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Abstract: In models using categorical data one may use adjacency relations to
justify smoothing to improve upon simple histogram approximations of the prob-
abilities. This is particularly convenient for sparsely observed or rather peaked
distributions. Moreover, in a few models, prior knowledge of a marginal distri-
bution is available. We adapt local polynomial estimators to include this partial
information about the underlying distribution and give explicit representations for
the proposed estimators. An application to a set of anthropological data is included.
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1. Introduction
Models using categorical data usually assume that there is no relation be-

tween adjacent cells. This is not the case for continuous distributions, where
many estimation procedures are based on the fact that observations falling
near the approximation site do give some information about the function we
are trying to estimate, whether this is a density or a regression function. This
information by proximity is at the base of the modifications that have been
proposed throughout the years to the histogram. The classical kernel or local
polynomial estimators are, in fact, clever ways to use this idea to improve
upon rough estimates. In many situations where categorical models are used,
adjacency of cells does mean some kind of contiguity. This is often the case
when using some scale to categorize collected data, thus becoming natural
to use adjacency to construct estimates. This idea has been used to smooth
over discrete distributions, with increased interest when few observations are
available when compared with the number of cells of the underlying distribu-
tion or when the observations tend to concentrate too much in a few cells of
the support, indicating that the underlying distribution is quite peaked. In
such cases, the use of the classical cell frequency estimator seems inadequate:
there would be many cells of the distribution support without any or very few
observations, thus reflecting into an approximation for the distribution with
many zeros. Convenient smoothing over adjacent cells does contribute to
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improve this. For one dimensional distributions Simonof [11], Hall and Tit-
terington [7] smoothed the histogram with an uniform like distribution, while
Burman [3] discretized the kernel estimator. More recently Simonof [12, 13],
Dong and Simonof [4] or Aerts, Augustyns and Janssen [1, 2] studied dis-
crete versions of local polynomial estimators for higher dimensional data.
Faddy and Jones [5] proposed a semi-parametric smoothing method based
on iterating Markov chain transformations. The above references considered
estimation for one dimensional discrete distributions, although the methods
are easily extended to higher dimensions. Another approach, used in Jacob
and Oliveira [9], used the local polynomial approach but with respect to
a relativized L2-error, showing good performance for one dimensional data.
The extension of these methods to higher dimensional data introduces a few
difficulties because of the geometry of the space, as studied in Hall, Seifert
and Turlach [6]. The relativized local polynomials that looked promising for
one dimensional distributions, specially in presence of sparse data, but their
extension to higher dimensional data showed to perform poorly compared
with the discretized local polynomials. This seems linked to some geometric
features that do not appear in one dimension.

Our first interest in this kind of problems arose when analyzing data from
an anthropological study. The sample size was small when compared with
the size of the support and observations tended to concentrate in a more or
less defined area, although the full support of the distribution was known
to include cells not observed at all. Moreover, a particular aspect of the
anthropological study was that a marginal distribution was known. So, we
were interested in smoothing over a contingency table and construct an ap-
proximate distribution that has a given marginal distribution.

Our estimates are obtained as solutions of a minimization problem and
do have explicit formulæ, even in high dimension. For simplicity, we will
explain our approach assuming the dimension is d = 2, but this is easily
extended to higher dimensional problems, although the description of a few
of the matrices considered might become somewhat cumbersome.

2. The framework
Consider N = K×L cells Ci,j, i = 1 . . . , K, j = 1, . . . L, arranged in

a table C = (Ci,j), and denote P = (Pi,j) the probability distribution on
C. The observation counts over each cell are described by N = (Ni,j), or
equivalently, by the empirical probability distribution P = (P i,j = Ni,j/n),
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where n =
∑

i,j Ni,j, on C. Rearranging the rows in order to have a N -
dimensional vector, N is multinomially distributed.

The table C might be identified with the unit square [0, 1]×[0, 1], consid-

ering equally sized rectangular cells with midpoints (xi, yj) =
(
i−1/2
K , j−1/2

L

)
,

i = 1, . . . , K, j = 1, . . . , L. The special feature of this paper is that we as-
sume P to be partially known. More precisely, we assume that the marginal
distribution is known:

Πi =
L∑
j=1

Pi,j, i = 1, ..., K.

In order to avoid computational difficulties with border and edge effects, we
consider a replication of the given table C, and likewise for the distribution
P and observation counts N. We enlarge C, P and N using the well-known
replication device (see, for example, Schuster [10]), by reflecting their cells
with respect to each one of the four borders and edges. For the cell table
C, this enlarged table is identified with the square [−1, 2]×[−1, 2], the cells

being equally sized rectangles with midpoints (xs, yt) =
(
s−1/2
K , t−1/2

L

)
, s =

1−K, . . . , 2K, t = 1−L, . . . , 2L. In this way, we have 9N cells, arranged in
a (3K)×(3L) matrix. The original table C corresponds to the central K×L
block of the enlarged matrix.

The enlargement of P is easily described. Let the matrices P∗, P
∗ and P∗∗

have (i, j) entries equal to PK+1−i,j, Pi,L+1−j and PK+1−i,L+1−j, respectively.
The enlarged P matrix is then P∗∗ P∗ P∗∗

P∗ P P∗

P∗∗ P∗ P∗∗

 .
For the enlargement of C and N we have similar descriptions. For these
enlarged matrices the rows are indexed from 1−K to 2K, while the columns
are indexed from 1− L to 2L.

We will have in mind the use of local polynomials of order at most 2. To
define the functions to be optimized for the construction of the estimators,
consider the indexes (s, t) of the enlarged matrices ordered lexicographically.
In fact, any order of these indexes is acceptable, but we will refer to the
lexicographic one. For each cell (i, j) of the original central table, define the
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(9N)×6 matrix Xi,j whose (s, t)-line is[
1 (xs − xi) (yt − yj) (xs − xi)2 (xs − xi)(yt − yj) (yt − yj)2

]
.

For the smoothing, let K1 and K2 be bounded and symmetric densities
with support included in [−1/2, 1/2]. Given h1, h2 > 0, define KH(u, v) =
h−1

1 h−1
2 K1(u/h1)K2(v/h2), where H = (h1, h2). For each (i, j) in the original

table, that is, for i = 1, . . . , K and j = 1, . . . , L, consider the (9N)×(9N)
weight matrix

Ki,j = diag
[
KH(x1−L − xi, y1−K − yj), . . . ,
KH(xs − xi, yt − yj), . . . ,KH(x2L − xi, y2K − yj)

]
.

Notice that, due to the symmetry of the weight functions and the replication
device introduced, the local polynomial of odd degree 2p+1 coincides with
the local polynomial of even degree 2p, so we will be interested in the local
polynomials of degrees 0 or 2. We could go for higher order degrees but then
the explicit expressions that we find would become too complex to be useful.

Finally, to introduce the notation to be used below, write
−→
P =

(
P 1−K,1−L, . . . , P s,t, . . . , P 2K,2L

)t
,

the vector of the empirical distribution P s,t, over the enlargement of P, with
the components listed in the lexicographic order.

3. The estimators
In this section we describe the estimators. As mentioned earlier, they will

be constructed as solutions of an optimization problem, and are denoted CPS,
for constrained local polynomial smoother, because of the marginal distribu-
tion being given. These estimators will appear as an additive correction of
the usual local polynomial estimators.

For each cell Ci,j, the classical local polynomial smoother of degree 2, that
we will denote by PSi,j(2), appears as the solution of the minimization of

Hi,j =
(−→
P −Xi,jβi,j

)t
Ki,j

(−→
P −Xi,jβi,j

)
, (1)

where βi,j = (β0,i,j, . . . , β5,i,j)
t. If β̂i,j the minimizer of Hi,j, then PSi,j(2) =

β̂0,i,j, the constant term of β̂i,j. The local polynomial smoothers of different
degree p, PSi,j(p), appear as solution of the minimization of Hi,j with obvious
changes of the matrices Xi,j.
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Whenever the cell Ci,j is such that KH(x−xi, y− yj) = 0, for each (x, y) /∈
[0, 1]×[0, 1], the minimizer of Hi,j is

β̂i,j =
(
Xt
i,jKi,jXi,j

)−1
Xt
i,jKi,j

−→
P , (2)

which is exactly the usual local polynomial estimator of βi,j. Now, the situa-
tion differs near the border and edges. In fact, it is well known that the usual
local polynomial estimate gives some automatic correction to border and edge
effects at the cost of a somewhat intricate expression for the regression coef-
ficients. The fact that we use the replication device introduced earlier, that
may seem somewhat painful to describe, gives in return the advantage of cor-
recting border and edge effects without strictly modify the general expression
of the estimate near the boundary of the table C. Evidently, it amounts to
an automatic revision of the weights around each border or edge cell.

The above mentioned construction does not take into account the knowl-
edge of the marginal distribution Πi, i = 1, . . . , K. In order to use this
knowledge of the marginal distribution, we introduce a new estimate of Pi,j
as the solution of the optimization problem:

minimize
L∑
`=1

Hi,`

subject to
∑L

j=1 β0,i,j = Πi, i = 1, . . . , K.

(3)

If β̂ci,j, j = 1, . . . , L, are the minimizers of this problem, the constrained

local polynomial smoother of degree 2 is CPSi,j(2) = β̂c0,i,j, the constant term

of β̂ci,j. For constrained local smoothers with different degrees, the solution
appears by modifying the matrices Xi,j appropriately. For each degree p for
the local polynomial, we show in Appendix A, that

CPSi,j(p) = PSi,j(p) +
1

L

(
Πi −

L∑
`=1

PSi,`(p)

)
. (4)

More explicit representations for CPSi,j(p), p = 0, 2 are given in Appendix B.
The corresponding expressions for d-dimensional approximations are given
in Appendix C.

In Jacob and Oliveira [9] a family of relative local smoothers was intro-
duced. This family of estimators was constructed having in mind sparsely
observed distributions and showed a good performance, especially for peaked
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distributions. We considered the higher dimensional extension of this family,
obtained by solving the optimization problems:

minimizeH∗i =
L∑
`=1

1

β0,i,`

(−→
P −Xi,`βi,`

)t
Wi,`

(−→
P −Xi,`βi,`

)
,

subject to
L∑
j=1

β0,i,j = Πi, i = 1, . . . , K,

(5)

where Wi,` is the weight matrix Ki,` normalized so the weights sum up to
1. It is possible to find matricial and even explicit expressions of the es-
timators obtained, proceeding as in [9]. However, these estimators showed
a poor performance with respect to the constrained local smoothers. This
seems due to a different behaviour of a term of the form et (Wi,j −Ai,j) e,
where e = (1, . . . , 1) and Ai,j is defined in [9] with obvious adaptations for
higher dimensional distributions. In fact, in dimension 1, this term is always
nonnegative while for higher dimensions it might become negative (see Jacob
and Oliveira [8] for computational details).

4. Bandwidth selection
As usual with smoothing methods, a crucial step is the bandwidth choice.

We discuss this in more detail for the local smoother of degree 0. We looked at
this from two perspectives. Firstly, assume the Pi,j are obtained as the result
of a discretization of a continuous underlying probability distribution with
density function f on [0, 1]× [0, 1]: Pi,j =

∫
Ci,j

f(x, y) d(x, y), i = 1, . . . , K,

j = 1, . . . , L. Expanding f in a Taylor polynomial of order 2, using the lower
left point of the (i, j) cell as reference point, gives an approximation to the
bias of PSi,j(0) as, taking into account the symmetry of the weight functions:

1

2K3L

∂2f

∂x2

∑
z

z2w1(z) +
1

2KL3

∂2f

∂y2

∑
z

z2w2(z).

Proceeding likewise with the variance and summing up with respect to (i, j),
if we assume that the underlying density f has axial symmetry with respect
to the mid point of the square [0, 1]×[0, 1], we find the approximation to the
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mean square error:

1

n

∑
z

w2
1(z)

∑
z

w2
2(z) +

1

4K2L2

(
Aσ2

1

K2
+
Bσ2

2

L2

)2

where σ2
1 =

∑
z z

2w1(z), σ2
2 =

∑
z z

2w2(z), are the second order moments

of the weight functions w1 and w2, respectively, A =
∑

i,j
∂2f
∂x2 (xi, yj) and

B =
∑

i,j
∂2f
∂y2f(xi, yj). The above expression clearly depends on the weight

functions and, in particular, in their supports. An approach to the choice of
the bandwidth would be to take some reference weight function and choose
the discretization that minimizes this approximation to the MSE. It seems
reasonable to take as reference density a product of one dimensional densities.
We took, in accordance with the underlying distributions used for simulation
in the literature (see, for example, [11, 12, 4, 1]), product Beta densities with
equal parameters, so the axial symmetry is satisfied. The minimization of
the above expression always leads to small supports on the weight functions
with, typically 3 or 5 points, regardless of the size of the support and spread
of the observations. This seems appropriate if the sample is large, with a
good coverage of the all cells in the table.

For discrete distributions it often happens that the support is known and
large, while the observations tend to be few and, especially, we are far from
having observations at every cell. Using the weight functions that follow from
the previous approach would leave many cells with a zero approximation for
its probability. We propose, to avoid this problem, the following algorithm:

(1) the support of the product weight function w1(·)w2(·) is a rectangle
with odd sides, that will be centered at the point where estimation is
being made;

(2) for each point (xi, yj) identify the smallest, with respect to area of the
rectangle, odd-sided rectangle centered at (xi, yj) that will find some
observation on the table; let u∗1,i,j be the size of this rectangle in the
horizontal direction and u∗2,i,j the size in the vertical direction; define
u∗1 = maxi,j u

∗
1,i,j, u

∗
2 = maxi,j u

∗
2,i,j;

(3) take u1 ≥ u∗1, u2 ≥ u∗2; define w1 as the discretization of the Epanech-
nikov kernel over u1 cells and w2 as the discretization of the Epanech-
nikov kernel over u2 cells.

The idea behind this algorithm is to be sure that the smoothing really does
give some mass to each cell. The support sizes for the weight functions u1
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and u2 should be slightly larger than u∗1 and u∗2. The amount of enlargement
used depends on the type of error we want to prevail and also the degree of
the local polynomial we apply. Moreover, this enlargement helps to avoid
the problem of negative approximations being produced by the smoothing
and correction due to the marginal distribution. From a practical point of
view, based on the simulated results, taking u1 and u2 slightly but strictly
larger than u∗1 and u∗2 can capture reasonably the almost optimal choice of the
bandwidths with respect to mean square error. A typical choice, used in our
simulations giving prevalence to the mean square error, takes u1 = u∗1 +4 and
u2 = u∗2 + 4. If we are interested in other types of error measure considered
in the literature for sparsely observed data, different enlargements should be
adopted. Again, the simulations performed suggest smaller enlargements for
the support of the weight functions than the ones used for the mean square
error.

5. Simulation results
In this section we compare the performance of the different constrained

smoothers with respect to the mean sum of squared errors MSSE and to the
sup-norm NSUP:

MSSE(P∗) = E

(
K∑
i=1

L∑
j=1

(
P ∗i,j − Pi,j

)2

)
,

NSUP(P∗) = sup
1≤i≤K, 1≤j≤L

∣∣P ∗i,j − Pi,j∣∣ ,
where P∗ =

(
P ∗i,j
)

is the estimate for P = (Pi,j). We considered three distri-
butions obtained as mixtures of discretized Beta’s with different parameters.
These type of distributions are used in the literature for smoothers over a dis-
crete one dimensional support (see, for example [11, 12, 4, 1]). In Table 1 we
graph the three distributions used for simulation. The given marginal, con-
sidered as know for estimation purpose, was the uniform for distribution 1,
and Beta(.8,.8) for the other distributions. The conditional distribution over
the second coordinate given the first coordinate, was of the form Beta(a, a)
with a ranging from -1 to 2 for distribution 1, from .5 to 3 for distribution
2, and from .3 to 5.2 for distribution 3. These distributions were discretized
over a 30×30 table. We performed simulations with the number of observa-
tions being 450, half of the number of cells in the support of the distribution,
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dist.1 dist.2 dist.3

Table 1. Distributions used for simulation.

dist.1 dist.2 dist.3
×10−5 ×10−5 ×10−4

data data data

bandwidth optimal driven optimal driven optimal driven

CPS(0) 450 3.063 5.668 7.536 9.262 3.032 3.321
900 1.990 3.035 6.191 5.971 8.776 14.148

CPS(2) 450 45.930 294.969 44.866 159.471 10.818 22.280
900 27.882 171.420 25.615 152.593 8.851 44.996

Table 2. Simulated values for the MSSE.

and equal to 900. All the numerical results were obtained by running 500
Monte Carlo samples in each of the considered situations. The simulated
values for optimal choice of the bandwidth and applying the algorithm de-
scribed above are reported in Tables 2 and 3. The data driven choices for
the bandwidth are close to the almost optimal simulated values and, even,
sometimes better (the almost optimal was computed forcing u1 = u2, which
seemed adequate with respect to support of the distribution but is appar-
ently not taking into account any asymmetry on the data distribution). Our
algorithm seems not to perform so well for the local smoother of degree 2
with few observations, but this is probably due to the good behaviour for this
smoother being only asymptotical. Besides, the local smoother of degree 2
is more prone to produce negative approximations, thus requiring more data
available.

6. An application
The data of the anthropological study consisted in a series of measurements

of the bone condition on people that had been killed in consequence of a
criminal action. One had a sample of size 164 observations over a 19×4 table,
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dist.1 dist.2 dist.3
×10−5 ×10−5 ×10−4

data data data

bandwidth optimal driven optimal driven optimal driven

CPS(0) 450 6.039 8.805 3.228 3.561 4.926 6.581
900 5.125 6.540 2.909 3.400 9.288 9.450

CPS(2) 450 26.836 48.394 3.710 5.336 7.807 9.278
900 20.191 55.180 2.864 6.735 6.688 10.129

Table 3. Simulated values for the NSUP.

a somewhat sparse situation. The 19 lines correspond to age intervals and
the four columns to a scale classification depending on the bone condition of
a corpse. For forensic purposes, the bone condition of a corpse is observable,
and you want to estimate the distribution of the age at the moment of death
given this observed bone condition. It is reasonable to assume that the bone
condition does not have an influence on the fact that someone is criminally
attacked, so we may infer the joint distribution of age and bone condition
for the entire population from this very specially selected sample. Using
our algorithms, we construct estimates for the joint distribution over the
complete table, with the marginal corresponding to the age distribution of the
population given. The observations available indicate a choice of u∗1 = 7 and
u∗2 = 3. We take u1 = u∗1 = 7, as this the largest possible value given the size
of the support. On the other direction, we take u2 = 5, enlarging somewhat
u∗2. The estimates are given in Table 4. The local smoother of degree 2
produces a few negative estimates for the probabilities. Enlarging a little
further does not have an effect on this problem. One way around this problem
could be projecting over the subspace of distributions with zero probability
on the cells where we find negative estimates and correcting the marginal
afterwards. This has the drawback of assigning zero probability to a few cells
of the support, but it is clearly better than having negative estimates for the
probabilities. Of course, this is an effect of a sparsely observed distribution.
Notice the estimates produced for the first row of the support all coincide.
All these values are constructed from the two observations that fell into cells
(4,1) and (4,2).

In Table 5 we show a graphical representation of the local polynomials of
degrees 0 and 2, together with the frequency estimator. In all three rep-
resentations the vertical scale ranges from 0 to 0.08. Projecting the local
polynomial of degree 2 to avoid negative estimates keeps the overall picture.
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Observed known
cell counts marginal CPS(0) CPS(2)

0 0 0 0 0.052094 0.013023 0.013023 0.013023 0.013023 0.013023 0.013023 0.013023 0.013023
0 0 0 0 0.051904 0.013132 0.013043 0.012908 0.012820 0.013027 0.012928 0.013024 0.012925
0 0 0 0 0.055966 0.015703 0.014824 0.013344 0.012096 0.016487 0.013393 0.011993 0.014094
1 1 0 0 0.066500 0.021679 0.019034 0.014680 0.011107 0.030394 0.018765 0.009099 0.008243
12 3 1 0 0.076370 0.027660 0.022976 0.015605 0.010129 0.046536 0.026488 0.008070 -0.004723
10 8 1 0 0.078665 0.029655 0.023988 0.015341 0.009680 0.051176 0.028598 0.011009 -0.012117
4 13 0 1 0.073527 0.026769 0.021593 0.014373 0.010793 0.036593 0.025705 0.020188 -0.008957
2 9 0 4 0.074428 0.023314 0.019820 0.015883 0.015411 0.021712 0.024665 0.029848 -0.001797
0 9 6 0 0.070347 0.017908 0.016944 0.016750 0.018745 0.011152 0.020364 0.031362 0.007468
0 5 3 5 0.066254 0.013431 0.014749 0.017340 0.020734 0.001990 0.013878 0.031179 0.019208
0 4 4 9 0.062042 0.009693 0.013088 0.017602 0.021658 -0.000922 0.006827 0.028640 0.027497
0 6 0 6 0.055180 0.005894 0.010978 0.016943 0.021365 -0.000864 0.000045 0.023749 0.032252
0 2 3 10 0.053197 0.005025 0.010493 0.016715 0.020963 -0.002411 -0.002480 0.022064 0.036028
0 2 3 8 0.051966 0.005603 0.010565 0.016134 0.019663 -0.002018 -0.001923 0.019790 0.036117
0 0 0 4 0.043835 0.005346 0.009181 0.013405 0.015903 0.003888 0.000725 0.013268 0.025953
0 0 0 1 0.033610 0.005017 0.007418 0.009908 0.011267 0.005479 0.001741 0.008962 0.017429
0 0 0 3 0.019477 0.002904 0.004347 0.005760 0.006466 0.003067 0.000329 0.005056 0.011024
0 0 0 0 0.010469 0.001193 0.002239 0.003263 0.003775 0.001451 -0.000634 0.002690 0.006964
0 0 0 1 0.004169 0.000027 0.000772 0.001503 0.001868 0.000408 -0.001225 0.001004 0.003982

Table 4. Constrained local polynomial of degrees 0 and 2.

dist.1 dist.2 dist.3

Table 5. Graphical representation of the data and the local
polynomials of degrees 0 and 2.

Although the local polynomial of degree 0 produces a smoother approxima-
tion, the local polynomial of degree 2 seems to be able to capture a few more
details on the link between the two margins.

Appendix A.Derivation of the CPS estimators
In order solve the optimization problem (3), introduce the Lagrange func-

tion

Hi =
L∑
`=1

Hi,` + 2ν

(
L∑
`=1

htβi,` − Πi

)
, (6)
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where h = (1, 0, 0, 0, 0, 0)t and 2ν stands for the Lagrange multiplier. The
first order conditions are
∂Hi

∂βi,`
= −2Xt

i,`Ki,`
−→
P + 2Xt

i,`Ki,`Xi,`βi,` + 2νh = 0, ` = 1, . . . , L. (7)

From this system of equations and htβi,` = β0,i,` we obtain, for each ` =
1, . . . , L, the following matricial expression[

Xt
i,`Ki,`Xi,` h

ht 0

]
×
[
βi,`
ν

]
=

[
Xt
i,`Ki,`

−→
P

β0,i,`

]
. (8)

Multiplying on the left by the matrix[
Id 0

−ht
(
Xt
i,`Ki,`Xi,`

)−1
1

]
,

it follows [
Xt
i,`Ki,`Xi,` h

0 −ht
(
Xt
i,`Ki,`Xi,`

)−1
h

]
×
[
βi,`
ν

]

=

[
Xt
i,`Ki,`

−→
P

β0,i,` − ht
(
Xt
i,`Ki,`Xi,`

)−1
Xt
i,`Ki,`

−→
P

]
.

Summing the last line of this equation over ` = 1, . . . , L, gives

ν =
−Πi +

∑L
`=1 h

t
(
Xt
i,`Ki,`Xi,`

)−1
Xt
i,`Ki,`

−→
P∑L

`=1 h
t
(
Xt
i,`Ki,`Xi,`

)−1

h

=
−Πi +

∑L
`=1 β̂0,i,`∑L

`=1 h
t
(
Xt
i,`Ki,`Xi,`

)−1

h
.

(9)

Now from (7) we derive

β̂ci,j =
(
Xt
i,jKi,jXi,j

)−1
(
Xt
i,jKi,j

−→
P − νh

)
= β̂i,j − ν

(
Xt
i,jKi,jXi,j

)−1
h.

Multiplying on the left by ht and using (9), it follows

β̂c0,i,j = β̂0,i,j +
ht
(
Xt
i,jKi,jXi,j

)−1
h∑L

`=1 h
t
(
Xt
i,`Ki,`Xi,`

)−1

h

(
Πi −

L∑
`=1

β̂0,i,`

)
. (10)
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Finally, observe that, under our construction of Xi,` and Ki,`, the matrix

ht
(
Xt
i,`Ki,`Xi,`

)−1
h does not depend on the index `, so (4) follows.

Appendix B.An explicit expression for CPSi,j(p), p ≤ 2
(dimension 2)

We start by the case p = 2. To give an explicit representation for CPSi,j(2)
given by (4), we will find an expression for the local polynomial smoother

PSi,j(2) = htβ̂ci,j = ht
(
Xt
i,jKi,jXi,j

)−1
Xt
i,jKi,j

−→
P =

∑
s,t

Rs,tP s,t, (11)

where the coefficients Rs,t are to be determined. We start by noting that,
with replication device we used, all the cells of the original table C are
interior, so

∑
s,tKH(xs − xi, yt − yj) does not depend upon (i, j), thus we

may, in the expression above, replace the weights defined by the entries of
Ki,j, by normalized weights. Denote the matrix of normalized weights by
Wi,j. Recalling that K = K1×K2, it is convenient to introduce the system
of product normalized weights

w1(s− i)w2(t− j) =
KH(xs − xi, yt − yj)∑
u,vKH(xs − xu, yt − yv)

=
K1(xs − xi)K2(yt − yj)∑

uK1(xs − xu)
∑

vK2(yt − yv)
,

and the sums

Sα,β =
∑
s,t

(xs−xi)α(yt−yj)βw1(s−i)w2(t−j), for α, β ≥ 0 and α+β ≤ 4.

The symmetry of K1 and K2 entails the symmetry of p1 and p2, hence Sα,β = 0
if at least one of the coefficients α or β is odd. We have already defined
the second order moments of the weight functions: σ2

1 =
∑

z z
2w1(z) and

σ2
2 =

∑
z z

2w2(z). Define now the fourth moments of these weight functions:

τ 4
1 =

∑
z

z4w1(z), τ 4
2 =

∑
z

z4w2(z).

Notice that the choice of bandwidths h1 and h2 translates into choosing the
number of points in the support of w1 and w2, respectively.
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It is now easy to check that S0,0 = 1, S2,0 = σ2
1/K

2, S0,2 = σ2
2/L

2, S2,2 =
σ2

1σ
2
2/K

2L2, S4,0 = τ 4
1/K

4, and S0,4 = τ 4
2/L

4. These sums may be used to
describe the matrix

Xt
i,jWi,jXi,j =


S0,0 S1,0 S0,1 S2,0 S1,1 S0,2

S1,0 S2,0 S1,1 S3,0 S2,1 S1,2

S0,1 S1,1 S0,2 S2,1 S1,2 S0,3

S2,0 S3,0 S2,1 S4,0 S3,1 S2,2

S1,1 S2,1 S1,2 S3,1 S2,2 S1,3

S0,2 S1,2 S0,3 S2,2 S1,3 S0,4

 .

As
(
Xt
i,jWi,jXi,j

)−1
is left multiplied by ht, we only need the first line of this

matrix. A simple calculation shows that ht
(
Xt
i,jWi,jXi,j

)−1
=
(
U, 0, 0, V, 0,W

)
,

where

U =
S4,0S0,4 − S2

2,2

(S4,0 − S2
2,0)(S0,4 − S2

0,2)
, V =

S2,2S0,2 − S2,0S0,4

(S4,0 − S2
2,0)(S0,4 − S2

0,2)
,

W =
S2,2S2,0 − S0,2S0,4

(S4,0 − S2
2,0)(S0,4 − S2

0,2)
.

Now, it is easy to verify that

Rs,t = w1(s− i)w2(t− j)

[
U + V

(
s− i
K

)2

+W

(
t− j
L

)2
]
,

so we have explicit expressions for the coefficients appearing in the linear
combination defining CPSi,j(2).

Note that, due to Schwarz’s inequality, U > 0 and V < 0 , W < 0.
Moreover,

∑
s,tRs,t = U + S2,0V + S0,2W = 1, thus, the weights Rs,t may be

viewed as a bidimensional kernel of order 4. This means that PSi,j(2), as well
as CPSi,j(2), may produce negative estimates of Pi,j. This a drawback that
we can avoid by using weight functions with more points in their support.

We now consider the constrained local smoother of degree p = 0. The
previous calculations are easily adapted to this case by suppressing the non
relevant columns in the matrix Xi,j. It is easy to check that for p = 0, due
to the symmetry of the marginal weight functions,

PSi,j(0) =
∑
s,t

Rs,tP s,t, with Rs,t = w1(s− i)w2(t− j).
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Thus PSi,j(0) reduces to a smoother based upon the normalized weights. For
the constrained polynomial smoother just remember (4) to obtain an explicit
representation.

Appendix C.An explicit expression for CPSi,j(p), p ≤ 2
(dimension d ≥ 2)

We will refer to the matricial representation (11), which is independent of
the dimension of distribution. Some extra notation is required. Consider
a d-dimensional distribution with Nk cells in the kth direction, thus with
N = N1×· · ·×Nd cells. The support of the distribution may be identified with
[0, 1]d considering d-dimensional rectangles with midpoints (xi1, . . . , xid) =

( i1−1/2
N1

, . . . , id−1/2
Nd

). The general cell is represented by c = (i1, . . . , id), where
ik = 1, . . . , Nk. The local smoother of degree p is represented as

PSc(p) =
∑
c′

Rc′P c′.

Take d symmetric weight functions w1, . . . , wd to construct the product weights
similarly as done for the case d = 2. The matrix Xt

i,jWi,jXi,j has rows and
columns indexed by α = (α1, . . . , αd), for αk ≥ 0 and

∑
k αk ≤ 2. To describe

this matrix we define, for each cell c, the sums

S(α1,...,αd) =
∑
c′

(xj1 − xi1)α1

Nα1
1

× · · · × (xjd − xid)αd

Nαd

d

,

where α1, . . . , αd ≥ 0, α1 + · · · + αd ≤ 4 and c′ = (j1, . . . , jd). Due to
the symmetry of the weight functions S(α1,...,αd) = 0 whenever one of the
αk is odd. On the sequel, denote ek = (0, . . . , 0, 2, 0, . . . , 0), the 2 be-
ing on the kth coordinate. The matrix Xt

i,jWi,jXi,j has entries defined
S(α1+β1,...,αd+βd), where αk, βk ≥ 0 and

∑
k αk,

∑
k βk ≤ 2. Notice further that

S(α1+β1,...,αd+βd) = S(α1,...,αd)S(β1,...,βd). Assume that at least one of the coordi-
nates of α = (α1, . . . , αd) is equal to 1. Then, on the row corresponding to α,
the matrix Xt

i,jWi,jXi,j only has a nonzero entry on the main diagonal. This

allows to identify the nonzero entries on the first row of
(
Xt
i,jWi,jXi,j

)−1

as

the ones corresponding to the cells β = (β1, . . . , βd) = (0, . . . , 0), e1, . . . , ed.
To describe the matrix and the coefficients introduce, for each k = 1, . . . , d,

γk =
S2ek

S2
ek

, the kurtosis associated to the kth kernel. The explicit calculation
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of the determinants and inverse matrices may be completely described using
these kurtosis coefficients. A careful computation shows that

Rc′ = w1(j1 − i1) · · ·wd(jd − id)

(
A0 +

d∑
k=1

Ak
(jk − ik)2

N 2
k

)
,

where

A0 =
1

∆

∣∣∣∣∣∣
Se1+e1 · · · Se1+ed

· · · · · · · · ·
Sed+e1 · · · Sed+ed

∣∣∣∣∣∣ ,

Ak =
(−1)d+k

∆

∣∣∣∣∣∣∣∣∣∣
Se1 Se1+e1 · · · Se1+ek−1 Se1+ek+1

· · · Se1+ed

· · · · · · · · · · · · · · · · · · · · ·

Sed Sed+e1 · · · Sed+ek−1 Sed+ek+1
· · · Sed+ed

∣∣∣∣∣∣∣∣∣∣
,

∆ =

∣∣∣∣∣∣∣∣∣∣
1 Se1 Se2 · · · Sed

Se1 Se1+e1 Se1+e2 · · · Se1+ed

Se2 Se2+e1 Se2+e2 · · · Se2+ed

· · · · · · · · · · · · · · ·
Sed Sed+e1 Sed+e2 · · · Sed+ed

∣∣∣∣∣∣∣∣∣∣
= S2

e1
· · ·S2

ed

d∏
k=1

(ak − 1).

The explicit evaluation of the determinants gives

Ak =
(−1)d

Sek(ak − 1)
, k = 1, . . . , d,

and, denoting by ∆0 the numerator defining A0, ∆0 = S2
e1
· · ·S2

ed
Ψ0, where

Ψ0 =



(
a1(a1 + a2 − 2)− (1− a1)

2
)

×
∏
i odd

1≤i<d

(
(ai−1 + ai − 2)(ai + ai+1 − 2)− (1− ai)2

)
if d even

(
a1(a1 + a2 − 2)− (1− a1)

2
)

×
∏
i odd

1≤i<d

(
(ai−1 + ai − 2)(ai + ai+1 − 2)− (1− ai)2

)
×(ad−1 + ad − 2)

if d odd.
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