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IMAGE-DRIVEN PARAMETER ESTIMATION IN
ABSORPTION-DIFFUSION MODELS OF CHROMOSCOPY

ISABEL N. FIGUEIREDO, PEDRO FIGUEIREDO AND NUNO ALMEIDA

Abstract: The administration of dyes and subsequent examination, with a col-
orimetry visual criterium, is a gastroenterology procedure for distinguishing, in
endoscopic images, normal and aberrant colonic crypts. These are thought to be
possible precursors of colon cancer. In this paper a combined image segmentation
and parameter estimation model is proposed for in vivo colonic crypts’ images,
obtained with chromoscopic colonoscopy. The parameter estimation is an inverse
problem. It is formulated as a partial differential equation constrained optimization
problem, and involves an absorption-diffusion equation. A Lagrange multiplier for-
mulation is employed and analyzed for resolving this inverse problem. Using only
the segmentation of the medical endoscopic image, which separates normal and
aberrant crypts, the mathematical model, proposed in this paper, performs a non
invasive mathematical, and dimensionless, quantification of the dye absorption and
diffusion coefficients, as well as, the dye absorbed, in normal and aberrant colonic
crypts. This mathematical quantification can be important for clinicians, if it is able
to provide a distinction between individuals with and without cancer. Numerical
simulations, on a test image and on some medical endoscopic images, are presented
for the validation and evaluation of the proposed mathematical model.

Keywords: inverse problem, PDE-constrained optimization, Lagrange multiplier,
absorption-diffusion equation.

1. Introduction and motivation

Chromoscopic colonoscopy is a current medical technique, used in gastroen-
terology, to detect in vivo aberrant crypt foci (ACF) (see [1, 13, 25]). These
are believed to be the precursors of colorectal cancer (see [3, 4, 5, 23]). From
the endoscopic point of view, ACF are clusters of crypts (small pits in the
colonic epithelium) which stain darker with some dyes (for instance methy-
lene blue) than normal crypts. Colonoscopy allows the inspection of the
entire colon and provides the possibility to perform a number of therapeutic
operations during a single procedure. A tiny video camera at the tip of the
endoscope generates images of the colonic mucosa, which are displayed on a
monitor for real-time analysis. Chromoscopy consists in the instillation, by
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endoscopy, of a colored substance (a dye) in the colonic mucosa and subse-
quent visual analysis of the tissue stains in lesions, as ACF (their location and
features, as for example, the dimension, number, pattern, shape, etc.). The
in vivo endoscopic detection of ACF’s external boundaries and the crypts’
orifices in their interiors is extremely relevant for medical diagnosis and anal-
ysis. Up to now the methods applied for assessing the ACF are somewhat
subjective and not standardized nor automated and rely on direct medical
observation only.

Inspired by the definition of the chromoscopic colonoscopy technique we
propose a mathematical (dimensionless) model for estimating the dye sink
(or absorption) and diffusion parameters in normal and abnormal colonic
crypts, as well as, the dye concentration. Remarkably, this is achieved solely
with the endoscopic digital image as input datum, and assuming that the
dye concentration and the pixel intensity (of the medical image) are related
by the Beer-Lambert law (see [24]).

The overall model we suggest is a coupling of two problems. The first is
the image segmentation of the endoscopic image and the second a parameter
estimation problem. For solving the first problem we apply the technique
described in [10], which is a Levenberg-Marquard Newton-type optimization
method applied to the Chan and Vese segmentation model [6]. The second
problem is an inversion model which is formulated as a PDE-constrained
optimization model, i.e. an optimization problem, whose constraints are
governed by a partial differential equation (PDE). This latter it is essentially
a mass diffusion equation (see also [2, 19] where mass diffusion like-equations
are used to represent the dye transport within tissues). More precisely, it
is a time dependent PDE of parabolic type, whose unknown is the dye con-
centration. The coefficients of this parabolic equation, stand for the dye
sink (or absorption) and diffusion parameters (considered as scalars) in the
aberrant and normal colonic crypts. This separation is done throughout the
segmentation curve (obtained in the first problem), which detects the ACF.
The objective functional in the parameter estimation problem, is a fidelity
term that matches the exact spatial dye concentration (expressed as a func-
tion of the medical image, by means of the Beer-Lambert law), with the dye
concentration at final time, predicted by the parabolic equation.

To the best of our knowledge there are not in the literature papers re-
porting estimations for ACF absorption and diffusion parameters via in vivo
endoscopic image segmentation. However, there is a related paper to ours
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(see [12]) for image-driven parameter estimation with application to brain
tumor patient MR images.

The plan of this paper is as follows. Section 2 describes in detail the
proposed model. In section 3 the characterization of the solutions of the pa-
rameter estimation problem is provided by means of the Lagrange multiplier
theory, and an existence result is proved in theorem 3.1. The discretization
of the PDE-constrained optimization model is explained in section 4, using
finite elements and finite differences. Section 5 describes the algorithm em-
ployed. In section 6 we report on the numerical experiments. Finally some
conclusions and future work are commented in the last section.

2. Description of the model

In order to describe, with detail, the proposed mathematical model, we
assume the following approximations are valid:

• We suppose the dye solute, which is spread inside the lumen colon
obeys to a mass diffusion equation equation, which relies on a mass
conservation law (see [17, 18]). More exactly, we assume the dye dif-
fuses according to a Fick’s law (see [2, 19] for related papers, where
Fick’s law is used). In addition we also suppose that there is a sink
going on, symbolizing the elimination or the absorption of the dye so-
lute by the colon. In effect, it is known that certain dyes are absorbed
by the colonic cells. For instance, the dye methylene blue is captured
by cells which have absorption capabilities, such as the cells that exist
in the colon and small intestine (see [15, 8, 20]).

• The diffusion is constant, with different values in normal and aberrant
crypts. The sink term is a linear function of the dye concentration (this
is also usual in many chemical reaction equations, see for instance
[16]), and there are two sink (or absorption) scalar parameters: one
in normal crypts and the other in aberrant crypts.

• Based on medical information, we know that the colorimetry criterium
(only visual), used by the doctors, to assess the colonic crypts endo-
scopic images, reflect the dye concentration in normal and aberrant
crypts. Therefore, for evaluating the performance of the model, we
presume that the dye concentration, when the image is obtained, obeys
to the Beer-Lambert law (see [24]). Briefly, this law states that the
dye concentration is a function of the endoscopic image.
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Let Ω be a bounded open subset of R
2 (symbolizing a portion of the colon,

as a plane object) I0 : Ω −→ R be a given medical image and ω a subset of
Ω, with boundary ∂ω. Let c = (c1, c2) ∈ R be a constant vector symbolizing
the two different regions in the image I0 to be segmented (say ω and its
complement ωC = Ω \ ω) and finally let φ : Ω −→ R, be the so-called level
set function, defining implicitly the boundary ∂ω. That is, the 0-level set
{φ = 0} is ∂ω, {φ > 0} = ω and {φ < 0} = ωC. We represent by u(x, t)
the dye concentration at the spatial point x ∈ Ω and at time t ∈ [0, T ].
Here T is the given terminal time. Moreover we denote by σ = (σ1, σ2) and
D = (D1, D2) two unknown scalars in R

2. The Beer-Lambert law states that
I0 is a function of the real dye concentration at final time, u∗, that is,

I0 = RgI10−µlu∗ (1)

where I0 is the transmitted light (represented by the given image), I is
the incident light, Rg is the reflectance of the colon (unknown, see [11] for
a related paper), µ is the molar absorptivity coefficient (unknown, it is a
measure of the amount of light absorbed, per unit of dye concentration,
within the colon), l is the thickness of the material (unknown). Resolving
this equation with respect to u∗ yields

u∗ = −
1

b
log10

I0

a
=

1

b
log10

a

I0
, with a := RgI and b := µl (2)

where a and b are unknowns, that we suppose to be unknown scalars in the
sequel.

In the combined mathematical model we propose in this paper, the segmen-
tation is performed first, and then, in a second step, the inversion problem
is carried out, for determining the sink (or absorption) and diffusion coeffi-
cients, in normal and aberrant crypts, as well as the scalars a and b. That
is, we have to solve the following two problems:

• Problem 1 - Solve the segmentation problem

min
φ,c

S(φ, c). (3)
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• Problem 2 - Being φ the solution of (3) solve the inversion problem

min
u,σ,D,a,b

J(u, σ, D, a, b) :=
1

2

∫

Ω

|
1

b
log10

a

I0
− u(., T )|2

subject to












∂u

∂t
+ g(σ, φ)u −∇ ·

(

g(D, φ)∇u
)

= 0 in Ω × (0, T ]

u(x, 0) = u0(x) in Ω × {t = 0}

∂u

∂n
(x, t) = 0 in ∂Ω × [0, T ].

(4)

In problem 1, the function S(φ, c) is the objective functional we used in [10].
For convenience of the reader we recall that when S is the original Chan and
Vese segmentation functional [6], we have

S(φ, c) := µ

∫

Ω

|∇Hǫ(φ)| + λ1

∫

Ω

|I0 − c1|
2 Hǫ(φ) + λ2

∫

Ω

|I0 − c2|
2
(

1 − Hǫ(φ)
)

(5)

with µ, λ1, λ2 given positive scalar parameters, and Hǫ a regularization of
the Heaviside function H, i.e. (see [6])

Hǫ(z) :=
1

π

(

arctan(
z

ǫ
) +

1

2ǫ
)
)

, H(z) :=

{

1, z ≥ 0
0, z < 0

(6)

with ǫ > 0 a small given parameter.
In problem 2, the PDE equation is a second-order parabolic equation de-

scribing the time evolution of the dye concentration u, in the region Ω (see for
instance [9] and [21], respectively, for theoretical and numerical/discretization
issues of parabolic equations). The scalar function g is defined by

g(s, φ) := s1Hǫ(φ) + s2

(

1 − Hǫ(φ)
)

, ∀s = (s1, s2) ∈ R
2. (7)

The second order term ∇ ·
(

g(D, φ)∇u
)

describes diffusion and the term

g(σ, φ)u represents the sink term, or depletion. The parameters σ = (σ1, σ2)
and D = (D1, D2), involved in the definition of g, are, respectively, the dye
sink (or absorption) and diffusion coefficients, for subscript 1 in aberrant
crypts, and for subscript 2 in normal crypts. The separation between nor-
mal and abnormal crypts, is done by means of φ, through the regularized
Heaviside function Hǫ(φ), which is included in the definition of g.

We assume a given dye concentration u(., 0) := u0 at initial time t = 0
(the time at which the dye is delivered). In the numerical experiments we
take u0 a positive constant, because according to medical information, a dye
concentration is instilled during colonoscopy. Moreover, supposing homo-
geneous Neumann boundary conditions for the dye concentration, appears
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to be in good agreement with the physical problem. We also observe that,
without loss of generality, the given final time T (which is, from now on, the
time at which the endoscopic image is obtained), in the dye concentration
equation, can be considered equal to 1. In effect, if we take another final
time T 6= 1, then a change in the time variable (t ∈ [0, 1] → t1 = tT ∈ [0, T ])
results in multiplying the absorption and diffusion coefficients, σ = (σ1, σ2)
and D = (D1, D2), by the constant T .

In this problem 2, the objective functional J is the fidelity term, which
adjusts the spatial dye concentration u∗ (expressed as a function of I0, by
means of the Beer-Lambert law), with the dye concentration at final time,
u(., T ), predicted by the model. Therefore, it appears reasonable, for eval-
uating the performance of the model, to take as fitting term the difference
between u∗ and u(., T ), measured in the L2(Ω) Sobolev space. We remark
that here I0 symbolizes the intensity of the given input image.

Using the PDE equation in (4) to express the dye concentration u as a
function of (σ, D), i.e., u = f(σ, D), then the PDE-constrained optimization
problem (4) reduces to

min
σ,D,a,b

J̃(σ, D, a, b) = J
(

f(σ, D, ), σ, D, a, b
)

. (8)

This last model is referred to as the reduced formulation of (4) and J̃ as the
reduced objective functional.

The procedure we employ in this paper, for the numerical treatment of
problem 3 is a Levenberg-Marquard Newton-type optimization method as
described in [10]. For solving the parameter estimation problem (4), we use
an optimization algorithm applied to the reduced model (8). More precisely,
it is a gradient descent method. In this latter approach the computation
of the gradient of J̃ relies on the Lagrange multiplier theory. In effect the
Lagrangian functional couples the functional J to the time-dependent dye
concentration equation through a Lagrange multiplier. It then provides a
mechanism for deriving optimality conditions for the PDE-constrained opti-
mization problem (4), and for evaluating the gradient of the reduced objective
functional J̃ .

3. Characterization of solutions

In this section we start by describing the Lagrangian formulation applied
to problem (4), and the corresponding first-order optimality conditions, in a
weak variational setting (we remark that this variational framework is also
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necessary for discretization by finite elements in section 4). We also detail the
gradient of J̃ . At the end of the section, in theorem 3.1, we prove an existence
result for problem (4) and the existence of a Lagrange multiplier, when, in
the parabolic equation, the Neumann boundary condition is replaced by a
homogeneous Dirichlet condition.

We consider the Sobolev space H1(Ω) = {u : u ∈ L2(Ω), u′ ∈ L2(Ω)}, with

u′ the time derivative of u in the weak sense, and the dual space
[

H1(Ω)
]′

to H1(Ω). Moreover, we introduce the following functional spaces involving
time

L2
(

0, T ; H1(Ω)
)

and L2
(

0, T ;
[

H1(Ω)
]

′
)

, (9)

where

L2
(

0, T ; H1(Ω)
)

:=
{

u : [0, T ] → H1(Ω) : ‖u‖
L2

(

0,T ;H1(Ω)
) =

(

∫ T

0

‖u(., t)‖2
H1(Ω)dt

)
1

2

}

(10)

and L2
(

0, T ;
[

H1(Ω)
]′)

is defined in a similar way (see [9] for a detailed
definition of Sobolev spaces and functional spaces involving time). Then we
set

U := {u ∈ L2
(

0, T ; H1(Ω)
)

, u′ ∈ L2
(

0, T ;
[

H1(Ω)
]

′
)

}

P := {p ∈ L2
(

0, T ; H1(Ω)
)

, p′ ∈ L2
(

0, T ;
[

H1(Ω)
]

′
)

}
(11)

and form the Lagrangian functional L associated to problem (4), by adding
to the objective functional J a duality pairing of the dye concentration equa-
tion with a Lagrange multiplier p (also known as the adjoint variable). The
definition of L is

L(u, σ, D, a, b, p) := 1
2

∫

Ω

|
1

b
log10

a

I0
− u(., T )|2

+

∫ T

0

∫

Ω

(

−
∂p

∂t
u + g(σ, φ)u p + g(D, φ)∇u · ∇p

)

+

∫

Ω

u(., T ) p(., T )− u0 p(., 0).

(12)

for any u ∈ U , p ∈ P and (σ, D, a, b) ∈ R
2 × R

2 × R
2.

Under appropriate conditions (see theorem 3.1 at the send of this section)
a minimizing solution (u, σ, D, a, b) of (4) is a stationary point of the La-
grangian functional L. The first-order necessary condition for optimality is
that the first variation of the Lagrangian functional vanishes at stationary
points. Thus, by taking variations of L with respect to the variables u, σ,
D, a, b, p, we obtain the weak form of the first-order optimality conditions:
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• Variation of L with respect to p yields the weak dye concentration
equation (also called the state equation)

0 = ∂pL(u, σ, D, a, b, p)(p̂)

=

∫ T

0

∫

Ω

(∂u

∂t
p̂ + g(σ, φ) u p̂ + g(D, φ)∇u · ∇p̂

)

, ∀p̂ ∈ P,
(13)

whose strong from is

∂u

∂t
+ g(σ, φ)u −∇ ·

(

g(D, φ)∇u
)

= 0 in Ω × (0, T ]. (14)

This dye concentration equation evolves forward in time, with initial
condition u(x, 0) = u0(x) in Ω, and Neumann boundary condition
∂u
∂n

(x, t) = 0, in ∂Ω × [0, T ] (cf. (4)).

• Variation of L with respect to u gives the weak adjoint dye concen-
tration equation

0 = ∂uL(u, σ, D, a, b, p)(û)

= −

∫

Ω

(1

b
log10

a

I0

− u(., T )
)

· û(., T )

+ α

∫

Ω

(u(., T ) − d1) û(., T ) Hǫ(φ) + β

∫

Ω

(u(., T ) − d2) û(., T )
(

1 − Hǫ(φ)
)

+

∫ T

0

∫

Ω

(

−
∂p

∂t
û + g(σ, φ) p û + g(D, φ)∇p · ∇û

)

+

∫

Ω

p(., T ) û(., T ), ∀û ∈ U,

(15)

yielding the strong form

−
∂p

∂t
+ g(σ, φ)p −∇ ·

(

g(D, φ)∇u
)

= 0 in Ω × (0, T ]. (16)

The adjoint dye concentration equation evolves backward in time,
with the weak terminal condition

∫

Ω

p(., T ) û(., T ) =

∫

Ω

(1

b
log10

a

I0
− u(., T )

)

· û(., T ), ∀û ∈ U, (17)

which results directly from (15), and Neumann boundary condition
∂p
∂n

(x, t) = 0, in ∂Ω × [0, T ].
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• Variation of L with respect to σ1, σ2, D1, D2 leads to the weak σ1, σ2,
D1, D2 -gradient equations, respectively

0 = ∂σ1
L(u, σ, D, a, b, p)(σ̂1) =

∫ T

0

∫

Ω

u p Hǫ(φ) σ̂1, ∀σ̂1 ∈ R,

0 = ∂σ2
L(u, σ, D, a, b, p)(σ̂2) =

∫ T

0

∫

Ω

u p
(

1 − Hǫ(φ)
)

σ̂2, ∀σ̂2 ∈ R,

0 = ∂D1
L(u, σ, D, a, b, p)(D̂1) =

∫ T

0

∫

Ω

∇u · ∇p Hǫ(φ) D̂1, ∀D̂1 ∈ R,

0 = ∂D2
L(u, σ, D, a, b, p)(D̂2) =

∫ T

0

∫

Ω

∇u · ∇p
(

1 − Hǫ(φ)
)

D̂2, ∀D̂2 ∈ R.

(18)

• Variation of L with respect to a, b leads to the weak a, b -gradient
equations, respectively

0 = ∂aL(u, σ, D, a, b, p)(â) =

∫

Ω

(1

b
log10

a

I0

− u(., T )
) 1

ab log 10
â, ∀â ∈ R,

0 = ∂bL(u, σ, D, a, b, p)(b̂) =

∫

Ω

(1

b
log10

a

I0
− u(., T )

) −1

b2
log10

a

I0
b̂, ∀b̂ ∈ R.

(19)

Now, recalling the well known results from Lagrangian multiplier theory (see
[14]), the gradient of the reduced objective functional J̃ in (8), can be eval-
uated using a combined procedure involving the computation of the state
and adjoint variables, i.e. u and p. More precisely, the first-order necessary
optimality condition for J̃ is

0 = ∇J̃(σ, D, a, b)(σ̂, D̂, â, b̂) = ∇σ,D,a,bJ
(

u, σ, D, a, b
)

(σ̂, D̂, â, b̂)

+

∫ T

0

∫

Ω

(

−
∂p

∂t
u + g(σ̂, φ)u p + g(D̂, φ)∇u · ∇p

)

,

∀(σ̂, D̂, â, b̂) ∈ R
2 × R

2 × R
2,

(20)

with u and p the solutions of the state and adjoint equations (13) and (15),

respectively, and clearly, σ̂ = (σ̂1, σ̂2), D̂ = (D̂1, D̂2). Thus, from (20), we
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infer (compare with (18))

0 = ∂σ1
J̃(σ, D, a, b)(σ̂1) =

∫ T

0

∫

Ω

u p Hǫ(φ) σ̂1, ∀σ̂1 ∈ R,

0 = ∂σ2
J̃(σ, D, a, b)(σ̂2) =

∫ T

0

∫

Ω

u p
(

1 − Hǫ(φ)
)

σ̂2, ∀σ̂2 ∈ R,

0 = ∂D1
J̃(σ, D, a, b)(D̂1) =

∫ T

0

∫

Ω

∇u · ∇p Hǫ(φ) D̂1, ∀D̂1 ∈ R,

0 = ∂D2
J̃(σ, D, a, b)(D̂2) =

∫ T

0

∫

Ω

∇u · ∇p
(

1 − Hǫ(φ)
)

D̂2, ∀D̂2 ∈ R,

0 = ∂aJ̃(σ, D, a, b)(â) =

∫

Ω

(1

b
log10

a

I0
− u(., T )

) 1

ab log 10
â, ∀â ∈ R,

0 = ∂bJ̃(σ, D, a, b)(b̂) =

∫

Ω

(1

b
log10

a

I0
− u(., T )

) −1

b2
log10

a

I0
b̂, ∀b̂ ∈ R.

(21)

We prove now that a minimum of (4) is indeed a stationary point of the
Lagrangian functional L, for the particular case when the Neumann boundary
condidition is replaced by a homogeneous Dirichlet condition, in the parabolic
equation. For this purpose, let us first denote by a(t, v, z) the bilinear form
associated to the parabolic equation, that is, for any t ∈ [0, T ]

a(t, v, z) :=

∫

Ω

(

g(σ, φ) v z + g(D, φ)∇v · ∇z
)

, ∀(v, z) ∈
[

H2
0 (Ω)

]2
. (22)

Theorem 3.1. Consider problem (4), with the Neumann boundary condition
replaced by a homogeneous Dirichlet condition (i.e., u(x, t) = 0 in ∂Ω ×
[0, T ]). Assume in addition that the bilinear form a(., ., .) : [0, T ]×[H1

0(Ω)]2 →
R satisfies the coercivity condition, for any v ∈ H1

0(Ω)

a(t, v, v) ≥ α‖v‖2
H1

0
(Ω) − β‖v‖2

L2(Ω) (23)

with α and β positive constants independent of t ∈ [0, T ]. Moreover, we
suppose the initial condition for the parabolic equation verifies u0 ∈ L2(Ω).
Then :

• There exists a unique solution u ∈ L2
(

0, T ; H1
0(Ω)

)
⋂

H1
(

0, T ; H−1(Ω)
)

of
the parabolic equation defined in (4). Consequently u ∈ C0

(

0, T ; L2(Ω)
)

.
• The PDE constrained problem (4) has at least a solution (u∗, σ∗, D∗, a∗, b∗),

and a corresponding Lagrange multiplier p∗, such that (u∗, σ∗, D∗, a∗, b∗, p∗)

is a stationary point of the Lagrangian functional L.

Note: The space C0
(

0, T ; L2(Ω)
)

comprises all continuous functions u :

[0, T ] → L2(Ω) and the space H1
(

0, T ; H−1(Ω)
)

:=
{

u : u, u′ ∈ L2
(

0, T ; H−1(Ω)
)

}

,

with H−1(Ω) the dual space to H1
0 (Ω).
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Proof : We give here a sketch of the proof. The arguments rely on existence
and regularity results, on energy estimates for the parabolic equation (see
for instance [9] or [22]) and on Lagrange multiplier theory for variational
problems (see [14]).

The first claim is a direct consequence of existence results for linear evolu-
tion equation, more precisely second-order parabolic equations (see [9], [22]).
In particular, we note that the coercivity condition (23) is always verified if
g(D, φ) is positive, and this latter happens, if D1 and D2 are both positive
(we remark that the regularized Heaviside function Hǫ ranges between 0 and
1).

Regarding the second claim, one can show, using standard weak limit ar-
guments, the existence of a solution (u∗, σ∗, D∗, a∗, b∗) to problem (4), where
u∗ is the solution of the parabolic equation, depending on (σ∗, D∗), that is
u∗ := u(σ∗, D∗). Then, for demonstrating the existence of a corresponding
Lagrange multiplier p∗ (or in other words, to showing (u∗, σ∗, D∗, a∗, b∗, p∗)
is a stationary point of the Lagrangian functional L), it is necessary to ver-
ify that the map (σ, D, a, b) → J(u, σ, D, a, b) is Fréchet differentiable at
(u∗, σ∗, D∗, a∗, b∗, p∗) and that (σ∗, D∗, a∗, b∗) is regular (see theorem 1.6 in
[14]). The Fréchet differentiability of J at (a∗, b∗) does not cause problems
and at (u∗, σ∗, D∗) is a consequence of the Fréchet differentiability of the
mapping (σ, D) → u at (σ∗, D∗). In effect, let us denote by

u∗′(σ1) := u′(σ∗, D∗)(σ1), u∗′(σ2) := u′(σ∗, D∗)(σ2),

u∗′(D1) := u′(σ∗, D∗)(D1), u∗′(D2) := u′(σ∗, D∗)(D2),
(24)

the partial derivatives of u at (σ∗, D∗) in the direction of σ1, σ2, D1 and D2,
respectively. Then, they satisfy











∂u∗′(σ1)

∂t
+ g(σ∗, φ)u∗′(σ1) −∇ ·

(

g(D∗, φ)∇u∗′(σ1)
)

= −σ1Hǫ(φ)u∗ in Ω × (0, T ]

u∗′(σ1)(x, 0) = 0 in Ω × {t = 0}

u∗′(σ1)(x, t) = 0 in ∂Ω × [0, T ].
(25)











∂u∗′(σ2)

∂t
+ g(σ∗, φ)u∗′(σ2) −∇ ·

(

g(D∗, φ)∇u∗′(σ2)
)

= −σ2

(

1 − Hǫ(φ)
)

u∗ in Ω × (0, T ]

u∗′(σ2)(x, 0) = 0 in Ω × {t = 0}

u∗′(σ2)(x, t) = 0 in ∂Ω × [0, T ].
(26)
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∂u∗′(D1)

∂t
+ g(σ∗, φ)u∗′(D1) −∇ ·

(

g(D∗, φ)∇u∗′(D1)
)

=

∇ ·
(

D1Hǫ(φ)∇u∗

)

in Ω × (0, T ]

u∗′(D1)(x, 0) = 0 in Ω × {t = 0}

u∗′(D1)(x, t) = 0 in ∂Ω × [0, T ].

(27)

















∂u∗′(D2)

∂t
+ g(σ∗, φ)u∗′(D2) −∇ ·

(

g(D∗, φ)∇u∗′(D2)
)

=

∇ ·
(

D2(1 − Hǫ(φ))∇u∗

)

in Ω × (0, T ]

u∗′(D2)(x, 0) = 0 in Ω × {t = 0}

u∗′(D2)(x, t) = 0 in ∂Ω × [0, T ].

(28)

Because of the existence and uniqueness results for second-order parabolic
equations, these four parabolic equations thus guarantee the Fréchet differ-
entiability of J at (u∗, σ∗, D∗, a∗, b∗).

Finally, the point (σ∗, D∗, a∗, b∗) is regular if, for this point, the four map-
pings associated to the parabolic equations (25), (26), (27), (28) are surjec-
tive onto the space L2

(

0, T ; H−1(Ω)
)

(see Definition 1.5 in [14]). This is true,
and is again a consequence of existence and uniqueness results for second-
order parabolic equations (see for instance, theorem 11.3 and lemma 11.4 in
[22]).

We observe that the results of this theorem are still true if we replace
the Dirichlet boundary condition by a mixed Dirichlet-Neumann boundary
condition. In effect, Poincaré inequality plays a key role for proving the ex-
istence of solution to the parabolic equation, and it is still valid for mixed
Dirichlet-Neumann boundary condition. However, for pure Neumann bound-
ary conditions, as defined in (4), the Poincaré inequality does not hold, so
it might not be possible to claim the results of this theorem apply directly
to the inversion problem (4). Nevertheless, we decided to formulate (4)
with only Neumann conditions, because we think it is the most appropriate
framework for the medical chromoscopy technique we are modelling through
equation (4). Also in the numerical results (see section 6) we always took
homogeneous Neumann conditions.

We finally state another property, regarding the energy decay of the dye
concentration.
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Proposition 3.1. If g(σ, φ) and g(D, φ) are positive, then the energy E(t) =
∫

Ω u(., t)2 of the parabolic equation, in (4), decays in time.

Proof : Multiplying the parabolic equation in (4) by u and integrating in Ω
we have

∫

Ω

(du

dt
u + g(σ, φ) u2 + g(D, φ)|∇u|2

)

= 0, (29)

which implies
dE

dt
(t) ≤ 0, ∀t ∈ (0, T ]. (30)

Also integrating from 0 to t, we get

E(t) ≤ E(0) ⇐⇒

∫

Ω

u(., t)2 ≤

∫

Ω

u2
0 ∀t ∈ (0, T ], (31)

which concludes the statement.

4. Discretization

In order to actually compute the finite-dimensional approximation to the
solution of (4), or equivalently (8), we need to define the discretization of the
state (13) and adjoint (15) equations, as well as, the reduced objective func-
tional J̃ and the first-order optimality conditions (21). To do so we employ
finite elements, for discretizing the space variable x, and finite differences for
the time variable t. This yields a nonlinear system of algebraic equations
for the unknown (spatio-temporal) dye concentration u, (spatio-temporal)
adjoint dye concentration p, and unknown scalar parameters σ1, σ2, D1, D2.

The first thing that needs to be explained is the finite-element matrix for-
mulation corresponding to the several spatial integrals appearing in (21) and
also in the weak formulations of the forward and adjoint dye concentration
equations. The next formula (32) lists these correspondences, for the fixed φ
(defining the segmentation) obtained in problem 1 :

z′Mv ≈

∫

Ω

z v z′Kv ≈

∫

Ω

∇z · ∇v

z′M(φ)v ≈

∫

Ω

Hǫ(φ) z v z′K(φ)v ≈

∫

Ω

Hǫ(φ)∇z · ∇v

z′M(σ, φ)v ≈

∫

Ω

g(σ, φ) z v z′K(D, φ)v ≈

∫

Ω

g(D, φ)∇z · ∇v

(32)

where M , K , M(φ), K(φ), M(σ, φ), K(σ, φ) are finite element matrices, z
and v are arbitrary functions in H1(Ω), and we also represent by the same
letters z and v the corresponding finite element vectors (the prime in z′ means
the transpose of vector z). Thus, by applying the finite element method, and
using these matrix correspondences we arrive at the following semidiscrete
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Galerkin formulation (discrete in space and continuous on time), for the
forward-in-time dye concentration equation (compare with (13))





M
∂u

∂t
(t) + M(σ, φ)u(t) + K(D, φ)u(t) = 0

u(0) = u0

(33)

and for the backward-in-time adjoint dye concentration equation (compare with (15))




−M
∂p

∂t
(t) + M(σ, φ)p(t) + K(D, φ)p(t) = 0

p(T ) = 1
b
log10

a
I0
− u(T ).

(34)

Here, we denote by u(t) and p(t) the finite element approximations of u(., t)
and p(., t), respectively. This means that now u(t) and p(t) are vectors of
unknowns at the finite element nodes. We represent by ∂u

∂t
, ∂p

∂t
the derivatives

of u(t), p(t) with respect to time. The definition of p(T ) comes directly from
(17), and log10

a
I0

= log10 a − log10 I0, where log10 I0 :=
(

log10 i0
)

with i0 the

generic element of the given image I0 (the dimensions of vectors I0 and u(T )
must be equal, which can require an interpolation of the given image I0).

Let us now proceed and subdivide the time interval [0, T ] into N −1 subin-
tervals

[0, T ] =
N−1
⋃

i=1

[ti, ti+1], 0 = t1 < T2 < . . . < ti < . . . < tN = T

We assume, for simplicity, the time step size △t = ti−ti−1 = T
N−1

is constant
over the time interval. In addition, we approximate the time derivatives
∂u
∂t

(ti+1) and ∂p
∂t

(ti+1) by the forward time difference scheme

∂u

∂t
(ti+1) ≈

u(ti+1) − u(ti)

△t
=

ui+1 − ui

△t
∂p

∂t
(ti+1) ≈

p(ti+1) − p(ti)

△t
=

pi+1 − pi

△t

(35)

where the notations are self-explanatory. Consequently, we fully discretize
the state and adjoint equations (33) and (34), by the following system of
equations

[

M
ui+1 − ui

△t
+ M(σ, φ)ui+1 + K(D, φ)ui+1 = 0, ∀i = 1, . . . , N − 1

u1 = u0

(36)

and




−M
pi+1 − pi

△t
+ M(σ, φ)pi + K(D, φ)pi = 0, ∀i = N − 1, . . . , 1

pN = 1
b
log10

a
I0
− uN .

(37)
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These two schemes correspond to implicit (or backward) Euler time dis-
cretization methods. The systems (36) and (37) can equivalently be rewritten
as





( M

△t
+ M(σ, φ) + K(D, φ)

)

ui+1 =
M

△t
ui, ∀i = 1, . . . , N − 1

u1 = u0

(38)

and




( M

△t
+ M(σ, φ) + K(D, φ)

)

pi =
M

△t
pi+1, ∀i = N − 1, . . . , 1

pN = 1
b
log10

a
I0
− uN .

(39)

Now the discrete reduced objective functional is (compare with J in (4))

J̃(σ, D, a, b) =
1

2
(
1

b
log10

a

I0
− uN)′M(

1

b
log10

a

I0
− uN), (40)

where the upper-script prime means transpose vector. Then the discretiza-
tion of the first-order optimality conditions, corresponding to (21), with re-
spect to the optimization variables σ1, σ2, D1, D2 is now

0 = ∂σ1
J̃(σ, D, a, b) =

△t

2

(

N−1
∑

i=1

uT
i M(φ)pi +

N
∑

i=2

uT
i M(φ)pi

)

0 = ∂σ2
J̃(σ, D, a, b) =

△t

2

(

N−1
∑

i=1

uT
i

(

M − M(φ)
)

pi +
N

∑

i=2

uT
i

(

M − M(φ)
)

pi

)

0 = ∂D1
J̃(σ, D, a, b) =

△t

2

(

N−1
∑

i=1

uT
i K(φ)pi +

N
∑

i=2

uT
i K(φ)pi

)

0 = ∂D2
J̃(σ, D, a, b) =

△t

2

(

N−1
∑

i=1

uT
i

(

K − K(φ)
)

pi +
N

∑

i=2

uT
i

(

K − K(φ)
)

pi

)

,

0 = ∂aJ̃(σ, D, a, b) = (
1

b
log10

a

I0

− uN)′M
1

ab log 10
v

0 = ∂bJ̃(σ, D, a, b) = −(
1

b
log10

a

I0
− uN)′M

1

b2
log10

a

I0
,

(41)

where v represents a vector with all components equal to 1.
We finish this section with a property of numerically stability for the

schemes (36)-(37).

Proposition 4.1. If g(σ, φ) and g(D, φ) are positive, then the numerical
schemes (36) and (37) are unconditionally stable.

Proof : The reasoning is similar to both problems, thus we only give the
arguments for one of them, (36). Multiplying the equation of (36) by ui+1
we get, for any i

(ui+1 − ui, ui+1)L2(Ω) + △t

∫

Ω

g(σ, φ) u2
i+1 + △t

∫

Ω

g(D, φ) |∇ui+1|
2 = 0. (42)
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But for any v and z in L2(Ω) we have the inequality
∫

Ω

(v − z) v ≥
1

2

(

‖v‖2
L2(Ω) − ‖z‖2

L2(Ω)

)

, (43)

due to Cauchy-Schwartz inequality and Young inequality. Therefore, the
first term in the left hand side of (42) can be re-written according to this
last inequality. So for any i

‖ui+1‖
2
L2(Ω) + △t

∫

Ω

(

g(σ, φ) u2
i+1 + g(D, φ) |∇ui+1|

2
)

≤ ‖ui‖
2
L2(Ω). (44)

Thus summing from i = 1 to k − 1, for any k ≥ 2, we get

‖uk‖
2
L2(Ω) + △t

k−1
∑

i=1

∫

Ω

(

g(σ, φ) u2
i+1 + g(D, φ) |∇ui+1|

2
)

≤ ‖u0‖
2
L2(Ω). (45)

5. Algorithm

The optimization method we apply to problem (4) is a gradient descent
method with the following steps:

Step 1 Set k = 0 and initialize with σk = (σk
1 , σ

k
2), Dk = (Dk

1 , D
k
2), ak, bk.

Step 2 Solve the state and adjoint equations (38)-(39) and get, respectively,
the dye concentration and adjoint dye concentration vectors, uk+1 and
pk+1.

Step 3 Update the control variables σk+1 = (σk+1
1 , σk+1

2 ), Dk+1 = (Dk+1
1 , Dk+1

2 ),
ak+1, bk+1 by using a gradient descent algorithm, i.e. (compare with
(41))

σk+1
1 = σk

1 − ασ1

△t

2

(

N−1
∑

i=1

uk+1
i M(φ)pk+1

i +

N
∑

i=2

uk+1
i M(φ)pk+1

i

)

σk+1
2 = σk

2 − ασ2

△t

2

(

N−1
∑

i=1

uk+1
i

(

M − M(φ)
)

pk+1
i +

N
∑

i=2

uk+1
i

(

M − M(φ)
)

pk+1
i

)

Dk+1
1 = Dk

1 − αD1

△t

2

(

N−1
∑

i=1

uk+1
i K(φ)pk+1

i +

N
∑

i=2

uk+1
i K(φ)pk+1

i

)

Dk+1
2 = Dk

2 − αD2

△t

2

(

N−1
∑

i=1

uk+1
i

(

K − K(φ)
)

pk+1
i +

N
∑

i=2

uk+1
i

(

K − K(φ)
)

pk+1
i

)

ak+1 = ak − αa

(

( 1

bk
log10

ak

I0
− uN

)

′

M
1

akbk log 10

)

bk+1 = bk − αb

(

−
( 1

bk
log10

ak

I0
− uN

)

′

M
1

bk2 log10

ak

I0

)

(46)
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where the positive scalars ασ1
, ασ2

, αD1
, αD2

, αa, αb are step lengths,
not necessarily equal.

Step 4 Repeat steps 1-3, with k = 0 replaced by k + 1.
Step 5 Stop the algorithm with the following stopping criterium

optc(σk
1 )

optc(σ0
1)

< tol,
optc(σk

2 )

optc(σ0
2)

< tol,
optc(Dk

1)

optc(D0
1)

< tol,
optc(Dk

2)

optc(D0
2)

< tol,

optc(ak)

optc(a0)
< tol,

optc(bk)

optc(b0)
< tol,

(47)

where optc stands for optimality condition, the upper-scripts k and
0 represent the current k and 0 iterate, respectively, and tol is a pre-
scribed termination tolerance on the optimization variables (for in-
stance tol = 5 × 10−3).

6. Numerical results

We describe now the results obtained with the combined model (4). We
perform first a test-case and afterwards numerical simulations on three med-
ical ACF endoscopic images.

For all the experiments, we take dimensionless values, and the following
have been used, unless otherwise mentioned. The time interval is [0, 1], thus
T = 1, and the final time step size △t = 1/10 = 0.1. The spatial domain
Ω = [0, 1]2 is discretized with squared finite element meshes, with N2 fi-
nite elements (where N = 50, 100, 150, 200, 300 or 400) and bilinear shape
functions. The initial dye concentration u0 is 0.007, for the test problem,
and 0.002, for the medical images. The stopping criterium for the algorithm
was the termination tolerance on the optimization variables set to 5 × 10−3

(see(47)). For the parameter ǫ, in the regularized Heaviside function (6), we
took ǫ = 0.002. The implementation is done in MATLABr [26]; we use
Comsol Multiphysicsr [7] for extracting the finite element matrices (see
(32)).

6.1. Test problem. The intention is to investigate if and how close the
original sink (or absorption) and diffusion coefficients can be retrieved with
the combined model (4). Therefore, it appears reasonable, for evaluating the
performance of the model, to take for u∗ in (2), the generated dye concentra-
tion, via the forward problem, for a given choice of 4 parameters, and with a
predefined segmentation curve (the choice is a circumference, see Figure 1).
Consequently, the objective functional we consider, for the test problem, is
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a b

Figure 1. Test problem with 2002 finite elements. a- The cir-
cumference, symbolizing the segmentation curve. b- The gen-
erated dye concentration, at final time, with (σ̄1, σ̄2, D̄1, D̄2) =
(2.0, 0.5, 0.00012, 0.00016)

of the form

J(u, σ, D) :=
1

2

∫

Ω

|u(σ̄,D̄)(., T ) − u(., T )|2 (48)

where u(σ̄,D̄)(., T ) is the solution of the forward problem, at final time T ,

and the given parameters are (σ̄1, σ̄2, D̄1, D̄2) = (2.0, 0.5, 0.00012, 0.00016).
The results are displayed in Table 1, for 4 different finite element meshes,

and two different initial guesses (σ0
1, σ

0
2, D

0
1, D

0
2): (2.5, 0.9, 0.00014, 0.00012) is

guess1, and (1.5, 0.3, 0.0001, 0.00014) is guess 2. We remark that we used two
different step lengths in the gradient descent algorithm : αD1

= αD2
= 104 for

the diffusion parameters and ασ1
= ασ2

= 108 for the absorption parameters
(see (46)).

Table 1 - Optimization results for the test problem

Guess N σ1 σ2 D1 D2 Iterations
50 2.00046 0.500013 0.000120433 0.0001607 39

guess 1 100 2.00153 0.49986 0.000119443 0.000159388 76
150 2.00145 0.500035 0.000121371 0.00016247 42
200 2.00127 0.499878 0.000119449 0.00015929 45

50 1.99736 0.500053 0.000118844 0.000157691 34
guess 2 100 1.99669 0.500405 0.000121677 0.000161489 35

150 2.0023 0.499737 0.00011856 0.00015805 28
200 1.99708 0.499994 0.000117927 0.000156082 37

Exact solution 2 .0 0.5 0.00012 0.00016

The stopping criterium for the algorithm was the termination tolerance on
the optimization variables set to 10−3 (see (47)).
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6.2. Medical endoscopic images. For performing the segmentation of
the three ACF endoscopic images, i.e. for resolving problem 1 in (3), we
used the technique described in [10], for an RGB input image. However, we
observe that many other types of vector-valued images, for segmenting the
ACF, could have been used, with successful segmentation results (see [10] for
a list and a detailed explanation). For the inversion problem we consider the
grayscale image corresponding to I0, and we use it in equations (1)-(2).

The Tables 2, 3 and 4 display the results obtained for the endoscopic im-
ages, named M1, M3 and M2. The Figures 2, 3 and 4 show the the segmen-
tation, dye concentration and adjoint state at final time T , for M1, M2 and
M3, respectively. The pictures correspond to the values indicated in Tables
2, 3 and 4.

Table 2 - Optimization results for medical image M1

tol N σ1 σ2 D1 D2 a b Iterations

guess0 3 4 2e-5 4e-5 1500 30000
100 5.36143 5.51566 3.73587e-5 5.18381e-5 1983.77 29927.9 71

tol1 150 5.35848 5.51564 3.98597e-5 5.24625e-5 1983.75 29927.8 71
200 5.35519 5.51654 4.02067e-5 5.34485e-5 1983.83 29927.8 71
100 5.3807 5.52688 3.74771e-5 5.19782e-5 1989.9 29927 113

tol2 150 5.37916 5.52581 3.99988e-5 5.26239e-5 1989.92 29927 113
200 5.37718 5.52596 4.03656e-5 5.36265e-5 1990.09 29926.9 114

guess1 2.5 3.5 3.5e-5 3e-5 1500 30000
tol1 150 5.36514 5.50455 6.63366e-5 5.71782e-5 1959.02 29933.4 59
tol2 150 5.38577 5.5307 6.63696e-5 5.72826e-5 1968.68 29931.9 101

guess2 4 3.5 1.5e-5 4.5e-5 1500 30000
tol1 150 5.36962 5.51957 1.8845e-5 4.76797e-5 1972.06 29930.4 75

guess3 3 4 2e-5 4e-5 1400 29000
tol1 150 5.32389 5.48248 3.98238e-5 5.24378e-5 1910.88 28926 68
tol2 150 5.34352 5.4919 3.99612e-5 5.25972e-5 1917 28925.9 107

The medical images M1 and M3 have 200 × 200 pixels and M3 560 × 560
has pixels. We used finite element discretizations with 1002, 1502, 2002, 3002

and 4002 elements. Moreover, for the medical image M1, we indicate in Table
2, the values for the termination tolerance set to two values : tol1 = 5×10−3

and tol2 = 5 × 10−4. For M1 and M3 only the tolerance tol1 was used. We
remark that for these medical images, the initial dye concentration was set
u(., 0) = 0.002 and we used three different step lengths in the gradient descent
algorithm : αD1

= αD2
= 10 for the diffusion parameters, ασ1

= ασ2
= 108

for the sink (or absorption) parameters and αa = αb = 1014 (see (46)).
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Figure 2. Graphics corresponding to the results displayed in
Table 2 for N = 200, guess0 and tol1. a: Medical image M1
with 2002 pixels. b: Segmentation. c and d: The optimal dye
concentration and optimal adjoint dye concentration at final
time.

Table 3 - Optimization results for medical image M2

Image N σ1 σ2 D1 D2 a b Iterations

guess0 3 4 2e-5 4e-5 1500 30000
M2 200 5.38206 5.65368 4.4406e-5 5.33728e-5 1994 29933.3 106
tol1 300 5.38246 5.65369 4.5894e-5 5.2829e-5 1993.74 29933.4 106

400 5.3826 5.65493 4.67463e-5 5.25886e-5 1993.8 29933.4 107

guess1 2.5 3.5 3.5e-5 3e-5 1500 30000
tol1 200 5.45484 5.64016 9.03615e-5 8.37244e-5 1839.84 29962.5 86

guess2 4 3.5 1.5e-5 4.5e-5 1500 30000
tol1 200 5.37042 5.69566 2.26725e-5 4.9905e-5 2014.66 29933.1 199

guess3 3 4 2e-5 4e-5 1400 29000
tol1 200 5.34598 5.6242 4.41564e-5 5.32138e-5 1921.95 28932.5 103

We emphasize that the inverse problem is a mathematical model, with
dimensionless values for the domain Ω, the final time T , the six inversion
parameters σ1, σ2, D1, D2, a, b, as well as, the initial dye concentration
u(., 0). We briefly justify now the initial values chosen for σ1, σ2, D1, D2, a
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Figure 3. Graphics corresponding to the results displayed in
Table 3 for N = 200, guess0 and tol1. a: Medical image M2
with 5602 pixels. b: Segmentation. c and d: The optimal dye
concentration and optimal adjoint dye concentration at final
time.

and b, in order to initialize the algorithm. For the sink (or absorption) and
diffusion parameters, we decided to initialize, with values, which are of the
same order as those used in the test problem. Regarding the initial choice
for a and b, it relies in the following observations. As we know that the
energy of the parabolic equation decreases in time (see proposition 3.1), and
we choose u(., 0) = 0.002, than at final time the dye concentration would be
very small, say u∗ ≈ 10−5. On the other hand, due to the Beer-Lambert law
(1), we have b = 1

u∗
log10

a
I0

and a = I010bu∗. Thus if log10
a
I0

ranges between 1

and 9 (since the reflectance unit is percent or a factor between 0 and 1, and
we assume I > I0), then b ≈ 1

u∗
and consequently b ≈ 105, and a ≈ 10I0.
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Table 4 - Optimization results for medical image M3

Image N σ1 σ2 D1 D2 a b Iterations

guess0 3 4 2e-5 4e-5 1500 30000
M3 100 4.67692 4.80533 4.20916e-5 5.43009e-5 1734.64 29952.4 49
tol1 150 4.67702 4.80352 4.49877e-5 5.48639e-5 1734.44 29952.3 48

200 4.67582 4.80274 4.48888e-5 5.55619e-5 1735.06 29952.1 47
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Figure 4. Graphics corresponding to the results displayed in
Table 4, for N = 200, guess0 and tol1. a: Medical image M3
with 2002 pixels. b: Segmentation. c and d: The optimal dye
concentration and optimal adjoint dye concentration at final
time.

7. Conclusions and future work

In this paper a novel coupled segmentation and parameter estimation model
has been proposed for assessing and extracting physical information about
colonic crypts in vivo endoscopic images. The overall mathematical model
permits to obtain dimensionless parameter values, namely the dye sink (or
absorption) and diffusion parameters, in normal and aberrant colonic crypts.
Mathematical analysis of the inversion problem in a Lagrangian framework
has been carried out.
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The results obtained with a test image reveal an excellent performance of
the model. Moreover, the results for three medical endoscopic ACF images
appear to be very promising.

In order to completely validate this model we intend, in the future, to do
tests in a data-base of medical images, taken either from one individual, or
from different groups of individuals. The aim is to establish a correlation
between the values of the dye sink (or absorption) and diffusion parameters
in two different groups of individuals: with and without colon cancer.

We believe the model presented in this paper is a valuable and innovative
contribution towards the understanding of ACF, and it will lead to a better
clarification regarding the possible cancer potential of ACF. From the medical
point of view, the methodology involves only in vivo techniques, which is an
extremely important feature of this procedure.
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