the matrix Favard’s theorem (see [7]) this sequence is
orthogonal with respect to a matrix of measures MA,B,C that is not necessarily
positive definite. This sequence of matrix polynomials is said to be the
sequence of matrix generalized second kind Chebyshev polynomials.

The continued fraction associated with (13) or, equivalently, the generalized
Markov function FA,B,C is given by
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FA,B,C(z) =
1

(zIN×N − B) − A 1

zIN×N − B − A
1

zIN×N − B − · · ·C
C

where 1/X denotes the inverse of the matrix X.
Matrix continued fractions of different types were studied by many authors

(cf. [3, 18, 26, 33]). In [33] the reader can find a detailed study about matrix
continued fractions and matrix Chebyshev polynomials, where the author
emphasyzes how continued fractions are used to develop the notion of matrix
Chebyshev polynomials in some symmetric cases.

Now, let us consider a sequence of vector polynomials {Bm}m∈N left-ortho-
gonal with respect to the vector of linear functionals U satisfying the recur-
rence relation

h(z)Bm(z) = ABm+1(z) + BBm(z) + CBm−1(z), m ≥ 1,

with initial conditions B−1(z) = 0N×1 and B0(z) = P0(z), where A and C
are non-singular matrices. It is straightforward to prove that the sequence
of matrix polynomials {Vm}m∈N, defined by Bm(z) = Vm(h(z))P0(z), and the

sequence {B(1)
m }m∈N, of associated polynomials of the first kind for U and

{Bm}m∈N, satisfies the same recurrence relation with the following initial

conditions V−1(z) = 0N×N , V0(z) = IN×N , B
(1)
−1(z) = 0N×N , and B

(1)
0 (z) =

A−1, respectively. These conditions are said to be the standard ones.

Rewriting the recurrence equations for {Vm}m∈N and {B(1)
m }m∈N in a blocks

matrix form, we have
[
AVm+1 AB

(1)
m

Vm B
(1)
m−1

]
=

[
zIN×N − B −C

IN×N 0N×N

][
Vm B

(1)
m−1

Vm−1 B
(1)
m−2

]
.

Since the matrix A is non-singular the last equation is equivalent to
[
Vm+1 B

(1)
m

Vm B
(1)
m−1

]
=

[
A−1(zIN×N − B) −A−1C

IN×N 0N×N

][
Vm B

(1)
m−1

Vm−1 B
(1)
m−2

]
.

Writing the last equation as Lm = TLm−1 where

Lm =

[
Vm+1 B

(1)
m

Vm B
(1)
m−1

]
and T =

[
A−1(zIN×N − B) −A−1C

IN×N 0N×N

]
,
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we have Lm = TmL0 with

L0 =

[
A−1(zIN×N − B) A−1

IN×N 0N×N

]
.

For some particular choices of A, B, and C the matrix Tm has the spectral
decomposition Tm = SDmS−1 where D is a diagonal.

Using this decomposition we can determine Lm and then, obtain Vm and

B
(1)
m−1. By a straightforward calculation we obtain V −1

m B
(1)
m−1 and then taking

the limit m → ∞, we get the generalized Markov function FA,B,C.
As a sake of example, in the case of matrix polynomials of dimension 2×2,

if we consider the same problem but with different initial conditions, for

instance, V̂0(z) = P , V̂1(z) = M + Qz, B̂
(1)
−1(z) = 02×2, and B̂

(1)
0 (z) = Q, with

P =

[
p11 p12

p21 p22

]
, M =

[
m11 m12

m21 m22

]
and Q =

[
q11 q12

q21 q22

]
,

we can relate the generalized Markov function associated with these new

initial conditions, F̂A,B,C , with FA,B,C , in the following way:

– The block matrix L̂m is given by

L̂m = T̂mL̂0 = TmL̂0 = TmL0L
−1
0 L̂0 = LmL−1

0 L̂0.

Using this relation we get,

V̂m(z) = Vm(z)P + B
(1)
m−1(z) [AM + BP + (AQ − P )z]

B̂
(1)
m−1(z) = B

(1)
m−1(z)AQ

F̂A,B,C(z) = P−1
FA,B,C(z)AQ + M−1Q + P−1B−1AQ + (I − P−1AQ)z.

In the next example, we illustrate how can we determine the generalized
Markov function associated with generalized second kind Chebyshev poly-
nomials for a particular choice of the recurrence coefficients with standard
initial conditions.

Example 1. Let us consider A, B, and C as

A =

[
1 0
0 1

]
, B =

[
−1 0
1 −1

]
, and C =

[
−1 0
0 1

]
.
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The matrices T and L0 are

T =




1 + z 0 −1 0
1 z + 1 0 1
1 0 0 0
0 1 0 0


 and L0 =




1 + z 0 1 0
−1 1 + z 0 1
1 0 0 0
0 1 0 0


 .

Matrix T have the following eigenvalues

λ1 =
1

2
(1 + z −

√
(z + 1)2 − 4), λ2 =

1

2
(1 + z +

√
(z + 1)2 − 4),

λ3 =
1

2
(1 + z −

√
(z + 1)2 + 4), λ4 =

1

2
(1 + z +

√
(z + 1)2 + 4)

and the corresponding eigenvectors are

v1 =

[
−2,

1

2
(1 + z −

√
(z + 1)2 + 4),

4

−1 − z +
√

(z + 1)2 + 4
, 1

]
,

v2 =

[
−2,

1

2
(1 + z +

√
(z + 1)2 + 4),− 4

1 + z +
√

(z + 1)2 + 4
, 1

]
,

v3 =

[
0,

1

2
(1 + z −

√
(z + 1)2 − 4), 0, 1

]
,

v4 =

[
0,

1

2
(1 + z +

√
(z + 1)2 − 4), 0, 1

]
.

Then, the matrix Tm has the following spectral decomposition

Tm = SDmS−1,

where D = diagonal{λ1, λ2, λ3, λ4}, for m ∈ N, and S = [v1| v2| v3| v4], where

λi and vi, for i = 1, . . . , 4 are, respectively, the eigenvalues and the eigenvec-

tors of the matrix D. Thus we can determine Lm+1 and then, obtain Vm and

B
(1)
m−1 as follows

Vm(z) = −1

2
Em+2(z)

[
0 0

1 + z 0

]
+ Em+1(z)

[
1 + z 0
−1

2 0

]
+ Em(z)

[
1 0
0 0

]

+ Fm+1(z)

[
0 0

1
2(2 + z)z 1 + z

]
− Fm(z)

[
0 0

1 + z 1

]
,

B
(1)
m−1(z) = Em+2(z)

[
0 0
−1

2 0

]
+ Em+1(z)

[
1 0
0 0

]
+ Fm+1(z)

[
0 0

1
2(1 + z) 1

]
,
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where

Em(z) = 2−m(1 + z +
√

(z + 1)2 + 4)m − (1 + z −
√

(z + 1)2 + 4)m

√
(1 + z)2 + 4

,

Fm(z) = 2−m(1 + z +
√

(z + 1)2 − 4)m − (1 + z −
√

(z + 1)2 − 4)m

√
(1 + z)2 − 4

.

By a straightforward calculation we obtain V −1
m B

(1)
m−1. Taking the limit m →

∞, we get

FA,B,C(z) =




2

1+z+
√

(1+z)2+4
0

4+(1+z−
√

(1+z)2+4)(1+z−
√

(1+z)2−4−
√

(1+z)2+4)

(1+z+
√

(1+z)2−4)(1+z+
√

(1+z)2+4)

2

1+z+
√

(1+z)2−4


 .

This example inspired us to prove the ratio asymptotics between two con-
secutive polynomials in the generalized matrix Nevai class. Indeed, without
loss of generality, we consider a sequence of matrix polynomials {Vm}m∈N

defined by (1) such that V0(z) = IN×N . But first, we need to introduce the
following result.

Lemma 1. Let {Vm}m∈N be a sequence of matrix orthogonal polynomials in

the generalized matrix Nevai class M(A, B, C). Then, there exists a positive

constant M , which does not depend on m, such that their zeros xm,k are

contained in a disk D = {z ∈ C : |z| < M}.
Proof : Let us consider the N -block Jacobi matrix, J (see (12)), associated
with the recurrence relation (1). Remember also, that the zeros of Vm are
the eigenvalues of Jm where Jm is the truncated matrix of J , with dimension
mN × mN .

Taking into account that the sequences {Am}m∈N, {Bm}m∈N, and {Cm}m∈N

converge, and using the Gershgorin disk theorem for the location of eigen-
values, it follows that there exists M > 0 such that if xm,k is a zero of Vm

then xm,k ∈ D where D = {z ∈ C : |z| < M}. So, Γ defined by

Γ = ∩N≥0MN , MN = ∪m≥N{zeros of Vm},
is contained in D and supp(W ) ⊂ Γ ⊂ D.

Theorem 3. Let {Vm}m∈N be a sequence of matrix polynomials left-ortho-

gonal with respect to the matrix of measures M and satisfying the three-term
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recurrence relation (1). Assume that, limm→∞ Am = A, limm→∞ Bm = B,
and limm→∞ Cm = C with A and C non-singular matrices. Then,

lim
m→∞

Vm−1(z)V −1
m (z)A−1

m−1 = FA,B,C(z), z ∈ C \ Γ, (14)

where FA,B,C is the Markov transform of the matrix of measures for the gen-

eralized second kind Chebyshev polynomials. Moreover, the convergence is

locally uniformly for compact subsets of C \ Γ, where Γ = ∩N≥0MN , MN =
∪m≥NZm, and Zm is the set of the zeros of Vm.

Proof : First, we consider the sequence of discrete matrix measures {µm}m∈N

defined by

µm =

s∑

k=1

Vm−1(h(ym,k))Γm,kGm−1(h(ym,k)) δym,k
, m ≥ 0,

where ym,k are complex numbers such that h(ym,k) = xm,k, with xm,k, k =
1, . . . , s, the zeros of the polynomial Vm, and the matrix Γm,k is given by

Γm,k =
lk(Adj (Vm(x)))(lk−1)(xm,k)B

(1)
m−1(xm,k)

(det (Vm(x)))(lk)(xm,k)
, k = 1, . . . , s,

lk being the multiplicity of the zero xm,k, lk ≤ N, and {B(1)
m−1}m∈N the se-

quence of associated polynomials of the first kind for {Bm}m∈N and U. Notice
that Γm,k is the weight in the quadrature formula. Hence, it follows that

∫
dµm(h(x)) = IN×N , for m ≥ 0.

The decomposition, (cf. [19]),

Vm−1(z)V −1
m (z) =

s∑

k=0

Cm,k

1

z − xm,k

,

with

Cm,k = lkVm−1(xm,k)(Adj (Vm(t)))(lk−1)(xm,k)/(det (Vm(t)))(lk)(xm,k),

is always possible even though the zeros of Vm are complex or have multi-
plicity greater than one (see [5, 7, 11]). Then, we have

Cm,kA
−1
m−1 =

lkVm−1(xm,k)(Adj (Vm(t)))(lk−1)(xm,k)A
−1
m−1

(det (Vm(t)))(lk)(xm,k)
.
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Applying the generalized Liouville-Ostrogradski formula (9) and taking into
account that for every b, a zero of a matrix polynomial Vm, (see [10])

Vm(b) (Adj (Vm(t)))(p−1) (b) = (Adj (Vm(t)))(p−1) (b)Vm(b) = 0N×N ,

we obtain

Cm,kA
−1
m−1 = Vm−1(h(ym,k))Γm,kGm−1(h(ym,k)).

From the definition of the matrix of measures µm we get

Vm−1(z)V −1
m (z)A−1

m−1 =

∫
dµm(h(x))

z − h(x)
, z ∈ C \ Γ.

Let us consider the generalized Chebyshev matrix polynomials of second
kind {UA,B,C

m }m∈N defined by (13). We can prove by induction that

lim
m→∞

∫
UA,B,C

l (h(t))dµm(h(t)) =

{
IN×N , for l = 0,
0N×N , for l 6= 0.

(15)

To do it, we just use the same technicalities as in [12].
We are now ready to prove

lim
m→∞

∫
dµm(h(x))

z − h(x)
= FA,B,C(z), z ∈ C \ Γ.

If not, we can find a complex number z ∈ C \ Γ, an increasing sequence of
nonnegative integers {nl}l∈N, and a positive constant C such that

∥∥∥∥
∫

dµnl
(h(x))

z − h(x)
− FA,B,C(z)

∥∥∥∥
2

≥ C > 0, l ≥ 0, (16)

where ‖ . ‖2 denotes the spectral norm of a matrix, i.e.,

‖A‖2 = max{
√

λ : λ is a eigenvalue ofA∗A}.
Since {µm}m∈N is a sequence of matrices of measures with support contained
in a disk D (see lemma 1) and taking into account that

∫
dµm = IN×N , by

using the Banach-Alaoglu theorem, we can obtain a subsequence {rl}l∈N from
{nl}l∈N, defined on a curve γM contained in the disk D, with the same k-th
moments of the vector of linear functionals U, for k ≤ 2rl − 1, such that

lim
l→∞

∫

γM

f(h(x))dµrl
(h(x)) =

1

2πi

∫

γM

f(h(z))Ux

(
P0(x)

z − h(x)

)
dz,

for any continuous matrix function f defined in D.
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Hence, taking f(h(x)) = UA,B,C(h(x)), we have

lim
l→∞

∫

γM

UA,B,C
l (h(x))dµrl

(h(x)) =
1

2πi

∫

γM

UA,B,C
l (h(z))Ux

(
P0(x)

z − h(x)

)
.

From (15) we have

1

2πi

∫

γM

UA,B,C
l (h(z))Ux

(
P0(x)

z − h(x)

)
=

{
IN×N , for l = 0,
0N×N , for l 6= 0.

But, the sequence of matrix polynomials {UA,B,C
m }m∈N is orthogonal with

respect to FA,B,C. Since {UA,B,C
m }m∈N is a basis of the linear space of ma-

trix polynomials we get that (16) is not possible. Each entry of the matrix∫
dµm(h(x))

z−h(x) is uniformly bounded on compact sets of C \ Γ. Then, according

to the Stieltjes-Vitali theorem, we get the uniform convergence.

Notice that we have analogous results of Lemma 1 and Theorem 3 for the
sequence of matrix polynomials {Gm}m∈N.

Corollary 1. Under the hypothesis of Theorem 3 we have that

lim
m→∞

(Vm−1(z)V −1
m (z))(k)A−1

m−1 = F
(k)
A,B,C(z) (17)

on compact subsets of C\Γ, for k = 1, 2, . . . .

The locally uniformly convergence in (17) means that every entry of the
left hand-side of (17) is locally uniformly convergent to its corresponding
entry in the right hand-side of (17).

3. Delta functionals

In this section we deal with a vector of linear functionals that results of
a modification by a Dirac delta functional and we will illustrate it with a
nice application related to Sobolev inner products. Thus, we can reinterpret
these inner products in a vectorial form and it is a motivation for the study
of these modifications.

In a generic way, we can say that a Dirac delta functional is a vector of
linear functionals where the functional components are linear combinations
of Dirac deltas and their derivatives in a finite set of points in the real line.
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If the polynomial h of fixed degree N consider in the previous sections is
such that

h(x) =

M∏

j=1

(x − cj)
Mj+1, (18)

where Mj + 1 is the multiplicity of each cj ∈ N as a zero of h, then we can
define a new vector of linear functionals as the result of a modification by
the addition of a Dirac delta functional with respect to h as follows.

Definition 2. The vector of linear functionals Ũ defined by

Ũ = U + Λδδδ, (19)

with Λ a numerical matrix of dimension N × N where

δδδ = [δc1
δ′c1

· · · δ(M1)
c1

δc2
δ′c2

· · · δ(M2)
c2

· · · δcM
δ′cM

· · · δ(MM )
cM

]T ,

where N = M +
∑M

j=1 Mj, is called vector of linear functionals modified by a

Dirac delta functional associated with h.

First, as a motivation for the study of these modifications, we will consider
the following example. It gives a vectorial reinterpretation of a Sobolev inner
product. It is important to refer that with the same technics presented in
this example, a vector reinterpretation for any general discrete Sobolev inner
product holds.

Example 2 (see [21]). Let us consider the discrete Sobolev inner product

〈f, g〉S :=

∫

I

fgdµ + λf ′(0)g′(0), where λ ∈ R
+ . (20)

To establish the parallelism between vector orthogonality and Sobolev inner

products, let {p̃n}n∈N be a sequence of scalar polynomials orthonormal with

respect to the inner product (20), i.e.

〈p̃n, x
k〉S = 0, k = 0, . . . , n − 1, (21)

〈p̃n, x
n〉S 6= 0, n ∈ N.

Notice that the multiplication by the polynomial h(x) = x2 yields a sym-
metric operator with respect to the above Sobolev inner product, i.e.,

〈x2f, g〉S = 〈f, x2g〉S, ∀f, g ∈ P,
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and, as a consequence, the corresponding sequence of orthonormal polyno-
mials {p̃n}n∈N satisfies, for n ≥ 0, a five-term recurrence relation

x2p̃n+1 = cn+3,2p̃n+3 + cn+2,1p̃n+2 + cn+1,0p̃n+1 + cn+1,1p̃n + cn+1,2p̃n−1 . (22)

On the other hand, taking into account the vectorial approach given in [7],
the recurrence relation (22) yields the following vector expression

x2
B̃m(x) = Ãm+1B̃m+1(x) + B̃mBm(x) + ÃT

mBm−1(x), m ≥ 0,

where B̃m(x) = [p̃2m(x) p̃2m+1(x)]T ,

Ãm =

[
c2m,2 0
c2m,1 c2m+1,2

]
, and B̃m =

[
c2m,0 c2m+1,1

c2m+1,1 c2m+1,0

]
.

Notice that B̃m = B̃T
m as well as we are dealing with a symmetric case. Then,

by Favard’s type theorem (see [7]), there exists a vector of linear functionals

Ũ = [ũ1 ũ2]T such that the sequence of vector polynomials {B̃m}m∈N is left-

orthogonal with respect to Ũ and

(x2k
Ũ)

(
B̃m

)
= 02×2, k = 0, 1, . . . , m − 1, (23)

(x2m
Ũ)

(
B̃m

)
= ∆̃m, m ∈ N,

where ∆̃m is a non-singular upper triangular matrix.
From the definition of a vector of linear functionals, the previous orthogo-

nality conditions are given explicitly, for all k = 0, . . . , m − 1 and m ∈ N by

(x2k
Ũ)

(
B̃m

)
=

[
〈ũ1, x2kp̃2m〉 〈ũ2, x2kp̃2m〉
〈ũ1, x2kp̃2m+1〉 〈ũ2, x2kp̃2m+1〉

]
=

[
0 0
0 0

]
,

(x2m
Ũ)

(
B̃m

)
=

[
〈ũ1, x2mp̃2m〉 〈ũ2, x2mp̃2m〉
〈ũ1, x2mp̃2m+1〉 〈ũ2, x2mp̃2m+1〉

]
=

[
• •
0 •

]
.

The vector of linear functionals Ũ represents a Sobolev inner product
like (20) only if it is a modification by a Dirac delta functional, as we will

describe in the sequel. In fact, the vector of linear functionals Ũ has the
representation

Ũ = U + Λδδδ (24)

where

U = [u xu]T , Λ =

[
0 0
0 −λ

]
, δδδ = [δ0 δ′0]

T
,
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and where u is a linear functional on the linear space of scalar polynomials P

such that u(p(x)) =
∫

I
p(x) dµ(x). Here µ is the weight function that appears

in the Sobolev discrete inner product (20).
To illustrate that the orthogonality conditions (21) and (23) are equivalent,

first, take k = 0 in (23),

Ũ

(
B̃m

)
=

[
〈1, p̃2m〉S 〈x, p̃2m〉S
〈1, p̃2m+1〉S 〈x, p̃2m+1〉S

]
=

[
0 0
0 0

]
.

Furthermore, for all k = 1, . . . , m, m ∈ N

(x2k
Ũ)

(
B̃m

)
=

[
〈x2k, p̃2m〉S 〈x2k+1, p̃2m〉S
〈x2k, p̃2m+1〉S 〈x2k+1, p̃2m+1〉S

]
=

[
6= 0 •
0 6= 0

]
δk,m .

Thus, these relations show us that the orthogonality conditions (21), (23),
are equivalent and it means that the discrete Sobolev inner product (20) can
be represented in the vectorial form by (24).

Motivated by this example the first question naturally imposed consists

to know when Ũ defined by (19) is quasi-definite, i.e., when there exists a

sequence of vector polynomials {B̃m}m∈N left-orthogonal with respect to Ũ.
Then, the next step is to obtain necessary and sufficient conditions for the

quasi-definiteness of Ũ.
In the sequel, we denote by {Bm}m∈N the vector sequence of polynomials

left-orthogonal with respect to U and {B̃m}m∈N the sequence of polynomials

associated with Ũ defined by (19), i.e., the sequence of polynomials satisfying

Ũ

(
B̃m

)
= 0N×N , m ≥ 1, and Ũ

(
B̃0

)
is a non-singular matrix. (25)

As above, we will denote by {Ṽm}m∈N the sequence of matrix polynomials
defined by

B̃m(x) = Ṽm(h(x))P0(x),

with P0(x) = [1 x · · · xN−1]T .

Before the statement of conditions that give us quasi-definiteness for Ũ, we
need the following auxiliary result.

Lemma 2. Let {Bm}m∈N be a vector sequence of polynomials left-orthogonal

with respect to the vector of linear functionals U and {B̃m}m∈N be a vector

sequence of polynomials associated with Ũ defined by (19) and verifying (25).
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Then, the following statements hold

(hk
Ũ)(Bm) = (hk

U)(Bm) = 0N×N , k ≥ 1,

(hk
Ũ)(B̃m) = (hk

U)(B̃m), k ≥ 1, m ∈ N.

Proof : The proof of this result is straightforward taking into account that
for any vector polynomial P ∈ P

N , we have

(hkδδδ)(P) = 0N×N , for k ≥ 1,

with

δδδ = [δc1
δ′c1

· · · δ(M1)
c1

δc2
δ′c2

· · · δ(M2)
c2

· · · δcM
δ′cM

· · · δ(MM )
cM

]T ,

and the result follows.

In the literature about discrete Sobolev orthogonal polynomials (see for
example [1, 2, 4, 17, 20, 21, 22]) the reader could find the same conditions
that we will achieve in the next result. Another interesting work related with
this topic is [27]. There, the authors studied the outer relative asymptotics
between a matrix polynomial belonging to a matrix Nevai class and a matrix
polynomial that is orthogonal to a perturbation of such a matrix of measures
in the matrix Nevai class. There the existence of matrix orthogonal poly-
nomials with respect to perturbations in the matrix Nevai class is assumed.
The next theorem gives necessary and sufficient conditions for the existence
of such matrix polynomials in a more general case.

Theorem 4. Let U be a quasi-definite vector of linear functionals, {Bm}m∈N

be the vector sequence of polynomials left-orthogonal with respect to U and

{B̃m}m∈N be the associated vector sequence of polynomials, verifying (25), to

the vector linear functional Ũ defined by (19). The vector of linear functionals

Ũ is quasi-definite if and only if

IN×N + δδδz(P0(z))ΛTKm+1(cl, cl), m ≥ 0,

is a non-singular matrix for all cl zero of h defined by (18).

Proof : For the vector sequences {Bm}m∈N and {B̃m}m∈N, we can consider the

sequences of matrix polynomials {Vm}m∈N and {Ṽm}m∈N such that

Bm(z) = Vm(h(z))P0(z) and B̃m(z) = Ṽm(h(z))P0(z),
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with P0(z) = [1 z · · · zN−1]T . Using the reproducing property for the kernel
we get

Vm(h(x)) = (KT
m+1(x, z)Uz)(Bm(z)).

Similarly, we can write

Ṽm(h(x)) = (KT
m+1(x, z)Ũz)(B̃m(z)) −

m∑

j=0

(GT
j (h(z))Λδδδz)(B̃m(z))Vj(h(x)),

where δδδz is the Dirac delta functional acting on z. Notice that in the right
hand side of the above identity

(GT
j (h(z))Λδδδz)(Ṽm(h(z))P0(z)) = (GT

j (h(cl))Λδδδz)(Ṽm(h(z))P0(z)),

holds for any zero cl of the polynomial h, independently of its multiplicity.
From now on, we write h(cl) = 0.

Again, since

δδδz(Ṽm(h(z))P0(z)) = Ṽm(0)δδδz(P0(z)),

then
m∑

j=0

(GT
j (h(z))Λδδδz)(B̃m(z))Vj(h(x)) = Ṽm(0)

m∑

j=0

δδδz(P0(z))ΛTGj(0)Vj(h(x)).

Now, to analyze (KT
m+1(x, z)Ũz)(B̃m(z)) we use the definition of the kernel

Km(x, z) =
∑m−1

j=0 Gj(h(z))Vj(h(x)) and consider the following representation

for Gm, Gm(h(x)) =
∑m

k=0 βm
k (h(x))k, βm

k ∈ MN×N(C). Then, we have

(KT
m+1(x, z)Ũz)(B̃m(z)) =

m∑

j=0

[(

j∑

k=0

(h(x))k
Ũz)(B̃m(z))βj

k]Vj(h(x)).

Hence,

(KT
m+1(x, z)Ũz)(B̃m(z)) = ∆̃mβm

mVm(h(x))

if and only if {B̃m}m∈N is left-orthogonal with respect to Ũz, satisfying the
orthogonality conditions

(hk
Ũ)

(
B̃m

)
= ∆̃mδk,m, k = 0, 1, . . . , m, m ∈ N,

where ∆̃m is a non-singular matrix. Thus,

Ṽm(h(x)) = DmVm(h(x))− Ṽm(0)δδδz(P0(z))ΛTKm+1(x, cl) (26)
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where Dm = ∆̃mβm
m is a non-singular matrix. Taking x = cl we get

Ṽm(0)(IN×N + δδδz(P0(z))ΛTKm+1(cl, cl)) = DmVm(0).

{Ṽm}m∈N, is completely determined by the data if and only if

IN×N + δδδz(P0(z))ΛTKm+1(cl, cl) , m ≥ 0,

is a non-singular matrix for any zero cl of the polynomial h, independently
of its multiplicity.

If we apply this result to the previous example, then it is straightforward
to deduce that these conditions are the same as those obtained in [21] for
the existence of a sequence of orthogonal polynomials with respect to the
Sobolev inner product (20).

In the sequel h is a polynomial of fixed degree N defined by (18) and se-
quences of matrix polynomials {Vm}m∈N and {Gm}m∈N are given by Vm(z) =∑m

j=0 αm
j zj and Gm(z) =

∑m
j=0 βm

j zj . These sequences are bi-orthogonal
with respect to the generalized Markov function F and satisfy the recurrence
relations (1) and (3), respectively.

Theorem 5. Let U be a quasi-definite vector functional, Ũ quasi-definite

vector functional defined by (19), and h be a polynomial of fixed degree N .

Let F and F̃ be the generalized Markov functions associated with U and Ũ,

respectively. Then,

zF̃(z) = zF(z) + δδδx(P0(x))ΛT , (27)

with P0(x) = [1 x · · · xN−1]T and

δδδ = [δc1
δ′c1

· · · δ(M1)
c1

δc2
δ′c2

· · · δ(M2)
c2

· · · δcM
δ′cM

· · · δ(MM )
cM

]T ,

with N = M +
∑M

j=1 Mj.

Proof : From the definition of F̃ we have

zF̃(z) = z

∞∑

k=0

Ũx(h(x))kP0(x)

zk+1

= z

∞∑

k=0

Ux((h(x))kP0(x)) + (Λδδδx)((h(x))kP0(x))

zk+1

= zF(z) + (Λδδδx) (P0(x))

as we wanted to show.
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On the other hand, we can also consider the sequences {Ṽm}m∈N and

{G̃m}m∈N where Ṽm(z) =
∑m

j=0 α̃m
j zj and G̃m(z) =

∑m
j=0 β̃m

j zj are bi-ortho-

gonal sequences with respect to the functional F̃ defined by (27).

The next result states the relation between {Vm}m∈N and {Ṽm}m∈N.

Theorem 6. Let {Vm}m∈N be a sequence of matrix polynomials left-ortho-

gonal with respect to the generalized Markov function F and satisfying the

three-term recurrence relation

h(x)Vm(z) = AmVm+1(z) + BmVm(z) + CmVm−1(z), m ≥ 1.

Let {Ṽm}m∈N be the sequence of matrix polynomials left-orthogonal with re-

spect to F̃ defined by (27). Then, the sequence of matrix polynomials {Ṽm}m∈N

is defined by

h(x)Ṽm(z) = α1
m+1Vm+1(z) + α2

mVm(z) + α3
m−1Vm−1(z) . (28)

with α1
m+1, α2

m, and α3
m−1 such that

α1
m+1 = DmAm − Lmβm

0 Am

α2
m = DmBm + Lmβm+1

0 Cm+1

α3
m−1 = DmCm,

where Lm = DmVm(0)[IN×N + δδδz(P0(z))ΛTKm+1(cl, cl)]
−1δδδz(P0(z))ΛT and

Dm = (β̃m
m)−1βm

m .

Proof : From the proof of Theorem 4 we have

Ṽm(h(x)) = DmVm(h(x))

− DmVm(0)[IN×N + δδδz(P0(z))ΛTKm+1(cl, cl)]
−1δδδz(P0(z))ΛTKm+1(x, cl).

For the sake of simplicity, we denote by Lm the matrix

Lm = DmVm(0)[IN×N + δδδz(P0(z))ΛTKm+1(cl, cl)]
−1δδδz(P0(z))ΛT .

Then
Ṽm(h(x)) = DmVm(h(x)) − LmKm+1(x, cl).

Using the definition of the kernel as well as the three-term recurrence relation
that {Vm}m∈N satisfies, then

zṼm(z) = [DmAm − LmGm(0)Am]Vm+1(z)

+ [DmBm + LmGm+1(0)Cm+1]Vm(z) + DmCmVm−1(z).
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Then the comparison of the coefficients in (28) leads to the representation of
α1

m+1, α2
m, and α3

m−1.

Example 3. In the last theorem if we consider the generalized second kind

Chebyshev polynomials, {UA,B,C
m }m∈N, left-orthogonal with respect to the gen-

eralized Markov function FA,B,C and satisfying the three-term recurrence re-

lation

zUA,B,C
m (z) = AUA,B,C

m+1 (z) + BUA,B,C
m (z) + CUA,B,C

m−1 (z), m ≥ 1,

and consider the matrix polynomials {ŨA,B,C
m }m∈N left-orthogonal with respect

to F̃A,B,C given by

zF̃A,B,C(z) = zFA,B,C(z) + δδδx(P0(x))ΛT

with P0(x) = [1 x · · · xN−1]T and

δδδ = [δc1
δ′c1

· · · δ(M1)
c1

δc2
δ′c2

· · · δ(M2)
c2

· · · δcM
δ′cM

· · · δ(MM )
cM

]T ,

we get that

zŨA,B,C
m (z) = α1

m+1U
A,B,C
m+1 (z) + α2

mUA,B,C
m (z) + α3

m−1U
A,B,C
m−1 (z),

with α1
m+1, α2

m, and α3
m−1 given by

α1
m+1 = (β̃m

m)−1βm
mA − Lmβm

0 A,

α2
m = (β̃m

m)−1βm
mB + Lmβm+1

0 C,

α3
m−1 = (β̃m

m)−1βm
mC,

and

Lm = (β̃m
m)−1βm

mUA,B,C
m (0)[IN×N + δδδz(P0(z))ΛTKm+1(cl, cl)]

−1δδδz(P0(z))ΛT .

4. Relative Asymptotics

The works about perturbations in the matrix Nevai class (see [27, 28]) moti-
vated us to study the outer relative asymptotics in the case of the generalized
matrix Nevai class.

First, we present how can we reinterpret the model studied by the authors
from a vectorial point of view. Second, the outer relative asymptotics is
deduced.

Let {G̃n}n∈N and {B̃m}m∈N be bi-orthogonal with respect to Ũ, i.e.,

G̃T
n (h(x))Ũ(B̃m) = IN×Nδn,m, (29)



RELATIVE ASYMPTOTICS FOR ORTHOGONAL MATRIX POLYNOMIALS 25

where Ũ = U + Λδδδ with Λ a numerical matrix of dimension N × N ,

δδδ = [δc1
δ′c1

· · · δ(M1)
c1

δc2
δ′c2

· · · δ(M2)
c2

· · · δcM
δ′cM

· · · δ(MM )
cM

]T ,

and h is defined by (18).
By a straightforward calculation in (29) we have

(G̃T
n (h(x))(U + Λδδδx))(B̃m) = (G̃T

n (h(x))U)(B̃m) + ((G̃n(h(cl)))
TΛδδδx)(B̃m),

where cl is any zero of the polynomial h.
Since h(cl) = 0 and

((G̃n(0))TΛδδδx)(B̃m) = Ṽm(0)δδδx(P0)Λ
T G̃n(0).

Thus

(G̃T
n (h(x))(U + Λδδδx))(B̃m) = (G̃T

n (h(x))U)(B̃m) + Ṽm(0)δδδx(P0)Λ
T G̃n(0).

By the bi-orthogonality, we have the following matrix interpretation

1

2πi

∫

γ

Ṽm(z)F̃(z)G̃m(z)dz

=
1

2πi

∫

γ

Ṽm(z)F(z)G̃m(z)dz + Ṽm(0)δδδz(P0(z))ΛT G̃n(0)

where we get the same model studied by F. Marcellán, M. Piñar, and H.
O. Yakhlef when we choose all zeros of the polynomial h equal to c, i.e.,
h(x) = (x − c)N .

Next, we will deduce the outer relative asymptotics of {Ṽm(Vm)−1}m∈N

when {Vm}m∈N belongs to the generalized matrix Nevai class. To prove it,
the following lemma is needed as an auxiliary result.

Lemma 3. Let U and Ũ = U+Λδδδ be quasi-definite vector linear functionals

and let F and F̃ be the generalized Markov functions associated to U and Ũ,

respectively. The sequences of matrix polynomials bi-orthogonal to F and F̃

are denoted by {Vm}m∈N, {Gm}m∈N, {Ṽm}m∈N, and {G̃m}m∈N, respectively.

Let also, αm
m, α̃m

m and βm
m , β̃m

m be the leading coefficients of h of Vm, Ṽm and

Gm, G̃m, respectively. Then,

((βm
m)−1β̃m

m)(α̃m
m(αm

m)−1) = IN×N

− Vm(0)(IN×N + δδδz(P0(z))ΛTKm+1(cl, cl))
−1δδδz(P0(z))ΛTGm(0). (30)
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Proof : Taking into account (26), we have

Ṽm(h(x)) = DmVm(h(x))− Ṽm(0)δδδz(P0(z))ΛTKm+1(x, cl),

where Dm = (β̃m
m)−1βm

m (see theorem 8 of [7]), and thus

α̃m
m(αm

m)−1 =
1

2πi

∫
Ṽm(h(x))F(h(x))Gm(h(x))d(h(x))

=
1

2πi

∫
(Dm(Vm(h(x))− Vm(0)

(
IN×N + δδδz(P0(z))ΛTKm+1(cl, cl)

)−1

× δδδz(P0(z))ΛTKm+1(x, cl)))F(h(x))Gm(h(x))d(h(x))

This means that

D−1
m α̃m

m(αm
m)−1

= IN×N − Vm(0)
(
IN×N + δδδz(P0(z))ΛTKm+1(cl, cl)

)−1
δδδz(P0(z))ΛTGm(0) ,

and the statement follows.

Theorem 7. Let U and Ũ = U+Λδδδ be quasi-definite vector linear functionals

and let F and F̃ be the generalized Markov functions associated with U and

Ũ, respectively. The sequences of matrix polynomials bi-orthogonal to F and

F̃ are denoted by {Vm}m∈N, {Gm}m∈N, {Ṽm}m∈N, and {G̃m}m∈N, respectively.

Let also αm
m, α̃m

m and βm
m, β̃m

m be the leading coefficients of Vm, Ṽm and Gm,

G̃m, respectively.

Assume that, limm→∞ Am = A, limm→∞ Bm = B, and limm→∞ Cm = C,
where {Am}m∈N, {Bm}m∈N, and {Cm}m∈N are the sequences of numerical

matrices involved in the recurrence relation (1). Then,

lim
m→∞

(βm
m)−1β̃m

mα̃m
m(αm

m)−1 = IN×N + FA,B,C(0)(F′
A,B,C(0)−1

FA,B,C(0).

To prove this theorem we need the following lemma.

Lemma 4. Let {Vm}m∈N and {Gm}m∈N be a sequences of matrix bi-orthogonal

polynomials with respect to the generalized Markov function F. Let Am, Bm,
and Cm be the matrix coefficients that appear in the recurrence relation (1)
such that limm→∞ Am = A, limm→∞ Bm = B, and limm→∞ Cm = C, where

A and C are non-singular matrices, then

lim
m→∞

G−1
m (z) = 0N×N and lim

m→∞
V −1

m (z) = 0N×N
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locally uniformly in compact subsets of C \ Γ, where Γ = ∩N≥0MN , MN =
∪m≥NZm, and Zm is the set of the zeros of Vm.

Proof : From Liouville-Ostrogradski type formula we have that

V −1
m A−1

m−1G
−1
m−1 = V −1

m

(
B

(1)
m−1Gm−1 − VmG

(1)
m−2

)
G−1

m−1

= V −1
m B

(1)
m−1 − G

(1)
m−2G

−1
m−1.

From the generalized Markov theorem for Vm and its analogue for Gm, i.e.,

lim
m→∞

V −1
m (z)B

(1)
m−1(z) = F(z), and lim

m→∞
G

(1)
m−1(z)G−1

m (z) = F(z)

we have that

lim
m→∞

V −1
m (z)A−1

m−1G
−1
m−1(z) = 0N×N .

But

V −1
m (z)A−1

m−1G
−1
m−1(z) = V −1

m−1(z)Vm−1(z)V −1
m (z)A−1

m−1G
−1
m−1(z)

According to Theorem 3

lim
m→∞

Vm−1(z)V −1
m (z)A−1

m−1 = FA,B,C(z)

and since V −1
m is bounded for the spectral norm ‖.‖2 (see Lemma 1), we have

that limm→∞ G−1
m (0) = 0N×N . To prove limm→∞ V −1

m (0) = 0N×N we follow
an analogue way.

Proof of Theorem 7: Writing Φ(cl) = (βm
m)−1β̃m

mα̃m
m(αm

m)−1, by Lemma 3
we have

Φm(cl)

= IN×N − [G−1
m (0)((Λδδδz)(P0(z)))−1V −1

m (0) + G−1
m (0)Km+1(cl, cl))V

−1
m (0)]−1

To analyze lim
m→∞

Φm(cl) we start by proving that

lim
m→∞

G−1
m (0)Km+1(cl, cl))V

−1
m (0) = −F

−1
A,B,C(0)F′

A,B,C(0)F−1
A,B,C(0). (31)
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If we put G−1
m (0)Km+1(cl, cl))V

−1
m (0) = γm(cl), taking into account (8) and

that V ′
m(z)V −1

m (z) = −Vm(z)(V −1
m (z))′, then we have

γm(cl) = AmV ′
m+1(0)V −1

m (0) + G−1
m (0)Gm+1(0)Cm+1Vm(0)(V −1

m (0))′

= AmV ′
m+1(0)V −1

m (0) + G−1
m (0)Gm(0)AmVm+1(0)(V −1

m (0))′

= −Am[(Vm(0)V −1
m+1(0))−1]′

= −Am[(Vm(0)V −1
m+1(0))−1(Vm(0)V −1

m+1(0))−1)′(Vm(0)V −1
m+1(0))−1]

Using (14) and (17), we have (31).
Finally, we just have proved that

lim
m→∞

G−1
m (0)((Λδδδz)(P0(z)))−1V −1

m (0) = 0N×N .

From Lemma 4 we have that limm→∞ G−1
m (0) = 0N×N , limm→∞ V −1

m (0) =
0N×N , and

‖G−1
m (0)((Λδδδz)(P0(z)))−1V −1

m (0)‖2

≤ ‖G−1
m (0)‖2‖((Λδδδz)(P0(z)))−1‖2‖V −1

m (0)‖2.

Thus, the result follows. �

Remark . Notice that in the generalized matrix Nevai class

lim
m→∞

(βm
m)−1β̃m

mα̃m
m(αm

m)−1

is well determined and

lim
m→∞

(βm
m)−1β̃m

mα̃m
m(αm

m)−1 = IN×N + FA,B,C(0)(F′
A,B,C(0))−1

FA,B,C(0).

If

Ξ = IN×N + FA,B,C(0)(F′
A,B,C(0))−1

FA,B,C(0) (32)

and taking into account that

lim
m→∞

βm
m = lim

m→∞
(∆m)−1 = lim

m→∞
(CmCm−1 · · ·C1∆0)

−1 = (C · · ·C∆0)
−1,

lim
m→∞

αm
m = lim

m→∞
(Θm)−1 = lim

m→∞
(Θ0A−1A0 · · ·Am)−1 = (Θ0A · · ·A)−1,

we have that

lim
m→∞

β̃m
mα̃m

m = lim
m→∞

βm
m Ξ lim

m→∞
αm

m = (C · · ·C∆0)
−1Ξ(Θ0A · · ·A)−1.

Now, we are ready to prove the following asymptotic result. So, we set
that lim

m→∞
(βm

m)−1β̃m
m = Ψ.
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Theorem 8. Let {Vm}m∈N be a sequence of matrix orthogonal polynomials

with respect to the generalized Markov function F and {Am}m∈N, {Bm}m∈N,

and {Cm}m∈N the sequences of numerical matrices involved in the recurrence

relation (1) such that

lim
m→∞

Am = A, lim
m→∞

Bm = B, and lim
m→∞

Cm = C.

Then, there exists a sequence of matrix polynomials {Ṽm}m∈N left-orthogonal

with respect to F̃ defined by (27) such that, for C \ {Γ ∪ {c1, c2, . . . , cM}},
we have

lim
m→∞

Ṽm(z)V −1
m (z)

= Ψ−1[IN×N − 1

z
IN×N − Ξ(F−1

A,B,C(0) − (FA,B,C(z))−1)], (33)

where Ξ is given by (32).

Proof : If
IN×N + δδδz(P0(z))ΛTKm+1(cl, cl), m ∈ N,

is non-singular for every cl, a zero of h, then

Ṽm(h(x)) = DmVm(h(x))− Ṽm(0)δδδz(P0(z))ΛTKm+1(x, cl),

where
Ṽm(0) = DmVm(0)(IN×N + δδδz(P0(z))ΛTKm+1(cl, cl))

−1

and Dm = (β̃m
m)−1βm

m . Then, multiplying the last relation on the right by
V −1

m we obtain

Ṽm(h(x))V −1
m (h(x)) = Dm(IN×N − Vm(0) (IN×N

+δδδz(P0(z))ΛTKm+1(cl, cl)
)−1

δδδz(P0(z))ΛTKm+1(x, cl))V
−1
m (h(x))

But, from the Christoffel-Darboux formula (7)

Km+1(x, cl) = [Gm(0)AmVm+1(h(x))− Gm+1(0)Cm+1Vm(h(x))] /h(x),

and then, ṼmV −1
m can be written as

Ṽm(h(x))V −1
m (h(x)) = Dm(IN×N − Vm(0)

h(x)

× (IN×N + δδδz(P0(z))ΛTKm+1(cl, cl))
−1δδδz(P0(z))ΛTGm(0)

× (AmVm+1(h(x))V −1
m (h(x))− G−1

m (0)Gm+1(0)Cm+1).
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Using (30) in the last relation, we get

Ṽm(z)V −1
m (z) = [(βm

m)−1β̃m
m ]−1(IN×N − 1

z
IN×N

+ [(βm
m)−1β̃m

m ][α̃m
m(αm

m)−1](AmVm+1(z)V −1
m (z) − G−1

m (0)Gm+1(0)Cm+1). (34)

If we denote

EEEm(z) = G−1
m (0)Gm+1(0)Cm+1 − AmVm+1(z))V −1

m (z)

= C−1
m+1G

−1
m+1(0)Gm(0) − Vm(z)V −1

m+1(z)A−1
m

then (34) becomes

Ṽm(z)V −1
m (z)

= [(βm
m)−1β̃m

m ]−1(IN×N − 1

z
IN×N − [(βm

m)−1β̃m
m ][α̃m

m(αm
m)−1]EEEm(z)).

From Theorem 3 and its analog for the sequence of matrix polynomials
{Gm}m∈N, we have

lim
m→∞

EEEm(z) = (FA,B,C(0))−1 − (FA,B,C(z))−1.

Since, there exists a sequence of matrix orthogonal polynomials {Ṽm}m∈N

such that lim
m→∞

(βm
m)−1β̃m

m = Ψ, we obtain (33).
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