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Universidade de Coimbra
Preprint Number 10–15

THE FLASHING RATCHET AND UNIDIRECTIONAL
TRANSPORT OF MATTER

DMITRY VOROTNIKOV

Abstract: We study the flashing ratchet model of a Brownian motor, which con-
sists in cyclical switching between the Fokker-Planck equation with an asymmetric
ratchet-like potential and the pure diffusion equation. We show that the motor re-
ally performs unidirectional transport of mass, for proper parameters of the model,
by analyzing the attractor of the problem and the stationary vector of a related
Markov chain.
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1. Introduction
Nano-scale or molecular devices which use energy but not momentum to

generate transport are called Brownian motors. Such phenomena arise in
various areas of science, from intracellular transport to nanotechnology [2, 3,
8, 9, 11].

The general relation for various types of fluctuation-driven motors looks
like [2]

ρt = σρxx + (Ψxρ)x, x ∈ (0, 1); t > 0. (1)

Here ρ is the unknown density, σ is the diffusion coefficient, and Ψ(x, t) is
the potential. For the flashing ratchet, an autonomous potential ψ is switched
on and off cyclically [2], i.e. [7, 4]

Ψ(x, t) = h(t)ψ(x), (2)

where

h(t) =

{
1, nT < t ≤ nT + Ttr, n = 0, 1, . . . ,
0, nT + Ttr < t ≤ nT + T, n = 0, 1, . . .

(3)

A typical ratchet-like potential ψ with k teeth, k > 1, is 1/k-periodic in x
and has a unique local (and, hence, global) minimum within each period.
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In [7] it was shown that the behaviour of the flashing ratchet system (with
Neumann boundary conditions) is in some sense close to the behaviour of a
certain Markov chain. It was observed that having this at hand it is possi-
ble to verify transport via comparing eventual distribution of mass between
the ”wells” of the potential ψ, i.e. the line segments with end points at
successive maxima of ψ(x). Any inequality in this distribution would mean
transport. In particular, it was shown that exactly this takes place for proper
parameters of the ratchet and k = 2. However, the proof was not completely
consistent, being based on incorrect time asymptotics of the second deriva-
tive of the Green function (a power function instead of an exponential one).
Generalization of this claim to the case k > 2 was mentioned as an open
problem in [4, 7].

In this paper, we give evidence of unidirectional transport for any k > 1.
Namely, we show (Theorem 2.2) that for certain parameters of the flashing
ratchet, after a sufficiently large number of cycles the amount of mass in the
wells of the potential is strongly decreasing/increasing from the left to the
right, provided the minima of ψ(x) are located in the left/right halves of the
wells.

It is important to note that the transport provided by the flashing ratchet
is due to flashing (3) only, since both pure diffusion (h ≡ 0) and ”perpetual
ratchet” (h ≡ 1) with a periodic potential rapidly approach their equilibria
without any specific right or left drift tendency.

Let us also recall that there is a connection (see e.g. [1, 5, 7]) between the
flashing ratchet, especially the fact that it produces unidirectional transport,
and Parrondo’s paradox in game theory, where a well-scheduled alternation
in playing two fair or losing games becomes a winning strategy.

The paper is organized as follows. In the next section, we present the
problem more rigorously, give necessary notations and facts, and formulate
the main result (Theorem 2.2). In the third section, we demonstrate that
the so-called discrete ratchet, which generates the Markov chain, behaves in
a way similar to the claimed behaviour of the flashing ratchet. The proof of
the main result is provided in the final section.

2. Preliminaries
We consider the boundary value problem for the flashing ratchet equation

with Neumann boundary conditions:
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ρt = σρxx + h(t)(bρ)x, x ∈ (0, 1); t > 0,
σρx + h(t)bρ = 0, x = 0, 1; t > 0,

ρ ≥ 0,
1∫

0

ρ(x, t)dx = 1, t > 0.
(4)

Here b is the x-derivative of the potential ψ and h is given by (3). The
ratchet phase time periods are of length Ttr, and the pure diffusion periods
are of length Tdiff = T − Ttr. We denote

τ = σTdiff .

Following [7, 5], the potential ψ(x) is assumed to be a C4-smooth function
on [0, 1] of period 1/k, with k > 1 being a fixed integer, having maxima at
points xi and minima at points ai and being monotone between these points
(a ratchet-like form), where

xi =
i− 1

k
, i = 1, . . . , k + 1, (5)

ai = a+ xi, i = 1, . . . , k. (6)

The positive parameter a should be less than 1/k.
The problem can be completed with the initial condition

ρ(x, 0) = ρ0(x), x ∈ (0, 1), (7)

such that

ρ0(x) ≥ 0,

1∫
0

ρ0(x)dx = 1. (8)

The existence of a periodic orbit for (4) is provided by

Theorem 2.1. (see [7, Theorem 1]) Assume that

2π2τ − λTtr > ln 2, (9)

where λ is a certain constant depending only on the potential (see [7] for its
exact value). Then problem (4) has a unique T -periodic solution ρs.

It is also known [7, 4] that the periodic orbit ρs eventually attracts all the
solutions ρ of (4), namely,

lim
n→∞, tn=t+nT

‖ρ(·, tn)− ρs(·, tn)‖H2 = 0. (10)
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For brevity, sometimes we will write simply ρs or ρs(x) for the function
ρs(x, 0) = ρs(x, nT ). In [7] it is shown that

‖ρs‖H2 ≤ R0 =

√
2 + 1√
2− 1

. (11)

Denote

ρ̂si =

xi+1∫
xi

ρs(x) dx, i = 1, . . . , k.

The main result of the paper is

Theorem 2.2. If a < 1
2k , then there exist σ, Ttr and T such that

ρ̂s1 > ρ̂s2 > · · · > ρ̂sk. (12)

Theorem 2.2 means, in particular, that, given any initial distribution of
density, after a large number of cycles there will be more mass on the left
than on the right.

Remark 2.1. If a > 1
2k , then Theorem 2.2 implies ρ̂s1 < ρ̂s2 < · · · < ρ̂sk, to see

this it suffices to make the change of variables x→ 1− x.

The discrete ratchet acts a follows. During the ratchet phase it simply
concentrates all the matter from any segment [xi, xi+1] at the point ai. Thus,
if

µ∗i =

xi+1∫
xi

ρ0(x) dx,

then at the moment Ttr the density becomes

k∑
i=1

µ∗i δai.

During the diffusion phase we have the same diffusion as for the flashing
ratchet. Then this process is repeated periodically.

Denote by d the Wasserstein metric (see e.g. [6]) on the space of probability
measures on [0, 1]. For a continuous function f and a probability measure p
on [0, 1], we use the bra-ket notation as follows:

〈p, f〉 =

1∫
0

f dp.
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The convergence in Wasserstein metric implies *-weak convergence of prob-
ability measures, i.e.

d(pn, p)→ 0⇒ 〈pn − p, f〉 → 0, f ∈ C[0, 1]. (13)

At the end of the ratchet phase, it is possible to estimate the distance
between the solution to (4),(7) and the outcome of the discrete ratchet:

Lemma 2.1. (see [7, Corollary 3]) Let ρ be a solution to (4),(7) with ‖ρ0‖H2 ≤
R0. Then for sufficiently large Ttr (the lower bound on Ttr depends on the
potential only) one has

d

(
ρ(·, Ttr),

k∑
i=1

µ∗i δai

)2

≤ R0(1 + c1)
ln2 Ttr
T 2
tr

+ min{CλσeλTtr/2, 1}. (14)

The constants c1 and Cλ depend on the potential only.

Let us describe how the discrete ratchet generates a Markov chain. Con-
sider the heat equation with Neumann boundary conditions:{

ys = yxx, x ∈ (0, 1); s > 0,
yx = 0, x = 0, 1; s > 0.

(15)

Let

Γs(x) =
exp(−x2/4s)

2
√
πs

,

and

G(x, s) =
∞∑

n=−∞
Γs(x+ 2n). (16)

Note that G is 2-periodic and even in x, and G(1 + x, s) = G(1− x, s).
The Green function for (15) is [10]

g(ξ, x, s) = 1 + 2
∞∑
n=1

cos(nπξ) cos(nπx) exp(−n2π2s)

= G(x+ ξ, s) +G(x− ξ, s).
(17)

Now introduce the following matrix:

P = P (τ) = (pij), pij =

xj+1∫
xj

g(ai, x, τ) dx. (18)
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Since the initial distribution of mass between the segments [xi, xi+1] is given
by the vector µ∗ = (µ∗i ), the outcome of the discrete ratchet at the moment
T will have the distribution of mass between the segments described by the
vector µ∗P (τ) (cf. [7]), at 2T it will be µ∗P 2, and so on.

3. The stationary vector of the Markov chain
In order to prove the main theorem we need first to study the stationary

vector of the Markov chain generated by the matrix P .
We recall that an m × m-matrix with positive entries is called ergodic if

the sum of the elements in every row is equal to one. The eigenvalue 1 of
any ergodic matrix A is simple, and there exists a unique vector ξ satisfying

ξi ≥ 0, i = 1, . . . ,m,
m∑
i=1

ξi = 1, ξ = ξP. (19)

We will call it the stationary vector of A. Let us also introduce the number

κ(A) = min
m∑
i=1

yi=0,|y|=1

|yA− y|.

Note that, for an ergodic matrix A, this number is positive, and κ(A) → 1
as all the elements of A approach 1/m.

The matrix P is ergodic. Denote by µs = (µsi ) its stationary vector, which is
also the stationary vector of the corresponding Markov chain. The following
result holds.

Theorem 3.1. For a < 1
2k and τ large enough, there is a constant c > 0

independent of τ such that

µs1 ≥ µs2 + ce−π
2τ , µs2 ≥ µs3 + ce−π

2τ , . . . , µsk−1 ≥ µsk + ce−π
2τ . (20)

Its proof requires

Lemma 3.1. Let A = (aij) be an ergodic m×m-matrix satisfying the follow-
ing conditions: a) for any column (say, j-th, j < m) there exists a number
s = s(j) so that one has aij ≤ ai,j+1 provided i > s, and aij ≥ ai,j+1 provided
i < s, b) there exists a constant d > 0 such that

Ā1 ≥ Ā2 + d, Ā2 ≥ Ā3 + d, . . . , Ām−1 ≥ Ām + d,
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where Āj is the sum of elements in the j-th column. Then the stationary
vector ξ of A satisfies

ξ1 ≥ ξ2 +Md, ξ2 ≥ ξ3 +Md, . . . , ξm−1 ≥ ξm +Md, (21)

where M is the minimum of the elements of the last (i.e. m-th) column.

Proof : Consider the set

B =

{
y ∈ Rm

∣∣∣∣∣
m∑
i=1

yi = 1, y1 ≥ y2 +Md, y2 ≥ y3 +Md,

. . . , ym−1 ≥ ym +Md, ym ≥M

}
.

This set is compact and convex. Moreover, B is invariant for the map A :
y 7→ yA. In fact, let y ∈ B. Then

m∑
i=1

m∑
j=1

yjaji =
m∑
j=1

yj

m∑
i=1

aji = 1.

Fix any l = 1, . . . ,m− 1. Then

(yA)l − (yA)l+1 =
m∑
i=1

yi(ail − ai,l+1) ≥
m∑
i=1

ys(l)(ail − ai,l+1)

= ys(l)(Āl − Āl+1) ≥ ys(l)d ≥Md.

Finally,
m∑
i=1

yiaim ≥M

m∑
i=1

yi = M.

By Brouwer’s fixed point theorem, A has a fixed point in B, which should
coincide with the stationary vector.

Proof : (Theorem 3.1) Let us show that P satisfies the conditions of Lemma
3.1. Set s =

[
k+1

2

]
(the integer part) for any j. Firstly, let us check if

pij ≥ pi,j+1 for i < s. Consider the function

φ(y) =

y+ 1
k∫

y

g(ai, x, τ) dx, 0 ≤ y ≤ k − 1

k
.
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It suffices to show that it is decreasing. Observe that ai <
1
2 and cos(πai) > 0

since i < s. Now,

φ′(y) = g(ai, y + 1/k, τ)− g(ai, y, τ)

= 2
∞∑
n=1

cos(nπai)(cos(nπy + nπ/k)− cos(nπy)) exp(−n2π2τ)

= 2 cos(πai)(cos(πy + π/k)− cos(πy)) exp(−π2τ) + o(e−π
2τ)

≤ 2 cos(πai)(cos(π/k)− 1) exp(−π2τ) + o(e−π
2τ) ≤ 0

for large τ .
The claim that pij ≤ pi,j+1 for i > s can be proven similarly taking into

account that ai >
1
2 and cos(πai) < 0 for i > s.

Without loss of generality (i.e. for large τ) we may assume that the function
G(x, τ) is decreasing in x on the segment [a, 1− a], and

Gx(x, τ) ≤ −Ce−π2τ , a ≤ x ≤ 1− a, (22)

with some constant C > 0. Really, from (17) we get the following represen-
tation:

G(x, τ) =
1

2
+
∞∑
n=1

cos(nπx) exp(−n2π2τ). (23)

Thus,

Gx(x, τ) = −
∞∑
n=1

nπ sin(nπx) exp(−n2π2τ)

= −π sin(πx) exp(−π2τ) + o(e−π
2τ)

≤ −π sin(πa) exp(−π2τ) + o(e−π
2τ) ≤ −Ce−π2τ .

Take any l = 1, . . . ,m− 1. We have to see that

P̄l ≥ P̄l+1 + d (24)

with some d independent of l. Consider the function

ϕ(y) =
k∑
i=1

y+ 1
k∫

y

g(ai, x, τ) dx, 0 ≤ y ≤ k − 1

k
.
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Then

ϕ′(y) =
k∑
i=1

[g(a+ (i− 1)/k, y + 1/k, τ)− g(a+ (i− 1)/k, y, τ)]

=
k∑
i=1

[G(a+ y + i/k, τ) +G(a− y + (i− 2)/k, τ)

−G(a+ y + (i− 1)/k, τ)−G(a− y + (i− 1)/k, τ)]

= G(a+ y+ 1, τ) +G(a− y− 1/k, τ)−G(a+ y, τ)−G(a− y+ (k− 1)/k, τ)

= G(1− a− y, τ) +G(y− a+ 1/k, τ)−G(a+ y, τ)−G(a− y+ (k− 1)/k, τ).

The length of the segments [a+y, y−a+1/k] and [a−y+(k−1)/k, 1−a−y]
is 1

k − 2a. Therefore (22) implies

ϕ′(y) ≤ C(4a− 2/k)e−π
2τ . (25)

Thus, (24) holds with

d =
C(−4a+ 2/k)e−π

2τ

k
.

It remains to observe that due to (17) one has

M =
1

k
+O(e−π

2τ) (26)

for the minimum of the last column of P .

4. Proof of the main theorem
Proof : (Theorem 2.2) Observe that there exist sequences

Ttr,n →∞, τn →∞, σn → 0

satisfying
σne

λTtr,n/2 → 0 (27)

and
2π2τn − λTtr,n > ln 2. (28)

Let Tn = Ttr,n+ τn
σn

. Then we can find the corresponding Tn-periodic solutions
ρs,n, and introduce obvious notations ρ̂s,n, µs,n etc. for the corresponding
values. It suffices to show that

|ρ̂s,n − µs,n| = o(e−π
2τn) (29)
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as n → ∞. In this case, setting τ = τn, Ttr = Ttr,n and T = Tn for n large
enough, we would get (12) from (20).

Let

ρ∗s,n(x, t) =
k∑
i=1

ρ̂s,ni g(ai, x, σ(t− Ttr,n)), t > Ttr,n.

Then
|ρ̂s,nj − (ρ̂s,nP (τn))j|

=

∣∣∣∣∣∣∣
xj+1∫
xj

ρs,n(x, Tn)− ρ∗s,n(x, Tn) dx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
xj+1∫
xj

〈
ρs,n(·, Ttr)−

k∑
i=1

ρ̂s,ni δai, g(·, x, τn)

〉
dx

∣∣∣∣∣∣∣
=

∣∣∣∣∣xj+1∫
xj

〈
ρs,n(·, Ttr)−

k∑
i=1

ρ̂s,ni δai, 1

〉
+ 2

〈
ρs,n(·, Ttr)−

k∑
i=1

ρ̂s,ni δai, cos(π·)
〉

cos(πx)e−π
2τn

+ 2
∞∑
m=2

〈
ρs,n(·, Ttr)−

k∑
i=1

ρ̂s,ni δai, cos(mπ·)
〉

cos(mπx)e−m
2π2τn dx

∣∣∣∣ ,
(30)

j = 1, . . . , n.

The first summand is zero, the third is o(e−π
2τn). Due to (13) and (14) with

ρ(x, t) = ρs,n(x, t), µ∗ = ρ̂s,n, one has〈
ρs,n(·, Ttr)−

k∑
i=1

ρ̂s,ni δai, cos(π·)

〉
→ 0,

so the second summand from (30) is also o(e−π
2τn) as n→∞. Thus,

|ρ̂s,n − ρ̂s,nP (τn)| = o(e−π
2τn). (31)

It remains to observe that

|ρ̂s,n − µs,n| ≤ |ρ̂
s,n − ρ̂s,nP (τn)|
κ(P (τn))

, (32)

and κ(P (τn))→ 1.
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