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1. Introduction
The Kadomtsev-Petviashvili (KP) and the two-dimensional Toda (2D Toda)

hierarchies are the most well-known hierarchies associated to 2 + 1 inte-
grable systems. They both admit the so-called multicomponent generaliza-
tions where the scalar Lax operators are replaced by matrix-valued ones. The
multicomponent KP hierarchy has been originally defined by Date, Jimbo,
Kashiwara, and Miwa [6] while the multicomponent 2D Toda hierarchy was
introduced in the seminal paper [13] by Ueno and Takasaki. They have been
further studied by several authors, see e.g. [3, 9, 12]. These hierarchies have
been recently the subject of much interest in relation e.g. with multiple or-
thogonal polynomials [2], Brownian motion [1] and the Givental group action
on the space of Frobenius structures [8].
Differently from the scalar case, in the multicomponent hierarchies the

matrix Lax operators have to satisfy certain constraints. Let’s look first at
the usual KP hierarchy. In this case one has a single scalar pseudo-differential
Lax operator

LKP = ∂ + u1∂
−1 + u2∂

−2 + . . . .

The commuting flows of the hierarchy are given by the Lax equations

∂LKP

∂tn
= [(Ln

KP )+, LKP ]
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where (·)+ denotes the projection of a pseudo-differential operator to its
differential part. Formally the Lax equations might be considered as an
algebraic device to produce sequences of differential polynomials

Pk,n := (uk)tn ∈ AKP = C[{uk, u′k, u′′k, . . . }k>1]

in the dependent variables uk, k > 1, such that the corresponding derivations

∂tn :=
∑

s>0,k>1

(∂s
xPk,n)

∂

∂u
(s)
k

on the algebra AKP commute.
In the simple case of the 2-component KP hierarchy, one has two pseudo-

differential Lax operators

L = ∂ + L1∂
−1 + . . . , C = E11 + C1∂

−1 + . . .

where the coefficients are 2 by 2 matrices. Let A′ be the algebra of differ-
ential polynomials in the entries (Li)α,β, (Ci)α,β, α, β = 1, 2, of the matrix
coefficients of L and C. As before the Lax equations (6),(7) define sequences
of elements in A′. However in this case the corresponding derivations don’t
commute unless an infinite set of differential identities generated by the con-
straints

C2 = C, [L,C] = 0

are taken into account. In principle it is not easy to estabilish if these iden-
tities can be used to eliminate some variables or if it is possible to write
the flows as derivations on a smaller algebra A of differential polynomials
without extra constraints.
In the present work we will show that, at least in the case of the 2-

component KP and 2D Toda hierarchies, it is possible to explicitly solve
the constraints above and to identify a set of “free” dependent variables.
In the case of the 2-component KP hierarchy the operator C turns out to

be parametrized in terms of its off-diagonal part CA, e.g. by the formula

C =
√

1 + 2CAE11

√
1 + 2CA

while the operator L is parametrized by its diagonal part LD and by CA by
the formula

L = LD − 1

2
D
(√

1− 4C2
A

)
where D is the derivation on the space of formal power series in CA defined
by D(1) = 0 and D(CA) = HLD.
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Substituting these formulas in the Lax equations we obtain evolutionary
type equations that only involve the variables in LD and CA. The Lax
equations hence define sequences elements in the algebra A of differential
polynomials in the variables (Li)11, (Li)22, (Ci)12 and (Ci)21 such that the
corresponding derivations on A commute, without any constraint.
Similar results are proved for the case of the 2-component 2D Toda hier-

archy.
One of our main motivations for trying to construct a constraint-free Lax

formulation of these multicomponent hierarchies has been the recent con-
struction [5] of an infinite-dimensional Frobenius manifold associated to the
dispersionless limit of the usual 2D Toda hierarchy. To see if such a construc-
tion is also applicable to the case of multicomponent hierarchies one would
like to understand if the costruction of a bi-Hamiltonian structure (along the
lines e.g. of [4]) is possible, and if the dispersionless limit for these hierarchies
can be understood in the usual way in terms of the symbol of a convenient
Lax operator. We hope that giving a formulation free of constraints at least
in the 2-component case could be a first step in this program.
An example of 2-component hierarchy in which such program seems to be

possible is the case of the 2-component BKP hierarchy where a bihamilto-
nian structure [14] has been found which could possibily lead to an infinite-
dimensional Frobenius manifold. However, in this case, one exploits a re-
formulation [11] of the Lax representation of the hierarchy in terms of two
scalar pseudo-differential operators .
This paper is organized in two main sections. In section 2 we consider

the 2-component KP hierarchy. The definition of this hierarchy in terms
of pseudo-differential operators is recalled. We show that the constraints
on the Lax operators can be solved explicitly and we identify the dependent
variables of the hierarchy. In Section 3 an analogous construction is developed
in the case of the 2-component 2D Toda hierarchy. In this case the algebra
of formal difference operators is considered and a similar solution of the
constraints is given. Section 4 is devoted to a summary and a discussion
of further developments, in particular to the possibility of generalizing the
present approach to the n-component case.

Notation. We use the following notations

E11 =

(
1 0
0 0

)
, E22 =

(
0 0
0 1

)
, H =

(
1 0
0 −1

)
,
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with the identity matrix denoted by 1.
Recall that the algebra of (formal) pseudo-differential operators is given by

formal series in the symbol ∂ like
n∑

k=−∞

ak∂
k

with algebra structure defined by

∂kf = f∂k +

(
k

1

)
f ′∂k−1 + . . .

We will consider the coefficients ak as elements in the algebra of differential
polynomials in the dependent variables of the hierarchy. See e.g. [7] for
further details on the formal setting.
Analogously, we define the formal difference operators as formal series in

Λ, either of the form
n∑

k=−∞

akΛ
k or

∞∑
k=−m

akΛ
k

were the algebra structure is given by Λk = (Λkf)Λk. In this case the co-
efficients ak will be difference polynomials in the dependent variables of the
hierarchy. See e.g. [10] for further details.

2. The 2-component KP hierarchy
The usual Lax formulation of the 2-component KP hierarchy [6, 9, 3] is the

following. One considers 2×2-matrix-valued pseudo-differential operators L,
C(1) and C(2) of the form

L = ∂ + L1∂
−1 + L2∂

−2 + · · · , (1)

C(1) = E11 + C
(1)
1 ∂−1 + C

(1)
2 ∂−2 + · · · , (2)

C(2) = E22 + C
(2)
1 ∂−1 + C

(2)
2 ∂−2 + · · · , (3)

which satisfy the constraints

C(i)C(j) = δijC
(i) i, j = 1, 2,

C(1) + C(2) = 1,

[L,C(i)] = 0 i = 1, 2.
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Clearly in this case C(2) can be expressed in terms of C := C(1) and it is
sufficient to consider the constraints

C2 = C, (4)

[L,C] = 0. (5)

Two sets of flows ti,n for i = 1, 2 and n > 0 are defined by the Lax equations

∂L

∂ti,n
= [(C(i)Ln)+, L], (6)

∂C(j)

∂ti,n
= [(C(i)Ln)+, C

(j)]. (7)

By standard arguments one proves that these flows commute and that they
preserve the constraints above.
The Lax equations (6)-(7), however, define commutative flows only if the

constraints (4)-(5) are satisfied. We now show that it is possible to explicitly
solve these constraints.
We start our analysis from the first constraint (4).

Proposition 1. A 2× 2-matrix-valued pseudo-differential operator C of the
form

C = E11 + C1∂
−1 + · · · (8)

satisfies the constraint C2 = C if and only if it can be written

C = CA + CD with CD =
1

2
+

H

2

√
1− 4C2

A (9)

where CD and CA are the diagonal and off-diagonal parts of C, respectively.

Proof. If we split the contraint C2 = C in its diagonal and off-diagonal parts
we see that it is equivalent to the system

C2
D + C2

A = CD, (10)

CACD + CDCA = CA. (11)

Equation (10) is written

(CD − 1

2
)2 =

1

4
(1− 4C2

A)

which is solved, taking care of the correct leading term of CD− 1
2 =

H
2 +· · · , by

the formula (9). Using the fact that H commutes with diagonal matrices and
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anti-commutes with off-diagonal matrices, it is easy to check that formula (9)
satisfies (11), too. �

The square root appearing in (9) is defined by the usual power-series ex-
pansion of

√
1− x = 1 − x

2 + · · · . This power series gives a well-defined
pseudo-differential operator since CA is of order 1 in ∂−1, hence only a finite
number of terms in the power series contribute to each given order in ∂−1.

Corollary 2. The parametrization (9) of C can be written explicitly as

C =

(
1
2 +

1
2

√
1− 4aã a
ã 1

2 −
1
2

√
1− 4ãa

)
where a, ã are scalar pseudo-differential operators of order O(∂−1):

a = a1∂
−1 + a2∂

−2 + a3∂
−3 + · · · , (12)

ã = ã1∂
−1 + ã2∂

−2 + ã3∂
−3 + · · · . (13)

We see at once that the entries of the matrix pseudo-differential operator C
are expressed as differential polynomials in the coefficients of a, ã. Recall that
the square root of a scalar pseudo-differential operator b = 1+b1∂

−1+· · · can
be defined by the power series above or equivalently as the unique operator√
b = 1+b̃1∂

−1+· · · such that (
√
b)2 = b, where b̃k are differential polynomials

in the bl’s, i.e. b̃k ∈ C[{b(n)l }].

Example 3. Expanding up to the third order in ∂−1 we obtain

C =
(
1− a1ã1∂

−2 + (a1ã
′
1 − a2ã1 − a1ã2)∂

−3 a1∂
−1 + a2∂

−2 + a3∂
−3

ã1∂
−1 + ã2∂

−2 + ã3∂
−3 a1ã1∂

−2 − (ã1a
′
1 − ã2a1 − ã1a2)∂

−3

)
+O(∂−4)

Remark 4. Using the fact that E11 = 1+H
2 and H anti-commutes with CA

it is possible to rewrite the formula (9) in the interesting form

C =
√

1 + 2CAE11

√
1 + 2CA.

From this expression it is easy to check that the constraint C2 = C is satisfied
and that C has the correct leading term as in (8).

We now consider the second constraint (5). We first introduce

Definition 5. The operator D denotes the derivation on the space of formal
power series in the variable CA defined by D(1) = 0 and D(CA) = HLD, and
LD and LA denote the diagonal and off-diagonal parts of L, respectively,
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and consider the following lemmas:

Lemma 6. The constraint (5) is equivalent to

[LA, CA] = −[LD, CD] (14)

[LA, CD] = −[LD, CA] (15)

holds.

Proof. Consider the diagonal and off-diagonal parts of [L,C] = 0. �

Lemma 7. The following identity holds

adHLD
= −adCA

◦ D (16)

when acting on power series in the variable CA.

Proof. It follows from the definition of the derivation D and the the fact
that adCA

is identically zero when acting on such series, hence 0 = D◦adCA
=

adD(CA) + adCA
◦ D. �

Lemma 8. Let C = C2 as in Proposition 1. Then the constraint (14) is
equivalent to the identity

adLA
= −1

2
adD(

√
1−4C2

A)
(17)

on power series in CA.

Proof. Indeed from (14) and (9) we have

adLA
CA = −1

2
adHLD

(
√
1− 4C2

A)

and, using (16)

adLA
CA =

1

2
adCA

◦ D(
√

1− 4C2
A)

= −1

2
adD(

√
1−4C2

A)
CA.

�



8 G. CARLET AND M. MAÑAS

Proposition 9. Let C = C2 be as in the Proposition 1. A 2 × 2-matrix-
valued pseudo-differential operator L of the form (1) commutes with C if and
only if it has the form

L = LA + LD with LA = −1

2
D
(√

1− 4C2
A

)
. (18)

Proof. Consider (15), which can be easily rewritten as

LAH
√

1− 4C2
A +

H

2
adLA

(
√
1− 4C2

A) = −[LD, CA]. (19)

Using formula (17) we compute

adLA

(√
1− 4C2

A

)
= −1

2
adD(

√
1−4C2

A)

(√
1− 4C2

A

)
= −D

(√
1− 4C2

A

)√
1− 4C2

A +
1

2
D(1− 4C2

A).

Inserting this formula in (19) we obtain

LAH
√

1− 4C2
A − H

2
D
(√

1− 4C2
A

)√
1− 4C2

A −HD(C2
A) = −[LD, CA].

The last two terms in the last expression cancel and, since the square root is
an invertible power series, we obtain (18).
On the other hand inserting (18) and (9) in (14) we see that this equation

is satisfied if and only if

adCA
◦ D

(√
1− 4C2

A

)
= −adHLD

(√
1− 4C2

A

)
which clearly follows from (16). Equations (18) and (9) solve also (15);
indeed,

[LA, CD] = −1

4

[
D
(√

1− 4C2
A

)
, H

√
1− 4C2

A

]
= D(C2

A)H

= −[LD, CA].

The Proposition is proved. �

Corollary 10. The matrix L has the following explicit parametrization

L =

(
l 1

2

∑∞
n=0 cn

∑n
s=1(aã)

s−1(al̃ − la)(ãa)n−s

−1
2

∑∞
n=0 cn

∑n
s=1(ãa)

s−1(ãl − l̃ã)(aã)n−s l̃

)
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where l, l̃ are pseudo-differential operators of the form ∂ +O(∂−1)

l = ∂ + l1∂
−1 + l2∂

−2 + · · · ,
l̃ = ∂ + l̃1∂

−1 + l̃2∂
−2 + · · · ,

while a, ã are the off-diagonal entries of CA defined in (12)-(13) and the
coefficients cn are defined by the expansion

√
1− 4x2 =

∑∞
n=0 cnx

2n.

Example 11. Expanding we obtain

L =

(
∂ + l1∂

−1 + l2∂
−2 a′1∂

−1 + (a′2 + a1(l1 − l̃1))∂
−2

−ã′1∂
−1 − (ã′2 + ã1(l̃1 − l1))∂

−2 ∂ + l̃1∂
−1 + l̃2∂

−2

)
+O(∂−3).

Indeed L can be expressed only in terms of its diagonal coefficients, i.e. li,
l̃i, and the off-diagonal coefficients of C, i.e. ai, ãi.

Remark 12. The parametrization (18) can also be written in the form

L = −
√

1 + 2CAE11D(
√
1− 2CA)−D(

√
1 + 2CA)E22

√
1− 2CA

as one can easily check.

Note that the dependence of L on LD is linear, while L and C depend on
CA non-linearly.
Using the results obtained above with find the following formulation of the

2-component KP hierarchy, which is free of constraints. The dependent vari-
ables are organized in two 2 by 2 matrix valued pseudo-differential operators
of the form

LD = ∂ + LD,1∂
−1 + LD,2∂

−2 + · · · ,
CA = CA,1∂

−1 + CA,2∂
−2 + · · · ,

where LD is diagonal and CA off-diagonal. We now introduce

Definition 13. The differential operators B1,n and B2,n are given by

B1,n =

[(1
2
+ CA +

H

2

√
1− 4C2

A

)(
LD − 1

2
D
(√

1− 4C2
A

))n
]
+

B2,n =

[(1
2
− CA − H

2

√
1− 4C2

A

)(
LD − 1

2
D
(√

1− 4C2
A

))n
]
+

and (·)D, (·)A denote the projections on the diagonal and off the diagonal
respectively.
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Proposition 14. The equations of the hierarchy are

∂LD

∂ti,n
= [(Bi,n)D, LD]−

1

2
[(Bi,n)A,D(

√
1− 4C2

A)], (20)

∂CA

∂ti,n
= [(Bi,n)D, CA] +

1

2
[(Bi,n)A, H

√
1− 4C2

A]. (21)

Proof. This result is obtained by projection of the equations (6) and (7) on
the diagonal and off the diagonal respectively. �

2.1. Examples and the Davey–Stewartson system. Recalling the for-
mulae for

LA = −1

2
D
(√

1− 4C2
A

)
and CD =

1

2
+

H

2

√
1− 4C2

A

we get

LA = LA,1∂
−1 + LA,2∂

−2 + LA,3∂
−3 + · · · ,

with the first three coefficients given by

LA,1 = H(CA,1)x,

LA,2 = H((CA,2)x + [LD,1, CA,1]),

LA,3 = H
(
(CA,3)x + [LD,1, CA,2] + [LD,2, CA,1]− LD,1(CA,1)x + CA,1(LD,1)x

+ (CA,1)xC
2
A,1 + C2

A,1(CA,1)x − CA,1(CA,1)xCA,1

)
.

We also have

CD = E11 + CD,2∂
−2 + CD,3∂

−3 + · · ·

with

CD,2 = −HC2
A,1,

CD,3 = −H(CA,1CA,2 + CA,2CA,1 − CA,1(CA,1)x).
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To find the explicit form of the flows we proceed with the computation of
the expressions

(B1,1)D = E11∂, (B1,1)A = CA,1,

(B1,2)D = E22∂, (B1,2)A = −CA,1,

(B2,1)D = E11∂
2 + 2LD,1E11 −HC2

A,1, (B2,1)A = CA,1∂ + 2E11(CA,1)x + CA,2,

(B2,2)D = E22∂
2 + 2LD,1E22 +HC2

A,1, (B2,2)A = −CA,1∂ − 2E22(CA,1)x − CA,2.

Inserting in the Lax equations (20)-(21) we obtain, for the first couple of
times t1,1, t1,2, the following equations for LD,1 and LD,2

∂1,1LD,1 = (E11LD,1 −H(CA,1)
2)x, (22)

∂1,2LD,1 = (E22LD,1 +H(CA,1)
2)x, (23)

∂1,1LD,2 = E11(LD,2)x +H
(
((CA,1)x)

2 − CA,1(CA,2)x − (CA,2)xCA,1

)
, (24)

∂1,2LD,2 = E22LD,2,x −H
(
((CA,1)x)

2 − CA,1(CA,2)x − (CA,2)xCA,1

)
, (25)

while for CA,1 and CA,2 we have

∂1,1CA,1 = E11(CA,1)x + [E11, CA,2], (26)

∂1,2CA,1 = E22(CA,1)x + [E22, CA,2], (27)

∂1,1CA,2 = E11(CA,2)x + [E11, CA,3] + 2H(CA,1)
3, (28)

∂1,2CA,2 = E22(CA,2)x + [E11, CA,3]− 2H(CA,1)
3. (29)

Combining some equations of the hierarchy we can obtain an example of
2 + 1 equation related to this hierarchy. Indeed, from the equations for CA,1

and CA,2 we can derive CA,2 and CA,3 in terms of CA,1 and its x, t1,i derivatives,
i = 1, 2. For that aim is enough to observe that ad2Eii

= id, i = 1, 2, over the
off-diagonal matrices. Hence,

CA,2 = [E11, (∂1,1 − E11∂)CA,1] = [E22, (∂1,2 − E22∂)CA,1]

CA,3 = [E11, (∂1,1 − E11∂)
2CA,1]− (CA,1)

3 = [E22, (∂1,2 − E22∂)
2CA,1] + (CA,1)

3.
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We now write the t2,i-flows, i = 1, 2, but only for LD,1

∂2,1LD,1 = E11(LD,1,xx + 2LD,2,x)−H(CA,1(CA,1)xx − ((CA,1)x)
2 + (CA,1CA,2)x

− 2[E11(CA,1)x, E22(CA,1)x] + CA,1[LD,1, (CA,1)x] + [LD,1, A1,x]CA,1),

∂2,2LD,1 = E22(LD,1,xx + 2LD,2,x) +H(CA,1(CA,1)xx − ((CA,1)x)
2 + (CA,1CA,2)x

− 2[E22(CA,1)x, E11(CA,1)x] + CA,1[LD,1, (CA,1)x] + [LD,1, A1,x]CA,1)

and CA,1

∂2,1CA,1 = E11(A1,xx + 2(CA,2)x) + [E11, CA,3] + 2[LD,1E11, CA,1],

∂2,2CA,1 = E22(A1,xx + 2(CA,1)x) + [E22, CA,3] + 2[LD,1E22, CA,1].

Substituting (26)-(29) and (22)-(23) in the above equations results into

∂2,1CA,1 = H(∂2
1,1CA,1 − 2(CA,1)

3) + 2[LD,1E11, CA,1],

∂2,2CA,1 = −H(∂2
1,2CA,1 − 2(CA,1)

3) + 2[LD,1E22, CA,1],

(E11∂1,1 + E22∂1,2)(LD,1) = ((CA,1)
2)x.

Now, if we write

LD,1 =

(
U 0
0 V

)
, CA,1 =

(
0 p
q 0

)
we get the Davey–Stewartson system

∂2,1p = ∂2
1,1p− 2p2q + 2Up,

∂2,1q = −∂2
1,1q − 2pq2 − 2Uq,

∂2,2p = −∂2
1,1p+ 2p2q − 2V p,

∂2,2q = ∂2
1,1q + 2pq2 + 2V q,

∂1,1U = ∂1,2V = (pq)x.

3. The 2-component 2D Toda hierarchy
In this section we show that a similar analysis can be performed for the

2-component 2D Toda hierarchy. In this case one has to deal with matrix-
valued formal difference operators.
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The 2-component 2D Toda hierarchy [13, 12] is defined in terms of formal
Lax difference operators L, L̄, C(i), C̄(i) for i = 1, 2 of the form

L = Λ+ L0 + L−1Λ
−1 + · · · , (30)

L̄ = L̄−1Λ
−1 + L̄0 + L̄1Λ + · · · , (31)

C(i) = Eii + C
(i)
1 Λ−1 + · · · ,

C̄(i) = C̄
(i)
0 + C̄

(i)
1 Λ + · · · ,

where L̄−1 is invertible and C̄
(i)
0 is similar to Eii. These operators are required

to satisfy the following constraints

C(i)C(j) = δijC
(i), i, j = 1, 2,

C̄(i)C̄(j) = δijC̄
(i), i, j = 1, 2,

C(1) + C(2) = 1 = C̄(1) + C̄(2),

[L,C(i)] = 0 = [L̄, C̄(i)], i = 1, 2,

which in this case reduce to

C2 = C, [L,C] = 0, (32)

C̄2 = C̄, [L̄, C̄] = 0, (33)

where we have denoted C := C(1) and C̄ := C̄(1).
Four sequences of flows ti,n, t̄i,n for i = 1, 2 and n > 0 are defined by

∂

∂ti,n
· = [(C(i)Ln)+, · ], (34)

∂

∂t̄i,n
· = [(C̄(i)L̄n)−, · ], (35)

where · can be any of the Lax operators L, L̄, C(i), C̄(i) for i = 1, 2. Again
by standard arguments these flows are seen to commute and preserve the

constraints above. In particular it is easy to see that the matrices C̄
(j)
0 evolve

like

∂C̄
(j)
0

∂ti,n
= [Res(C(i)Ln), C̄

(j)
0 ],

∂C̄
(j)
0

∂t̄i,n
= [−Res(C̄(i)L̄n), C̄

(j)
0 ]

hence the condition of similarity of C̄
(i)
0 and Eii is preserved.
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The solution to the constraints (32) for the operators L and C is completely
analogous to that for the 2-component KP hierarchy. We summarize the
statement here:

Proposition 15. (a) A 2× 2-matrix-valued formal difference operator C of
the form

C = E11 + C1Λ
−1 + . . .

satisfies the constraint C2 = C if and only if it can be written

C = CA + CD with CD =
1

2
+

H

2

√
1− 4C2

A

where CD and CA are the diagonal and off-diagonal parts of C, respectively.
(b) Let C = C2 be as above. A 2 × 2-matrix-valued formal difference

operator L of the form (30) commutes with C if and only if it has the form

L = LA + LD with LA = −1

2
D(

√
1− 4C2

A),

where D is the derivation on the space of formal power series in the variable
CA defined by D(1) = 0 and D(CA) = HLD, and LD and LA denote the
diagonal and off-diagonal parts of L, respectively.

To solve the constraints (33) for the operators L̄ and C̄ we need to take
care of the fact that their leading orders are not constant matrices.
The leading order C̄0 of the operator C̄ is required to be similar to E11

and to satisfy C̄2
0 = C̄0; such requirements are equivalent to the following

constraints on entries of C̄0 :

C̄0 =

(
a b
c d

)
,

{
a+ d = 1,

ad = bc.

For simplicity in the following we consider the generic case where a ̸= 0, 1
and we parametrize C̄0 as a function of b = eu, c = ev as follows

C̄0 =

(
w eu

ev 1− w

)
(36)

where w = a is a fixed choice of a root the quadratic equation above, i.e.

w =
1

2
(1±

√
1− 4eu+v).
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Denote

ϕ := C̄0 − E22 =

(
w eu

ev −w

)
.

Lemma 16. The matrix ϕ is invertible, with ϕ−1 = 1
wϕ and

C̄0 = ϕE11ϕ
−1.

Proof. Clearly
detϕ = −w ̸= 0

and
C̄0ϕ = C̄0(C̄0 − E22) = C̄0E11 = (C̄0 − E22)E11 = ϕE11.

�

Using the matrix ϕ to dress C̄ we obtain the parametrization of the first
constraint in (33).

Proposition 17. A 2× 2-matrix-valued formal difference operator C̄ of the
form

C̄ = C̄0 + C̄1Λ + . . .

where C̄0 is of the form (36) and such that it satisfies the constraint C̄2 = C̄

can be parametrized in terms of eu, ev and of an off-diagonal operator ĈA of
the form

ĈA = ĈA,1Λ + ĈA,2Λ
2 + . . .

by the formula

C̄ =
√
1 + 2C̃ C̄0

√
1 + 2C̃,

or equivalently as

C̄ = C̃ +
1

2
+ (C̄0 −

1

2
)
√

1− 4C̃2,

where C̃ := (C̄0 − E22)ĈA
1
w(C̄0 − E22).

Proof. The operator Ĉ := ϕ−1C̄ϕ clearly satisfies Ĉ2 = Ĉ and has the
leading term E11. Hence one proves as before that

Ĉ = ĈA +
1

2
+

H

2

√
1− 4Ĉ2

A

or, as in Remark 4

Ĉ =

√
1 + 2ĈAE11

√
1 + 2ĈA.



16 G. CARLET AND M. MAÑAS

Dressing with ϕ one obtains the desired result. �

Now consider the leading term of L̄ which must satisfy

L̄−1Λ
−1C̄0 = C̄0L̄−1,

equivalenty

[ϕ−1L̄−1Λ
−1ϕ,E11] = 0.

Hence L̄−1 must be of the form

L̄−1 = ϕDΛ−1ϕ−1

where D is a diagonal matrix.
Clearly the operator L̂ := ϕ−1L̄ϕ commutes with Ĉ and has diagonal lead-

ing term DΛ−1. One can easily show, as in the previous cases, that L̂ has to
be of the form

L̂ = L̂D − 1

2
DHL̂D

(

√
1− 4Ĉ2

A).

Dressing with ϕ one obtains the required result:

Proposition 18. Let C̄ = C̄2 be as in the previous Proposition. A 2 × 2-
matrix-valued formal difference operator L̄ of the form (31) that commutes

with C̄ can be parametrized by C̄, i.e. by eu, ev and ĈA, and by a diagonal
formal difference operator of the form

L̂D = DΛ−1 + L̂D,0 + . . .

by the formula

L̄ = L̃− 1

2
D̂
(√

1− 4C̃2
)

where L̃ := (C̄0 − E22)L̂D
1
w(C̄0 − E22) and D̂ is the derivation on the space

of formal power series in C̃ defined by D̂(1) = 0 and

D̂(C̃) = (C̄0 − E22)HL̂D
1

w
(C̄0 − E22).

To conclude, note that the dependent variables of the 2-component 2D
Toda hierarchy are the entries of CA, LD, ĈA, L̂D and the variables eu, ev

that parametrize the leading term C̄0.
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4. Concluding remarks
In this paper we have shown that it is possible to explicitly solve the con-

straints in the Lax definition of the 2-component KP and 2D Toda hierar-
chies. It turns out that the KP Lax operators are parametrized by simple
formulas like (9) and (18), and that analogous formulas hold in the 2D Toda
case. This allows us to identify a set of “free” dependent variables for such
hierarchies, which are given in the KP case by the off-diagonal part of the
operator C and by the diagonal part of the operator L.
We hope that this result will help in the study of reductions, in the con-

struction of bihamiltonian structures and will also clarify the problem of the
existence of the dispersionless limit, especially at the level of Lax equations.
We plan to consider the n-component case in a subsequent publication.

In this regard note that, while the present approach seems to be largely
dependent on the properties of 2 by 2 matrices, it is indeed possibile to
generalize straighforwardly some results, e.g. Proposition 1, to the case of
n by n matrices, by splitting the matrices in four blocks and considering
the decomposition in diagonal and off-diagonal blocks. We hope that this
property could be exploited to solve also the other constraints that are present
in the n-component theory.
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