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FLUX TRACKING IN DELIVERY POLYMERIC SYSTEMS

J.A. FERREIRA, P. DE OLIVEIRA, P. M. DA SILVA AND L. SIMON

Abstract: The dynamics of diffusive and stress-induced transport in polymeric
delivery systems was investigated. Partial and ordinary differential equations were
first written to describe drug release behaviors in Maxwell and Maxwell-Voigt ma-
terials. The time constants governing the flux and concentration responses of a
permeating species were determined from a Laplace transform solution of the orig-
inal model. A ”tracking strategy”, based on the estimated characteristic times,
was proposed to estimate the delivery rate and the concentration near the exit side
of the membrane. The methodology was more efficient at times greater than the
time constant and the prediction error decreased further as the process approached
steady state. Numerical illustrations and comparisons made with published data
show the effectiveness of the proposed approach in describing the influence of the
Young modulus, viscosity and relaxation time on the transient regime.

Keywords: Controlled drug delivery, visco-elasticity, effective time, mathematical
model, Laplace Transforms.

1. Introduction

A central problem in release technology is to combine a diffusing species
with a polymeric matrix to obtain a delivery profile suitable for a particular
situation or treatment. Apart from controlled drug delivery, other applica-
tions include removal of solvent from polymer solutions during dry spinning,
diffusional release of pollutants and additives from polymers into the environ-
ment and controlled release of agriculture chemicals. Relationships between
polymer matrix systems and drug release have been studied these past few
years by several researchers. Some of these studies have been experimental
in nature and aimed at establishing empirical relations between the amount
of drug released and pertinent mechanical polymer properties, such as the
viscosity and Young modulus ([2],[3],[18]). Other groups include a mathe-
matical description of the process in their investigations to simulate the flux
([9],[10]). An essential step toward an in-depth understanding of delivery
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phenomena is an examination of the relationship between the flux, concen-
tration or response time on the characteristic properties of the polymeric
system. Our aim, in this paper, is to conduct such a study and develop
a ”tracking strategy”, that consists of a set of a priori estimations of the
concentration and/or flux and the times it takes to reach these values. Ana-
lytical equations for the steady fluxes and the response times are established
in terms of parameters that characterize the polymer and the permeant. To
describe the behavior of the polymeric membrane, we consider a class of vis-
coelastic models, where diffusive and mechanical properties are coupled. The
selection of these models is motivated by the descriptions proposed in [9], [4]
and [7] and is represented by the system of partial and ordinary differential
equations

ut = Duxx +Dv�xx , x ∈ (0, ℎ) , t > 0, (1)

�t + �� = �"+ "t , x ∈ (0, ℎ), t > 0. (2)

In (1)-(2), u stands for the concentration of the diffusing species, � stands
for the stress, " for the strain, D represents the diffusion coefficient, ℎ the
thickness of a membrane and Dv, �, �,  are related with properties of the
polymer. Their meaning will become clear in Section 2. Even if equation (2)
does not represent the most general form of a linear relation between strain
and stress, it accounts for a wide range of visco-elastic behaviors. A more
realistic description of some processes would require the use of a non lin-
ear relation between strain and stress. However, in the case of drug delivery,
polymeric devices undergo small strains, so the physics of the problem can be
modeled by linear equations where parameters are determined in order to fit
experimental results. As described in Section 2, different linear visco-elastic
models can be obtained as a particular case of (2). We mention, for example,
two parameter models as Maxwell model and three parameters models as
Maxwell-Voigt model ([4],[1]). Generalized Maxwell model is not described
by constitutive equations of type (2). However, the procedures followed in
this contribution can be readily adapted to that case. In (1)-(2) there are
three unknowns. To eliminate the strain, it will be considered proportional
to the species concentration u. We note that in (1)-(2), D, Dv, �, � and
 can depend on u. Nevertheless, these parameters will be treated as con-
stants, in this work, to allow analytical manipulations within the framework
of Laplace Transforms. In addition, when working in a regime where the
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polymer is either in the rubbery or the glassy state, � and D are nearly in-
variant within states. As far as D is concerned, Siegel and Langer [11] show
that the delay in drug release from polymers is due more to pore constrictions
than a concentration-dependent diffusion. Appropriate initial and boundary
conditions are given to complete the model:

{
u(0, t) = u0

u(ℎ, t) = 0
, (3)

u(x, 0) = �(x, 0) = 0. (4)

The equations in (3) mean that a source of concentration u0 is placed at
the extremity x = 0; a perfect sink condition is assumed at x = ℎ. An
alternative and more realistic condition at this extremity is

J(ℎ, t) = −�u(ℎ, t), (5)

where J is the flux and � a transference coefficient. If (5) is considered,
the methods developed in the present work lead to analogous results but
involve tedious computations. For the sake of clarity, only the sink condition
is considered here. Appendix I presents the results obtained with condition
(5).
Two characteristics of the delivery process should be known when defining a

”tracking strategy”: the fluxes (or concentrations) of the permeating species
and the times when these values are reached. Such a strategy is designed,
using the concept of an effective time constant [6], to estimate a priori con-
centrations and fluxes of an agent through a membrane. The effective time
is defined as

teff(x) =

∫∞

0 t(gs(x)− g(x, t))dt∫∞

0 (gs(x)− g(x, t))dt
, (6)

where g(x, t) stands for a system state variable and gs(x) is the steady state
of g(x, t): gs(x) = lim

t−→∞
g(x, t). The effective time can be viewed as the first

moment associated with the probability density function

d(x, t) =
gs(x)− g(x, t)∫∞

0 (gs(x)− g(x, t))dt
, (7)

and consequently, for every x, it represents the mean time to reach an equi-
librium state.
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It is possible to compute teff without explicit knowledge of the analytical
form of the concentration, or the flux, because

teff(x) = lim
p−→0

gs(x)
p2 − ∂g

∂p(x, p)

gs(x)
p − g(x, p)

, (8)

as explained in [6]. The function g represents the Laplace transform of g.
The effective-time-constant approach has been used recently by Simon in [13]
for enhanced diffusion problems; the model predictions showed very good
agreement with experimental results. A typical density function, for x = ℎ,
is represented in figure 1. A qualitative analysis of the properties of (1)-(2)
and an inspection of different examples of density functions d(x, t) reveal its
exponential-like character, away from t = 0, which suggests that, for every x,
d(x, t) can be approximated by an exponential probability density function

d∗(x, t) =
1

teff
e−t/teff . (9)

We note that (7) and (9) are equivalent to approximating the flux g(x, t) by
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Figure 1. Typical density function d(ℎ, t), computed for
g(x, t) = J(x, t).

a function of the type

g∗(x, t) = gs(x) +
A(x)

teff(x)
e

−t
teff (x) .
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In this analysis, we use the fact that teff is the first moment of the expo-
nential distribution (7). Consequently, for any real k, we have

P (t ≤ kteff(x)) = 1− e−k. (10)

Using different values of k, an a priori flux (or concentration) tracking can
be performed as shown for the flux in Table I. The symbol Js represents the
steady-state flux at x = ℎ, which can be computed using the Final Value
Theorem.

Table 1: Tracking strategy.
t Flux

teff 63.21%Js

2teff 86.47%Js

3teff 95.02%Js

4teff 98.17%Js

5teff 99.33%Js

Other candidate metrics for estimating the response times have been pro-
posed in the literature. The time lag estimates the onset of the steady-state
flux and has been defined [5] as the intercept of the asymptote to the total
mass leaving the membrane with the time axis. The cumulative amount is:

Q(t) =

∫ t

0

J(ℎ, s)ds. (11)

Several authors ([13], [17]-[16]) have studied, these last years, the time lag
for different systems. A statistical interpretation of time lag (tlag) shows
that it can be viewed as the mean time of a certain probability density
function. However, in many cases, tlag is not an accurate estimation for the
onset of equilibrium. In [15], the author shows that, for some problems, the
analytical expression of tlag does not reflect the expected dependence on the
model parameters.
The first time constant t1 also provides a measure of the response time and

can be obtained from a series solution of the form

g(x, t) = gs(x) +

∞∑

n=1

fn(x)e
−t/tn.

To the best of our knowledge, the study of a tracking strategy in the frame-
work of viscoelastic models has not yet been described in the literature. In
Section 2, an analytical expression for the effective time constant is computed
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for the system represented by Eqs. (1), (2) and (3). As particular cases, ef-
fective time constants for Maxwell and Maxwell-Voigt models are analyzed.
Their influences on the model parameters (i.e., properties of the polymer and
the permeating species) are evaluated. In Section 3, we show how to track
the flux and concentration based on a statistical interpretation of teff . A
comparison of our findings with experimental results reported in [9] and [10]
confirms the effectiveness of the approach. The tracking strategy is adjusted
for overshooting fluxes in Section 4 and pertinent conclusions are drawn in
Section 5.

2. Effective time constant

Let us consider the general model represented by Eqs. (1), (2) and (3). We
assume that the strain is proportional to the concentration. The integration
of equation (2) gives

�(x, t) =

∫ t

0

(�− �)e−�(t−s)u(x, s)ds+ u(x, t). (12)

The above expression is replaced in equation (1) to yield

ut = D∗uxx + E∗

∫ t

0

e−�(t−s)uxx(x, s)ds, (13)

with D∗ = D + Dv and E∗ = Dv(� − �). Constants �, �,  are positive
and have well-known physical meanings that will be discussed later. In order
to compute the effective time constant we consider in (8) g(x, t) = J(x, t),
where the flux J associated with (13),

J(x, t) = −D∗ux − E∗

∫ t

0

e−�(t−s)ux(x, s)ds, (14)

has two components: a Fickian component represented by the first term and
a non Fickian one represented by the integral term.
As observed in [6], if the Laplace transform J(x, p) of the flux,

J(x, p) =

∫ ∞

0

e−ptJ(x, t)dt, can be represented by

J(x, p) =
1

p
(Js(x) + B(x)p+ C(x)p2), (15)

for sufficiently small p, where Js(x) stands for the steady-state flux, B(x)
and C(x) represent functions of x, then the effective time constant defined
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in (8) takes the form

teff = −
C(x)

B(x)
. (16)

An expression for J(x, p) is computed in this section. As the integral term
in (13) is a convolution product, we easily establish that

u(x, p) =
u0 sinh(A(ℎ− x))

p sinh(Aℎ)
, (17)

where u is the Laplace transform of u and

A =

√
p(p+ �)

(D +Dv)(p+ �) +Dv(�− �)
. (18)

Using the Final Value Theorem

lim
t−→∞

u(x, t) = lim
p−→0

pu(x, p),

we deduce that the equilibrium concentration satisfies

lim
t−→∞

u(x, t) = u0(1−
x

ℎ
).

From (14) and (17), J takes the form

J(x, p) = −
pux
A2

, (19)

that is

J(x, p) = −
u0 cosh(A(ℎ− x))

A sinh(Aℎ)
. (20)

Using the Final Value Theorem, we have

lim
t−→∞

J(x, t) = lim
p−→0

pJ(x, p), (21)

and from (20) and (21), the following expression is obtained

Js(x) =
u0(D� +Dv�)

ℎ�
. (22)

It was established in [9] that the constant Dv is negative. The authors,
using a mesoscopic approach, showed that polymer swelling led to a negative
convective flux. As u0D

ℎ
represents the steady flux of a Fickian diffusion

problem, Js
F , with diffusion coefficient D ([5]), we concluded from (22) that

the viscoelastic flux is such that Js(x) ≤ Js
F (x), where the equality occurs for
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� = 0. We observe that Js(x) represents the steady-state flux of a Fickian
problem with diffusion coefficient D +Dv

�
� .
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Figure 2. Fluxes with � = 1: (a)  = 0, E∗ < 0, (b)  =
2, E∗ > 0.
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Figure 3. Fluxes with � = 0 ( = 1, E∗ > 0).

In Figures 2 and 3, the fluxes are shown for different values of Dv, when
� ∕= 0 and � = 0, respectively. The flux was computed numerically using
the following parameters: ℎ = 1, D = 1, u0 = 1, � = 1. Equation (13) was
discretized in space using central finite differences and a first-order implicit
method was used to integrate in time. In Figure 2-(a), E∗ ≤ 0. The plots
exhibited reproduce exactly the flux profiles in Figure 1 of [10]. As ∣Dv∣
increases, an overshoot in the flux was observed. In Figure 2-(b), E∗ > 0.
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This behavior is also apparent in the Maxwell-Voigt model as we will establish
in what follows. The steady-state value of the flux decreases with ∣Dv∣ but, in
this case, no overshoot occurs. For � = 0 then Js(x) = Js

F (x) as illustrated in
Figure 3. Profiles of this type, that is fluxes exhibiting a delay but converging
to the same steady state (i.e., a pure Fickian equilibrium value), can be found
in [9].
If only hyperbolic diffusion is considered, which means that D = 0 and

 = 0, we obtain Js(x) = u0Dv�
ℎ� , in agreement with the value presented

in [17]. In fact, in that paper, the authors study the telegraph equation,
�ut + utt = Dv�uxx, with Dv� depending on u. Under certain conditions,
with Dv� constant, this equation is equivalent to (13).
Let us now compute the effective time constant. We begin by considering

in (8) g(x, t) = J(x, t). For p small we have, from (20),

J(x, p) = u0

1 + A2(ℎ−x)2

2 + A4(ℎ−x)4

4! + ...

A2ℎ+ A3ℎ3

3!
+ A6ℎ5

5!
+ ...

. (23)

Approximating A2 by

A2 = p
�

k
+

p2

k2
E∗ +O(p3), (24)

with k = D∗�+E∗, we can give (23), after some tedious but straightforward
computations, the form (15), and finally using (16) we establish that for
x = ℎ

tfeff =
1

D∗� + E∗

(
E∗

�
+

�ℎ2

3!
+

D∗E∗ℎ− 2�E∗ℎ3

3! − �3 ℎ5

5!

E∗ℎ+ �2 ℎ3

3!

)
. (25)

The effective time constant can be computed for any x. However, within
release technology, the focus is placed on its value at x = ℎ. Following the
procedure outlined above, the effective time constant (6) can be defined using
the concentration g(x, t) = u(x, t), obtaining

tceff(x) =
1

�(D∗� + E∗)
(−E∗ +

�2ℎ2

60
(7− 3(1−

x

ℎ
)2)). (26)

For a pure diffusion problem (Dv = 0) we obtain, from (25) and (26), the
expression

tfeff = tceff =
7ℎ2

60D
,
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presented in [6]. A rationale for the calculation of tceff in terms of any x
is offered in Section 3 along with a comparison between the values of ef-
fective time given by (25) and (26). In what follows, we study particular
cases of problem (1)-(2)-(3) which correspond to well-known models in the
viscoelastic literature.
The classical approach to derive viscoelastic constitutive models is through

the use of mechanical analogs that are simple mechanical models for fluid
and solid combined to produce viscoelastic effects. The simplest mechanical
analog for a linear elastic material is a spring; the mechanical analog for a
Newtonian fluid is a dashpot. Combining these analogs in several ways we
can obtain the class of models referred in the introduction, among others.
To shorten the presentation, only Maxwell-Voigt models are described. The
Maxwell model is studied as a particular case of the latter class.

(1) Maxwell-Voigt model and Maxwell model

(a) (b)

Figure 4. Behavior of tfeff (a) and tceff (b), for Maxwell-Voigt model.

Maxwell-Voigt model [1] results from considering the local behavior
of the polymer modeled using a damper in parallel with a spring and
the whole structure in series with a second spring. Representing by
�1+�2 the Young modulus of the springs and by � the viscosity of the
damper we can establish that the relation between stress and strain
is defined by

�

�1 + �2
�t + � =

�1�2
�1 + �2

u+
�2�

�1 + �2
ut. (27)
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Equation (27) is a particular case of (2) obtained when � = �1+�2

� ,

� = �1�2

�
and  = �2.

Considering their physical meaning it is obvious that �1, �2, � and
D are positive constants. As stated in [9] and [10], there is physical
evidence that Dv < 0. Considering Dv < 0 and observing that for

Maxwell-Voigt model � − � = −�2
2

� < 0 we have E∗ > 0. Analyzing

equation (13) we can interpret it is a modified Fickian diffusion equa-
tion where the diffusion coefficientD is replaced byD∗ = D+Dv < D
and the memory term

−Dv�
2
2

�

∫ t

0

e−
�1+�2

�
(t−s)uxx(x, s)ds

is considered to balance the decrease in the Fickian diffusion.
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Figure 5. Behavior of tfeff for Maxwell-Voigt model.

In Figure 4, tfeff and tceff are plotted as a function of �1 and �2 ,

for a fixed viscosity � = 105Pa.s. To obtain Figures 4 and 5, the
following parameters were used: Dv = −2 × 10−10m3s/moles, D =
5 × 10−10m2/s, ℎ = 1 × 10−3m. As expected, the two plots present

the same behavior. In Figure 5, the behavior of tfeff in function of �

and for a fixed �1 + �2 = 0.3× 105Pa is displayed. We note that tfeff
is an increasing function of the Young modulus, for a fixed viscosity.
The effective time constant is not sensitive to the variation of the
viscosity in the range investigated. Several experimental studies in
the literature report the increasing behavior of time release with the
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Young modulus and viscosity ([2],[3]). The domain of �2 is defined by
the restriction D +Dv�2 > 0.
A particular case of the Maxwell-Voigt model is the Maxwell model,

which is obtained by connecting in series a purely viscous damper and
a purely elastic spring and assuming that strain is proportional to the
concentration of the permeating species. The model is described by
([4], [7], [1])

��t + �2� = �2�ut,

where �2 represents the elastic modulus and � the material coefficient
of viscosity. The last equation is obtained by letting �1 −→ 0 in (27).
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Figure 6. Behavior of teff for Maxwell model, when teff is a
function of �2 (a) or � (b).

We show in Figure 6 the behavior of the effective time constant with
varying �2 and � for the Maxwell model whenD = 5×10−10m2/s, Dv =
−2 × 10−14m3s/moles and ℎ = 10−3m. The parameter � = �

�2
rep-

resents the relaxation time constant of the polymer. The relative
variation of teff with �, for the range of values in the figure, is much
more significant than its variation with �2, which agrees with the fact
that Maxwell is a better representation of a viscoelastic fluid. Such
a material relaxes completely to zero stress, when responding to an
instantaneous strain, and undergoes a continuously increasing strain
under a step stress [1]. We remark that the behavior of effective time
with �2 is not physical even if teff decreases very slightly with �2.



FLUX TRACKING IN DELIVERY POLYMERIC SYSTEMS 13

(2) Effective time for the phenomenological model in [10]
In [10] the authors consider the viscoelastic behavior of the polymer

described by equation

�t +
1

�1
� =

�

�1
u+

��2
�1

ut

where �1 represents the relaxation time, �2 the retardation time and
� the viscosity. The work is illustrated with a set of simulations and
numerical experiments, that we will comment in Section 3 and 4,
characterized by E∗ < 0. In this case, the flux profiles present over-
shoots and effective time must be computed with concentration, using
(26). In Figure 7 we exhibit a plot of tceff to illustrate its behavior
with viscosity and relaxation time, where we used the parameters
ℎ = 10−3, D = 10−10, Dv = −10−15, �2 = 0. We observe that teff is
an increasing function of the retardation time �1 for constant viscosity,
and an increasing function of the viscosity � for constant retardation
time �2.

Figure 7. Behavior of teff .

3. Flux and concentration tracking

The influence of the mechanic properties of the polymeric matrix on the
steady flux and the effective time was analyzed in Section 2. Dimensional
equations were considered in order to understand the effects of individual
physical parameters on the process dynamics. In this section, we present a
flux tracking strategy that consists of a set of a priori estimations of fluxes
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and the times it takes to reach these points. Interpreting t as a statis-
tic variable with the exponential density function (7), g(x, t) = u(x, t) or
g(x, t) = J(x, t), a concentration or a flux tracking strategy can be devised.
The methodology is illustrated using two models. First, we consider the
Maxwell-Voigt model, for which E∗ > 0 and presenting no overshoots in
the flux and the concentration profiles. As tceff and tfeff represent the first

moment of the density distribution function (7), then for any real k we have

P (t ≤ kteff) = 1− e−k,

where teff represents both tceff and tfeff . As reported in (22), the steady-sate
flux or concentration can be estimated for any k, giving

ũ(x, ktceff) = (1− e−k)u0(1−
x

ℎ
), (28)

J̃(x, ktfeff) = (1− e−k)
u0(D� +Dv�)

ℎ�
. (29)

The boundary condition at x = ℎ is u(ℎ, t) = 0 leading to u(ℎ, t) = 0, and
equation (28) gives no valuable information. Given that the permeant is
immediately removed (i.e., sink condition at x = ℎ), we consider that the
steady-state drug concentration at x = ℎ is u(ℎ−Δx, ktceff) = u0

Δx
ℎ
, where

Δx is a stepsize relatively small.
To compare our predictions with the experimental results in [10] we adi-

mensionalize equation (1)(2)(3), obtaining
⎧
⎨
⎩

u∗
t = u∗

xx + 1�
∗
xx , x

∗ ∈ (0, 1), t∗ > 0

2�
∗
t + �∗ = u∗ + 3u

∗
t , x

∗ ∈ (0, 1), t∗ > 0

u∗(x∗, 0) = 0, �∗(x∗, 0) = 0, x∗ ∈ (0, 1)

u∗(0, t) = 1, u∗(1, t∗) = 0, t∗ > 0

,

where u∗ =
u

u0
, x∗ =

x

ℎ
, �∗ =

��

u0�
, t∗ =

t

ℎ2/D
, 1 =

Dv�

D�
, 2 =

1

�(ℎ2/D)
,

3 =


�(ℎ2/D)
. In what follows the superscrit ∗ will be omitted. We illustrate

flux tracking for problem (1), (2), (3) and (4) where in the mechanical model
(2) the parameters are selected in order to satisfy the Maxwell-Voigt model
and the phenomenological method presented in [10].
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We begin by presenting flux and concentration tracking for Maxwell-Voigt.
In this case, E∗ > 0 and there is no overshoots in the flux and in the concen-
tration profiles. The estimated and numerical fluxes are presented in Table
2.

Table 2: Flux tracking-with
D = 1, ℎ = 1, 1 = −0.1, 2 = 0.5, 3 = 0.6, u0 = 1.

Effective time Estimated Flux Numerical flux Relative Error
teff = 0.151 63.21%Js = 0.56889 0.4159621 2.68818× 10−1

2teff = 0.301 86.47%Js = 0.77823 0.758114 2.58484× 10−2

3teff = 0.452 95.02%Js = 0.85518 0.856987 2.1130× 10−3

4teff = 0.602 98.17%Js = 0.88353 0.885031 1.69887× 10−3

5teff = 0.753 99.33%Js = 0.89397 0.893596 4.18359× 10−4

A concentration tracking can also be performed as shown in Table 3.

Table 3: Concentration tracking- with
D = 1, ℎ = 1, 1 = −0.1, 2 = 0.5, 3 = 0.6, u0 = 1.

Effective time Est. Concent. Num. Concent. Relative Error
teff = 0.119 63.21%us = 6.321× 10−3 3.20753× 10−3 4.926× 10−1

2teff = 0.237 86.47%us = 8.647× 10−3 7.46871× 10−3 1.363× 10−1

3teff = 0.356 95.02%us = 9.502× 10−3 9.12848× 10−3 3.93× 10−2

4teff = 0.474 98.17%us = 9.817× 10−3 9.71604× 10−3 1.03× 10−2

5teff = 0.593 99.33%us = 9.933× 10−3 9.92332× 10−3 9.745× 10−4
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Figure 8. Flux Tracking with data of Table 2 (a) and Concen-
tration Tracking with data of Table 3 (b).

The methodology is applied now to the phenomenological model discussed
in [10]. Experiments and simulations were conducted for E∗ < 0. Section 2
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shows that such cases result in an overshoot relative to the desired steady-
state value. Consequently, equation (6) can not be used with g(x, t) = J(x, t).
To calculate the effective time, g(x, t) = u(x, t) should be then used. In

Section 4, an alternative definition for estimating tfeff in case of overshoots

is presented [6].

Table 4: Concentration tracking-
u0 = 1, D = 1, ℎ = 1, 2 = 1, 3 = 0, 1 = −0.1.

Effective time Est. Concent. Num. Concent. Relative Error
teff = 0.241 63.21%us = 6.32098× 10−3 8.01426× 10−3 0.26788
2teff = 2.467 86.47%us = 8.64698× 10−3 9.70035× 10−3 0.1218
3teff = 0.7222 95.02%us = 9.50197× 10−3 9.87731× 10−3 3.950× 10−2

4teff = 0.963 98.17%us = 9.81697× 10−3 9.91186× 10−3 9.666× 10−3

5teff = 1.203 99.33%us = 9.93297× 10−3 9.92978× 10−3 3.210× 10−4
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Figure 9. An exponential density function d∗(t) (9) vs the plot
of d(t) (7).

We observe that for t = tfeff or t = tceff the results are not accurate. In
fact, the estimated flux is computed assuming the ansatz that the distribution

density function is of form d∗(t) =
1

teff
e−t/teff . The plot of d computed with

the flux and the graph of d∗ shows that, at small time, d does not follow an
exponential trend (Figure 9).
Remark- We already noted that when � = 0, that is when the Maxwell

model is considered, fluxes converge to a steady Fickian flux Js
F . In Figure

10, the flux is plotted for different values of � = 1
� , where � represents

the relaxation time. At small times, there is a delay which increases with
relaxation time. However, we observe a curious phenomena for large times:
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Figure 10. Behavior of flux for Maxwell model, for different
value of � .

the larger is �, the larger is that flux. This kind of inversion can be observed
in Figure 10 and also in Table 5, where effective time, tfeff is a decreasing
function of relaxation time. Profiles of this type, where fluxes exhibit delays
before converging to the same Fickian steady state can be also found in [9].

Table 5: Effective time.
� tfeff
0 93.33

0.75 92.13
1 91.75
2 90.37
3 89.17

4. Response times for overshooting fluxes

When E∗ < 0 the fluxes profiles present overshoots with amplitudes that
increase with ∣Dv∣. In this case, we outlined in Section 3 a tracking strategy
based on tceff , that is an effective time defined from (6) with g(x, t) = u(x, t).
Another alternative is suggested in [6] where, for the cases of overshoots
profiles, the effective time is redefined as

t
(2)
eff(x) = 2

∫∞

0 t(gs(x)− g(x, t))2dt∫∞

0 (gs(x)− g(x, t))2dt
,
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which can be interpreted as the first moment of

t
(2)
eff(x) = 2

(gs(x)− g(x, t))2∫∞

0 (gs(x)− g(x, t)2dt
.

As an analytical expression for t
(2)
eff(x) is not yet available, we have com-

puted it at x = ℎ numerically using a time large enough to approximate the
improper integrals. We present in Figure 11 the plots of the fluxes for the

parameter values listed in Table 3. In Table 6 we compare tceff with t
(2)
eff .

We note that for every plot the first star signals teff and the second are
represents 4teff .

Table 6: Effective time.
tceff t

(2)
eff

3 = −0.1 0.241 0.164
3 = −0.3 0.595 0.614
3 = −0.5 1.233 1.229

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t

γ
3
=−0.1

γ
3
=−0.3

γ
3
=−0.5

γ
3
=−0.8

Figure 11. Behavior of flux for E∗ < 0

5. Conclusions

A methodology was proposed to compute, based on the time constant,
a priori estimates of the flux and concentration profiles of molecules dif-
fusing through polymeric membranes. In the systems studied, mass trans-
port was controlled by diffusion and stress. The developed procedure al-
lows researchers to directly link physicochemical properties of the perme-
ant/membrane system to the transient process behavior. The Maxwell-Voigt
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and Maxwell models were selected to demonstrate the suitability of the strat-
egy to predict viscoelastic diffusion. Expressions for the concentrations and
flux along the length of a thin membrane were first derived in the Laplace
domain. An effective time constant parameter was derived in this context.
The effective time constant increased with the Young Modulus and did not
change with the range of viscosities studied (i.e., 1 to 105 Pa.s) in the case
of the Maxwell-Voigt model. When simulations were conducted using the
Maxwell model, results show that this dynamic measure increased with the
polymer relaxation time for a constant Young Modulus. Considering trans-
port across swelling membranes, the effective time constant is an increasing
function of the retardation time and the viscosity. In the absence of over-
shoot, the accuracy of the predictions of the flux and concentration increased
as the process approached steady state. At four and two time constants, the
errors in the delivery rate were 0.20 and 2.65 percent, respectively. As the
retardation time increased, more time was required to develop steady-state
concentrations and flux for processes exhibiting overshoots.

6. Appendix

Let us consider
⎧
⎨
⎩

ut = Duxx +Dv�xx, x ∈ (0, ℎ), t > 0

�t + �� = �u+ ut , x ∈ (0, ℎ), t > 0

u(0, t) = u0, t > 0

J(ℎ, t) = −�u(ℎ, t), t > 0

u(x, 0) = �(x, 0) = 0, x ∈ (0, ℎ)

. (30)

Processing as before we can establish that

J(ℎ, t) =
u0

A

p sinh(A(ℎ− c)) + � cosh(A(ℎ− c))

p cosh(Aℎ) + � sinh(Aℎ)
(31)

where A is defined in (18). If in (31) we consider x = ℎ we finally have

J(ℎ, t) =
�u0

p cosh(Aℎ) + �A sinh(Aℎ)
. (32)
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To compute effective time we give to (32) the form (15) and using then (16),
we establish, after some tedious but straight forward computations, that

teff =
�ℎE∗ + �kℎ2

2! + ��3ℎ3

3!

k(k + ��ℎ)
−

1

k

−�D∗ℎE∗ + E∗k ℎ
2! +

2��E∗ℎ3

3! + �2kℎ4

4! + �3�ℎ5

5!

�ℎE∗ + �kℎ2

2! + �2�ℎ3

3!

.

We note that taking limits when � −→ ∞ we obtain equation (25).
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