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ON STRONG INCLUSIONS AND

ASYMMETRIC PROXIMITIES IN FRAMES

JORGE PICADO AND ALEŠ PULTR

Abstract: The strong inclusion, a specific type of subrelation of the order of a
lattice with pseudocomplements, has been used in the concrete case of the lattice
of open sets in topology for an expedient definition of proximity, and allowed for a
natural point-free extension of this concept. A modification of a strong inclusion
for biframes then provided a point-free model also for the non-symmetric variant.
In this paper we show that a strong inclusion can be non-symmetrically modified
to work directly on frames, without prior assumption of a biframe structure. The
category of quasi-proximal frames thus obtained is shown to be concretely isomor-
phic with the biframe based one, and shown to be related to that of quasi-uniform
frames in a full analogy with the symmetric case.
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Introduction

In a general setting, a strong inclusion is a subrelation � of the order of a
lattice with pseudocomplements that

• is a sublattice of L× L,
• interpolates,
• satisfies the implication

a ≤ b� c ≤ d ⇒ a ≤ d,

and
• a� b ⇒ b∗ � a∗.

This concept (and term) was, first, introduced by Dowker ([4]) for purposes
of enriched topology. There it naturally appears, e.g as the “completely
below” relation U ≺≺ V (where U is separated from the complement of V by

Received July 12, 2010.
Support from the Centre for Mathematics of the University of Coimbra (CMUC/FCT), project

1M0545 of the Ministry of Education of the Czech Republic and grant MTM2009-12872-C02-02 of
the Ministry of Science and Innovation of Spain and FEDER is gratefully acknowledged.

1



2 J. PICADO AND A. PULTR

a real-valued continuous function), or “U is uniformly below V ” in a uniform
space.
In particular, the proximity, a certain enrichment of a topological structure,

originally described by specifying for sets when they are “near” (“proximal”
[12]) can be alternatively, and to advantage, described in terms of a strong
inclusion stronger than the inclusion order.
This has proved to be particularly useful in the point-free setting where

the strong inclusion, strengthening the order in a frame (a lattice with
∨

∧-
distributivity, see 1.1) makes for a suitable extension of the classical concept
([7]); imitating the “proximity of elements” makes here good sense only in
(complete) Boolean algebras where it is then equivalent with the strong in-
clusion approach ([13]). It should be noted that besides of the properties
above, the strong inclusion one deals with is further required that

• a� b ⇒ a∗ ∨ b = 1 (implying the “rather below” relation), and
• for each a, a =

∨
{b | b�a} (admissibility of the additional structure).

It turns out that the resulting category of proximity frames is concretely
isomorphic to that of totally bounded uniform frames (see [7]) and that the
compactifiable frames are exactly those that admit strong inclusions (see [1]).
In classical topology it was found useful to generalize proximities by drop-

ping symmetry. This can be modeled in the point-free (frame) setting ([8],
[19]) by introducing modified strong inclusions on biframes (triples (L,L1, L2)
where Li are specific subframes of L — see 1.1 below) as couples of subre-
lations �i of the orders of Li with certain intertwined properties (see 1.2).
Thus generalized strong inclusions are, again, closely connected with com-
pactifications (of biframes — see Schauerte [19]).

In our recent paper [15] we have shown, for uniformities, another environ-
ment of the frame structure, that when dropping the symmetry the biframes
can be, essentially, avoided. The question naturally arises whether this can
be done with the (quasi-) proximity as well. In the present paper we an-
swer this question in the affirmative introducing (in Section 2) a category of
quasi-proximal frames that enriches the plain frames directly. Such proxi-
mal structures make the picture in the point-free setting more similar to the
classical one (where the bitopologies appear only a posteriori and clarify the
discussion in the introduction of Doitchinov [3]). In Section 3 we prove that
this category is concretely isomorphic with the biframe based one. Finally,
in Section 4 the new category of quasi-proximal frames is related with that
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of quasi-uniform frames. It turns out that the relation is analogous with
the symmetric case: namely, there is a one-to-one correspondence between
quasi-proximities and totally bounded quasi-uniformities, yielding a concrete
isomorphism of the categories.

1. Preliminaries

1.1. Frames and biframes. Recall that a frame is a complete lattice
satisfying the distributivity law

a ∧
∨
i∈I

bi =
∨
i∈I

(a ∧ bi)

and that frame homomorphisms preserve all joins (including the bottom el-
ement 0) and finite meets (including the top element 1). Frames and frame
homomorphisms are the objects and morphisms of the category Frm.
A biframe is a triple (L,L1, L2) in which L is a frame and L1 and L2 are

subframes of L such that L1∪L2 generates L (in the sense that any element of
L can be expressed as a join of finite meets of elements of L1∪L2); a biframe
homomorphism h : (L,L1, L2) → (M,M1,M2) is a frame homomorphism
from L to M such that the image of Li (i = 1, 2) under h is contained in Mi.
Biframes and biframe homomorphisms are the objects and morphisms of the
category BiFrm. If (L,L1, L2) is a biframe and a ∈ Li (i = 1, 2), the element

a• =
∨

{b ∈ Lj | a ∧ b = 0} (j ∈ {1, 2}, j ̸= i)

is the analogue in biframes of the pseudocomplement

a∗ =
∨

{b ∈ L | a ∧ b = 0}

of an element a of a frame L.
For more about frames the reader can consult [16] or [17], for biframes see

[2] and [19].

1.2. Strong inclusions on biframes: quasi-proximities. A strong
inclusion [19] on a biframe (L,L1, L2) is a pair (�1,�2) of relations on L1

and L2 respectively satisfying the following conditions (for i = 1, 2):

(S1) �i is a sublattice of Li × Li.
(S2) a ≤ b�i c ≤ d implies that a�i d.
(S3) a�i b implies that a• ∨ b = 1 (usually denoted by a ≺i b).
(S4) a�i b implies that there exists c ∈ Li with a�i c�i b.
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(S5) If a�i b then b• �j a
• for j ∈ {1, 2} and j ̸= i.

(S6) For every a ∈ Li, a =
∨
{b ∈ Li | b�i a}.

Note that the more standard strong inclusion in a frame is the � from (�,�)
on (L,L, L).
A triple ((L,L1, L2),�1,�2) where (�1,�2) is a strong inclusion on the

biframe (L,L1, L2) is called a quasi-proximal frame [7] (proximal biframe in
the more recent [8]). Given proximal biframes

((L,L1, L2),�
L
1 ,�

L
2 ) and ((M,M1,M2),�

M
1 ,�M

2 ),

a biframe homomorphism h : (L,L1, L2) → (M,M1,M2) is a proximal biframe
homomorphism if

a�L
i b implies h(a)�M

i h(b) (for i = 1, 2 and every a, b ∈ Li).

The category of proximal biframes and proximal biframe homomorphisms
will be denoted by

PBiFrm.

1.3. Quasi-uniform frames. Let L be a frame. A subset C ⊆ L× L is a
paircover [15] of L if ∨

{c1 ∧ c2 | (c1, c2) ∈ C} = 1.

A paircover C of L is strong if, for any (c1, c2) ∈ C, (c1, c2) = (0, 0) whenever
c1 ∧ c2 = 0. For any C,D ⊆ L× L we write C ≤ D (and say that C refines
D) if for any (c1, c2) ∈ C there is (d1, d2) ∈ D with c1 ≤ d1 and c2 ≤ d2.
Further we write

C ∧D = {(c1 ∧ d1, c2 ∧ d2) | (c1, c2) ∈ C, (d1, d2) ∈ D};
obviously it is a is a paircover again.
For a ∈ L and C,D ⊆ L× L, we set

st1(a, C) =
∨

{c1 | (c1, c2) ∈ C and c2 ∧ a ̸= 0},

st2(a, C) =
∨

{c2 | (c1, c2) ∈ C and c1 ∧ a ̸= 0},

C−1 = {(c2, c1) | (c1, c2) ∈ C}, and
st(D,C) = {(st1(d1, C), st2(d2, C)) | (d1, d2) ∈ D}

and write
C∗ for st(C,C).

We shall need the following facts from [15, Proposition 2.2]:
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Proposition 1.3.1. Let C,D ⊆ L× L and a, b ∈ L. Then:

(1) If a ≤ b then sti(a, C) ≤ sti(b, C).
(2) If C ≤ D then sti(a, C) ≤ sti(a,D).
(3) a ∧ st1(b, C) = 0 iff b ∧ st2(a, C) = 0.
(4) If C is a paircover then a ≤ sti(a, C) and C ≤ C∗.
(5) If C is a paircover then sti(sti(a, C), C) ≤ sti(a, C

∗).
(6) For any frame homomorphism h : L → M ,

sti(h(a), h[C]) ≤ h(sti(a, C)).

(7) For any frame homomorphism h : L → M , h[C]∗ ≤ h[C∗]. �
Given a non-empty family U of paircovers of L, we write a �U

i b (i = 1, 2)
whenever sti(a, C) ≤ b for some C ∈ U , and set

Li(U) = {a ∈ L | a =
∨

{b ∈ L | b �U
i a}} (i = 1, 2).

From [15, Proposition 2.4] we know the following:

Proposition 1.3.2. Let U be a basis for a filter of paircovers of L. Then,
for i = 1, 2:

(1) The relations �U
i are sublattices of L× L, both stronger than ≤.

(2) For any a, b, c, d ∈ L, a ≤ b �U
i c ≤ d implies a �U

i d.
(3) Li(U) are subframes of L. �

A system U of paircovers of L is admissible [15] if (L,L1(U), L2(U)) is a

biframe or, equivalently, if for every a ∈ L, a =
∨
{b ∈ L | b �U

i a}, where
U denotes the filter of paircovers of L generated by {C ∧ C−1 | C ∈ U}.
Now, an admissible system U of paircovers of L is a quasi-uniformity on L

if it satisfies the following conditions:

(QU1) For any C ∈ U and any paircover D with C ≤ D, then D ∈ U .
(QU2) For any C,D ∈ U there exists a strong E ∈ U such that E ≤ C ∧D.
(QU3) For any C ∈ U there is a D ∈ U such that D∗ ≤ C.

The pair (L,U) is called a quasi-uniform frame [15]. Let (L,U) and (M,V)
be quasi-uniform frames. A frame homomorphism h : L → M is uniform if
h[C] ∈ V for every C ∈ U . The resulting category will be denoted by

QUFrm.

We say that a quasi-uniform frame (L,U) is totally bounded if for every
C ∈ U there is a finite paircover D ∈ U such that D ≤ C.
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Quasi-uniform frames (L,U) have the following crucial properties (see [15,
lemmata 2.6, 3.2, 3.4]):
Consider the interior operator on P(L× L) defined by

int(C) =
∪

{D ⊆ L× L | D
U
b C},

where

C
U
b D ≡def st(C,U) ≤ D for some U ∈ U .

Proposition 1.3.3. For every C ∈ U we have:

(1) int(C) ≤ C ≤ int(C∗).
(2) sti(a, int(C)) ∈ Li(U) (i = 1, 2) for every a ∈ L. �

Given U ∈ U , a ∈ L is said to be U-small if

a ≤
∨

{u1 ∧ u2 | (u1, u2) ∈ U, u1 ∧ u2 ∧ b ̸= 0}

whenever a ∧ b ̸= 0. Let

CU = {(st1(a, int(U)), st2(a, int(U))) | a is an U -small member of L}.

Proposition 1.3.4. (1) Each CU is a strong paircover of L contained in
L1(U)× L2(U).

(2) sti(a, CU) ≤ sti(a, U
∗∗) (i = 1, 2).

(3) sti(a, U) ≤ sti(a, CU∗) (i = 1, 2).
(4) CU ≤ U∗∗; if U is strong then U ≤ CU∗. �

2. Quasi-proximities without biframes

Let L be a frame, � a binary relation in L and

L(�) = {a ∈ L | a =
∨

{b ∈ L | b� a}}.

Lemma 2.1. If � is a sublattice of L×L, stronger than ≤ (that is, � ⊆≤),
satisfying

a ≤ b� c ≤ d ⇒ a� d (2.1.1)

then L(�) is a subframe of L.
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Proof : Since 0 � 0 and 1 � 1, then 0, 1 ∈ L(�). Since � ⊆≤, we have∨
{b ∈ L | b� a} ≤ a. Let a, b ∈ L(�). Then, since � is closed under finite

meets,

a ∧ b =
∨

{a′ ∈ L | a′ � a} ∧
∨

{b′ ∈ L | b′ � b} =

=
∨

{a′ ∧ b′ | a′, b′ ∈ L, a′ � a, b′ � b} ≤
∨

{c ∈ L | c� a ∧ b}

which shows that a ∧ b ∈ L(�).
Now, let ai ∈ L(�) (i ∈ I). Then

∨
i∈I ai =

∨
i∈I

∨
{b ∈ L | b � ai}. For

each such b, b� ai ≤
∨

i∈I ai. Consequently, by (2.1.1),
∨

i∈I ai ≤
∨
{b ∈ L |

b�
∨

i∈I ai} and
∨

i∈I ai ∈ L(�).

In the sequel we will have to refer to pseudocomplements relatively to
distinct subframes. Therefore we will adopt the following notation: for a
subframe K of a frame L and a ∈ L, we denote by cK(a) the element∨

{b ∈ K | b ∧ a = 0}.

We have cL(a) = a∗, cK(a) ≤ a∗, cK(0) = 1, cK(1) = 0 and a ≤ cK(cK(a))
for every a ∈ K.

Definition 2.2. Let L be a frame. A pair (�1,�2) of relations in L will be
called a strong bi-inclusion on L if for i, j ∈ {1, 2} we have:

(SB1) �i is a sublattice of L× L.
(SB2) a ≤ b�i c ≤ d implies that a�i d.
(SB3) a�i b implies that cL(�j)(a) ∨ b = 1 (j ̸= i).
(SB4) a�i b implies that there exists c ∈ L(�i) with a�i c�i b.
(SB5) If a�i b then b∗ �j a

∗ for j ̸= i.
(SB6) (L,L(�1), L(�2)) is a biframe.

Remarks 2.3. (1) (SB3) implies that each �i (i = 1, 2) is stronger than ≤:
if cL(�j)(a) ∨ b = 1 then a = a ∧ (cL(�j)(a) ∨ b) = a ∧ b. It also implies that
b∗ ≤ cL(�j)(a) whenever a�i b (because cL(�j)(a) ∨ b = 1 and b∗ ∧ b = 0).

(2) For any a, b ∈ L,

a�i b
∗ ⇒ a�i cL(�i)(b) (i = 1, 2).

Indeed, by (SB4) there exists c ∈ L(�i) such that a�i c�i b
∗. Since c ≤ b∗,

then c ∧ b = 0 and consequently c ≤ cL(�i)(b). Therefore a �i cL(�i)(b) by
(SB2).
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(3) Also, it may be worth mentioning that any pair (�1,�2) satisfying (SB2),
(SB3) and (SB4) satisfies (SB5) if and only if it satisfies

(SB5a) if a�i b then cL(�j)(b) �j cL(�j)(a) for j ̸= i.

Indeed:

⇒: If a�ib then, by (SB5), cL(�j)(b) ≤ b∗�ja
∗ and therefore by the preceding

remark cL(�j)(b) �j cL(�j)(a).

⇐: In order to prove (SB5), suppose a�ib and apply (SB4) to get c satisfying
a�ic�ib. By (SB5a) and Remark (1) we obtain b∗ ≤ cL(�j)(b) �j cL(�j)(a) ≤
a∗.

(4) (SB3) is obviously stronger than

(SB3a) a�i b implies that a∗ ∨ b = 1

(since cL(�j)(a) ≤ a∗). However, if (�1,�2) satisfies (SB2) and (SB4) then it
satisfies (SB3) and (SB5) if and only if it satisfies (SB3a) and (SB5a): the
implication “⇒” was already proved in (3) and, conversely, if a �i b then,
by (SB5a), cL(�j)(b) �j cL(�j)(a); applying (SB3a) we get (cL(�j)(b))

∗ ∨
cL(�j)(a) = 1 and thus b ∨ cL(�j)(a) = 1 (since b ≤ (cL(�j)(b))

∗).

(5) In addition, (SB3) may be equivalently replaced by the conjunction

(SB0) for every a, b ∈ L, a�i b ⇒ a ≤ b, and

(SB3b) for every a, b ∈ L(�i), a�i b implies that cL(�j)(a) ∨ b = 1 (j ̸= i).

Indeed, the implication

(SB3) ⇒ (SB0)+(SB3b)

is obvious by the preceding observation. On the other hand, if a �i b then
there exist by (SB4) c, d ∈ L(�i) such that a�i c�i d�i b. Thus, by (SB3b),
cL(�j)(c) ∨ d = 1. But d ≤ b and cL(�j)(c) ≤ cL(�j)(a) (because a ≤ c) and
hence cL(�j)(a) ∨ b = 1.

Any strong bi-inclusion (�1,�2) on a frame L induces two subframes L(�1)
and L(�2) of L. The triple (L,L(�1), L(�2)) is a biframe by (SB6). The
following proposition provides an alternative to condition (SB6) that avoids
biframes.
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Proposition 2.4. Let (�1,�2) be a pair of binary relations in L, both stronger
than ≤ and satisfying (SB1) and (SB2). Then (�1,�2) satisfies (SB6) if and
only if

(SB6′) for each a ∈ L, a =
∨

{b ∈ L | b� a},

where � is the binary relation in L defined by

b� a ≡def ∃a1 ∈ L(�1),∃a2 ∈ L(�2), a1 ∧ a2 ≤ a, b�1 a1 and b�2 a2.

Proof : ⇒: For each a ∈ L we can write a =
∨

i∈I(a
1
i ∧ a2i ) for some

{a1i | i ∈ I} ⊆ L(�1) and {a2i | i ∈ I} ⊆ L(�2).

Taking into account that, for any i ∈ I,

a1i = {b ∈ L | b�1a
1
i} and a2i = {b ∈ L | b�2a

2
i},

it suffices to show that b1 ∧ b2�a1 ∧ a2 whenever b1�1a1 and b2�2a2. This,
however, is an immediate consequence of (SB1) and the definition of �.

⇐: By 2.1, each L(�i) (i = 1, 2) is a subframe of L. It remains to show that
each a ∈ L is a join of finite meets in L(�1) ∪ L(�2).
Let a ∈ L. Then a =

∨
S where S = {b ∈ L | b�a}. For each b ∈ S there

exist ab1 ∈ L(�1) and ab2 ∈ L(�2) satisfying b�1 a
b
1, b�2 a

b
2 and ab1 ∧ ab2 ≤ a.

Hence a =
∨

b∈S b ≤
∨

b∈S(a
b
1 ∧ ab2) ≤ a.

A frame L with a strong bi-inclusion (�1,�2) will be called a quasi-proximal
frame. Given quasi-proximal frames (L,�L

1 ,�
L
2 ) and (M,�M

1 ,�M
2 ), a quasi-

proximal map

h : (L,�L
1 ,�

L
2 ) → (M,�M

1 ,�M
2 )

is a frame homomorphism h : L → M such that a �L
i b ⇒ h(a) �M

i h(b) for
every a, b ∈ L. The resulting category will be denoted by

QPFrm.

Note that our definition of a quasi-proximal frame contains, of course, the
symmetric case of proximal frames (as defined by strong inclusions) [7]: it is
a frame equipped with a strong bi-inclusion (�1,�2) such that �1 = �2.
Quasi-uniform frames provide canonical examples of quasi-proximal frames:

Proposition 2.5. For each quasi-uniform frame (L,U), the triple (L,�U
1 ,�

U
2 )

is a quasi-proximal frame.
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Proof : The properties (SB1) and (SB2) follow from Proposition 1.3.2, and
(SB6) is obvious.

(SB3) Suppose a �U
i b. Then sti(a, U) ≤ b for some U ∈ U . It suffices to

show that cL(�j)(a) ∨ sti(a, U) = 1. Consider V ∈ U such that V ∗∗∗ ≤ U . By
Proposition 1.3.4, V ≤ CV ∗ and CV ∗ ≤ V ∗∗∗ ≤ U . Therefore sti(a, CV ∗) ≤
sti(a, U). Let

(v1, v2) ∈ CV ∗ ⊆ L1(U)× L2(U).
If uj ∧a = 0 then uj ≤ cL(�j)(a); otherwise, ui ≤ sti(a, CV ∗) ≤ sti(a, U). This
shows that ∨

{u1 ∧ u2 | (u1, u2) ∈ CV ∗} ≤ cL(�j)(a) ∨ sti(a, U).

Hence cL(�j)(a) ∨ sti(a, U) = 1, since CV ∗ is a paircover.

(SB4) Let sti(a, U) ≤ b for some U ∈ U and take V ∈ U such that V ∗∗ ≤ U .
By Proposition 1.3.3,

sti(a, int(V
∗)) ∈ Li(U) = L �U

i
.

Of course a �U
i sti(a, int(V

∗)). On the other hand, by 1.3.1(5),

sti(sti(a, int(V
∗)), V ∗)) ≤ sti(sti(a, V

∗), V ∗)) ≤ sti(a, V
∗∗)sti(a, U) ≤ b

and hence sti(a, int(V
∗)) �U

i b.

(SB5) Let sti(a, U) ≤ b for some U ∈ U . Then sti(a, U) ∧ b∗ = 0 (j ̸= i). By
1.3.1(3), a ∧ stj(b

∗, U) = 0, that is, stj(b
∗, U) ≤ a∗.

3. The concrete isomorphism QPFrm ∼= QPBiFrm

Given a proximal biframe ((L,L1, L2),�1,�2), let

Φ((L,L1, L2),�1,�2) = (L,�1,�2)

where, for any a, b ∈ L,

a�i b ≡def ∃ c, d ∈ Li : a ≤ c�i d ≤ b (i = 1, 2).

Proposition 3.1. For any proximal biframe ((L,L1, L2),�1,�2),

Φ((L,L1, L2),�1,�2)

is a quasi-proximal frame.
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Proof : (SB1) 0�i0 and 1�i1 are trivial. Let a1, a2 �i b. Then a1 ≤ c1 �i

d1 ≤ b and a2 ≤ c2 �i d2 ≤ b for some c1, c2, d1, d2 ∈ Li. Consequently,
a1 ≤ c1 �i d1 ∨ d2 ≤ b and a2 ≤ c2 �i d1 ∨ d2 ≤ b with c1, c2, d1 ∨ d2 ∈ Li. By
hypothesis, c1 ∧ c2 �i d1 ∨ d2 and c1 ∧ c2 ∈ Li. Thus a1 ∧ a2 �i b. Similarly,
a1 ∨ a2 ≤ c1 ∨ c2 �i d1 ∨ d2 ≤ b and a1 ∨ a2 �i b.

(SB2) is obvious.

(SB3) First note that Li ⊆ L(�i). Indeed, for each a ∈ Li, since �i ⊆ �i,
we have

a =
∨

{b ∈ Li | b�i a} ≤
∨

{b ∈ L | b �i a} ≤ a.

Now, let a, b ∈ L(�i) and a ≤ c �i d ≤ b with c, d ∈ Li. By hypothesis,
cL(�j)(c) ∨ d = 1 and from the inclusion Li ⊆ L(�i) and the fact that a ≤ c
it follows that

cL(�j)(a) =
∨

{a′ ∈ L(�j) | a′∧a = 0} ≥
∨

{c′ ∈ Lj | c′∧ c = 0} = cL(�j)(c).

Hence cL(�j)(a) ∨ b = 1.

(SB4) follows immediately from (S4) and the fact that Li ⊆ L(�i) proved
above.

(SB5) By Remark 2.3(3) it suffices to prove (SB5a). Let a, b ∈ L with
a �i b, that is, a ≤ c �i d ≤ b for some c, d ∈ Li. Then, by hypothesis,
cL(�j)(d) �j cL(�j)(c) and, of course, cL(�j)(d), cL(�j)(c) ∈ Lj. Now it suffices
to show that cL(�j)(b) ≤ cL(�j)(d) and cL(�j)(c) ≤ cL(�j)(a). The latter was
already proved in (SB3) above and the former can be proved in a similar
way.

(SB6) By Lemma 2.1, each L(�i) is a subframe of L. Since (L,L1, L2) is
a biframe and Li ⊆ L(�i) (i = 1, 2), then immediately (L,L(�1), L(�2)) is
also a biframe.

Given a quasi-proximal frame (L,�1,�2), let

Ψ(L,�1,�2) = ((L,L(�1), L(�2)),�1|L(�1),�2|L(�2)).

Proposition 3.2. For any quasi-proximal frame (L,�1,�2), Ψ(L,�1,�2) is
a proximal biframe.

Proof : By hypothesis, (L,L(�1), L(�2)) is a biframe and Ψ(L,�1,�2) sat-
isfies conditions (S1)-(S5) trivially. It remains to check (S6):
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For every a ∈ L(�i), a =
∨
{b ∈ L | b�i a}. But by condition (SB4) there

is some c ∈ L(�i) satisfying b�i c�i a. Therefore a =
∨
{b ∈ L(�i) | b�i a},

as desired.

Concerning morphisms, the next result allows us to define Φ(h) = h for
every h ∈ PBiFrm and Ψ(h) = h for every h ∈ QPFrm.

Proposition 3.3. (1) Let h : ((L,L1, L2),�
L
1 ,�

L
2 ) → ((M,M1,M2),�

M
1 ,�M

2 )
be a proximal biframe homomorphism. Then

h : Φ((L,L1, L2),�
L
1 ,�

L
2 ) → Φ((M,M1,M2),�

M
1 ,�M

2 ) ∈ QPFrm.

(2) Let h : (L,�L
1 ,�

L
2 ) → (M,�M

1 ,�M
2 )be a quasi-proximal map. Then

h : Ψ(L,�L
1 ,�

L
2 ) → Ψ(M,�M

1 ,�M
2 ) ∈ PBiFrm.

Proof : (1) We have to check that

∀a, b ∈ Li, a �
L
i b ⇒ h(a) �M

i h(b) (i = 1, 2).

Let a �
L
i b, that is a ≤ c �L

i d ≤ b for some c, d ∈ Li. Then, by hypoth-
esis, h(c), h(d) ∈ Mi and h(a) ≤ h(c) �M

i h(d) ≤ h(b), which shows that

h(a) �M
i h(b).

(2) It suffices to check that h is a biframe map

(L,L(�L
1 ), L(�

L
2 )) → (M,M(�M

1 ),M(�M
2 ))

(the rest is obvious). Consider a ∈ L(�L
i ). Since a =

∨
{b ∈ L | b�L

i a} and
b�L

i a implies h(b)�M
i h(a), then

h(a) =
∨

{h(b) | b ∈ L, b�L
i a} ≤

∨
{c ∈ M | c�M

i h(a)} ≤ h(a).

Hence h(a) ∈ M(�M
i ).

Finally, we have:

Theorem 3.4. The functors Ψ and Φ constitute a concrete isomorphism
between QPFrm and PBiFrm.

Proof : It suffices to show that

(a) ΦΨ = IdQPFrm and (b) ΨΦ = IdPBiFrm

on objects.

(a) We will show that �|L(�i) = �i. Consider a, b ∈ L with a �i b. By
(SB4), there is c, d ∈ L(�i) such that a �i c �i d �i b. Since c �i|L(�i) d
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then, immediately, a �|L(�i) b. On the other hand, if a, b ∈ L are such
that a �|L(�i) b then there exists a pair c, d of elements of L(�i) satisfying
a ≤ c�i d ≤ b. Thus a�i b.

(b) It suffices to check that L(�i) = Li for i = 1, 2. Let a ∈ Li. Then, since
�i ⊆ �i, we have

a =
∨

{b ∈ Li | b�i a} ≤
∨

{b ∈ L | b �i a} ≤ a.

Conversely, if a ∈ L(�i), meaning that a ∈ L and a =
∨
{b ∈ L | b �i a},

then for each such b there is cb, db ∈ Li satisfying b ≤ cb �i db ≤ a. Conse-
quently,

a ≤
∨

{c ∈ Li | c�i a} ≤ a

and, therefore, a ∈ Li.

Remark 3.5. As a consequence of Proposition 1 of Schauerte [19], every
quasi-proximity (�1,�2) on a frame L induces a compactification of the
associated biframe (L,L(�1), L(�2)). Then by Proposition 3 of [19] this is
a zero-dimensional compactification if and only if a �i b (for a, b ∈ L(�i),
i = 1, 2) implies the existence of c ∈ L(�i) satisfying a ≤ c �i c ≤ b. Note
that, by (SB3), c �i c means that c ∈ L(�i) is complemented in L with
complement in L(�j) (j ̸= i).

4. Quasi-proximities and quasi-uniformities:

total boundedness

To finish we show, in analogy with the spatial case or the symmetric case
(see [5, 7, 9, 12, 13]), that the category QPFrm is isomorphic to the full
subcategory TBQUFm of QUFrm of all totally bounded quasi-uniform frames.
First, we need a few basic facts about paircovers. Let C be a paircover of

the frame L. Set

Cs = {(c1, c2) ∈ C | c1 ∧ c2 ̸= 0}.

Lemma 4.1. Let C,D be paircovers of the frame L. Then:

(1) Cs is a strong paircover of L.
(2) (C ∧D)s ≤ Cs ∧Ds.
(3) C∗ ≤ D → (Cs)

∗ ≤ Ds.
(4) If h : L → M is a frame homomorphism, then (h[C])s ≤ h[Cs].
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Proof : (1) and (2) are obvious.

(3) Let (c1, c2) ∈ C with c1 ∧ c2 ̸= 0. Since sti(ci, Cs) ≤ sti(ci, C) ≤ di
(i = 1, 2) for some (d1, d2) ∈ D and c1∧c2 ≤ st1(c1, Cs)∧ st2(c2, Cs) ≤ d1∧d2,
then (d1, d2) ∈ Ds.

(4) Suppose h(c1) ∧ h(c2) ̸= 0 for (c1, c2) ∈ C. Then h(c1 ∧ c2) ̸= 0, hence
c1 ∧ c2 ̸= 0 and consequently (c1, c2) ∈ Cs. Hence (h(c1), h(c2)) ∈ h[Cs].

Lemma 4.2. Let U be an admissible filter of paircovers of L with property
(QU3), and let Us be the filter of paircovers of L that has {Cs | C ∈ U} as
subbasis. Then (L,Us) is a quasi-uniform frame.

Proof : Us is a filter of paircovers of L which by Lemma 4.1 satisfies the
requirements (QU1)-(QU3). Since U ⊆ Us, then Li(U) ⊆ Li(Us) (i = 1, 2).
Hence (L,L1(Us), L2(Us)) is also a biframe and Us is admissible.

Let (L,�1,�2) be a quasi-proximal frame. For any a�1 b we define

C1
a,b = {(1, a∗), (b, 1)}

and for a�2 b we define

C2
a,b = {(a∗, 1), (1, b)}.

Of course, C1
a,b and C2

a,b are paircovers of L.

Proposition 4.3. The filter U of paircovers of L which has as subbasis the
family of paircovers {Ci

a,b | a �i b, i = 1, 2} satisfies the conditions of the
preceding lemma.

Proof : Let a�1b. Use (SB4) to select c1, c2 ∈ L(�1) such that a�1c1�1c2�1b
and consider C = C1

a,c1
∧ C1

c1,c2
∧ C1

c2,b
. Then

C = {(c1, 1), (c1, c∗1), (c1, c∗2), (c2, a∗), (c2, c∗2), (b, c∗1), (1, c∗2)}.
Since

st1(c1, C) ≤ b, st1(c2, C) ≤ b, st2(c
∗
1, C) ≤ a∗ and st2(c

∗
2, C) ≤ a∗,

we have C∗ ≤ C1
a,b. Similarly, for a�2 b and a�2 c1 �2 c2 �2 b,

(C2
a,c1

∧ C2
c1,c2

∧ C2
c2,b

)∗ ≤ C2
a,b.

This shows that U satisfies (QU3). In order to prove the admissibility of U
it suffices to show that a �i b implies a �U

i b which is obvious since a �i b
implies sti(a, C

i
a,b) ≤ b.
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Hence the corresponding Us given by the lemma is a quasi-uniformity on
L (which is of course totally bounded). We shall denote it by UF (L,�1,�2).

Proposition 4.4. The correspondence (L,�1,�2) (L,UF (L,�1,�2)) de-
termines a concrete functor Φ : QPFrm → TBQUFrm.

Proof : It remains to check that for any quasi-proximal map

h : (L,�L
1 ,�

L
2 ) → (M,�M

1 ,�M
2 ),

h : (L,UF (L,�
L
1 ,�

L
2 )) → (M,UF (M,�M

1 ,�M
2 ))

is a quasi-uniform map. By Lemma 4.1(4) it suffices to show that h[Ci
a,b] ∈

UF (M,�M
1 ,�M

2 ) whenever a�i b (i = 1, 2).
Suppose a �i b and apply (SB4) to select c ∈ L(�i) such that a �i c �i b.

By (SB3), a∗ ∨ c = 1, which in turn implies that h(c)∗ ≤ h(a∗):

a∗∨c = 1 ⇒ h(a∗)∨h(c) = 1 ⇒ h(c)∗ = h(c)∗∧(h(a∗)∨h(c)) = h(c)∗∧h(a∗).

Hence

C1
h(c),h(b) = {(1, h(c)∗), (h(b), 1)}

refines h[C1
a,b] = {(1, h(a∗), (h(b), 1)} and

C2
h(c),h(b) = {(h(c)∗, 1), (1, h(b))}

refines h[C2
a,b] = {(h(a∗), 1), (1, h(b))}.

On the other hand, going back to Proposition 2.5, we have:

Proposition 4.5. The correspondence (L,U)  (L,�U
1 ,�

U
2 ) determines a

concrete functor Ψ : TBQUFrm → QPFrm.

Proof : Let h : (L,U) → (M,V) be a quasi-uniform map. We need to show
that

h : (L,�U
1 ,�

U
2 ) → (M,�V

1 ,�
V
2 )

is a quasi-proximal map, that is, a �U
i b implies h(a) �V

i h(b). But a �U
1 b

means that sti(a, U) ≤ b for some U ∈ U and, by the statement (6) in
1.3.1, sti(h(a), h[U ]) ≤ h(b). Since h[U ] ∈ V this makes h(a) �V

i h(b), as
required.

Theorem 4.6. The functors Φ and Ψ constitute a concrete isomorphism
between QPFrm and TBQUFrm.
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Proof : We want to show that ΨΦ = IdQPFrm and ΦΨ = IdTBQUFrm. After 4.4
and 4.5 there is nothing left to prove for morphisms.
Now for the objects. We have

ΦΨ((L,U)) = Φ((L,�U
1 ,�

U
2 )) = (L,UF (L,�

U
1 ,�

U
2 )) and

ΨΦ((L,�1,�2)) = Ψ((L,UF (L,�1,�2))) = (L,�
UF (L,�1,�2)
1 ,�

UF (L,�1,�2)
2 ),

so that we need to prove that

(a) UF (L,�
U
1 ,�

U
2 ) = U and (b) �

UF (L,�1,�2)
i = �i for i = 1, 2.

(a) Let Ci
a,b be a subbasic paircover of UF (L,�

U
1 ,�

U
2 ). Then a �U

i b, that is,
sti(a, U) ≤ b for some U ∈ U .
Suppose i = 1 and let (u1, u2) ∈ U . If u2 ∧ a ̸= 0 then u1 ≤ st1(a, U) ≤ b

and (u1, u2) ≤ (b, 1); otherwise, u2 ≤ a∗ so (u1, u2) ≤ (1, a∗). Hence U ≤
C1

a,b which shows that C1
a,b ∈ U . The case i = 2 proceeds similarly. Thus

UF (L,�
U
1 ,�

U
2 ) ⊆ U .

Now let U ∈ U and select a strong paircover V ∈ U such that V ∗ ≤ U .
Since U is totally bounded, there is a finite F ⊆ V such that F is still a
paircover:

F = {(c1, d1), (c2, d2) . . . , (cn, dn)}, ci ∧ di ̸= 0,
n∨

i=1

(ci ∧ di) = 1.

Since (st1(ci, V ), st2(di, V )) ≤ (ui, vi) for some (ui, vi) ∈ U (i = 1, 2, . . . , n),
it follows that ci �

U
1 ui and di �

U
2 vi. It suffices now to show that for

C := C1
c1,u1

∧ C1
c2,u2

∧ · · · ∧ C1
cn,un

∧ C2
d1,v1

∧ C2
d2,v2

∧ · · · ∧ C2
dn,vn

,

the corresponding strong paircover Cs (which belongs to UF (L,�
U
1 ,�

U
2 )) is a

refinement of U .
Any element (x, y) in C is of the form

(ui1∧ui2∧· · ·∧uik∧d∗j′1∧d∗j′2∧· · ·∧d∗j′n−l
, vj1∧vj2∧· · ·∧vjl∧c∗i′1∧c∗i′2∧· · ·∧c∗i′n−k

)

where

I = {i1, i2, . . . , ik}, I ′ = {i′1, i′2, . . . , i′n−k}
and

J = {j1, j2, . . . , jl}, J ′ = {j′1, j′2, . . . , j′n−l}
are partitions of n = {1, 2, . . . , n}.
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If I ∩ J ̸= ∅ then (x, y) ≤ (uα, vα) ∈ U for α ∈ I ∩ J . Otherwise, if
I ∩ J = ∅ then I ′ ∪ J ′ = n (and k + l = n). Since

(x, y) ≤ (d∗j′1 ∧ d∗j′2 ∧ · · · ∧ d∗j′n−l
, c∗i′1 ∧ c∗i′2 ∧ · · · ∧ c∗i′n−k

)

this in turn implies that

x ∧ y ≤
n∧

i=1

(c∗i ∨ d∗i ).

But
n∨

i=1

(ci ∧ di) = 1 ⇒
n∧

i=1

(ci ∧ di)
∗ = 0 ⇒

n∧
i=1

(c∗i ∨ d∗i ) = 0.

Hence x ∧ y = 0 and (x, y) /∈ Cs.

(b) If a�i b then Ci
a,b ∈ UF (L,�1,�2). Since sti(a, C

i
a,b) ≤ b we have

a �
UF (L,�1,�2)
i b.

Conversely, suppose for some U ∈ UF (L,�1,�2) we have sti(a, U) ≤ b
(i = 1 or i = 2). Our aim is to show that a�i b. We may assume that

U = C1
a11,b

1
1
∧ C1

a12,b
1
2
∧ · · · ∧ C1

a1n,b
1
n
∧ C2

a21,b
2
1
∧ C2

a22,b
2
2
∧ · · · ∧ C2

a2m,b2m

where a1α �1 b
1
α for α = 1, 2, . . . , n and a2β �2 b2j for β = 1, 2, . . .m. Any

element (u1, u2) in U is of the form(
b1α1

∧ b1α2
∧ · · · ∧ b1αk

∧(a2β′
1
)∗ ∧ (a2β′

2
)∗ ∧ · · · ∧ (a2β′

m−l
)∗,

b2β1
∧ b2β2

∧ · · · ∧ b2βl
∧ (a1α′

1
)∗ ∧ (a1α′

2
)∗ ∧ · · · ∧ (a1α′

n−k
)∗
)

where

A = {α1, α2, . . . , αk}, A′ = {α′
1, α

′
2, . . . , α

′
n−k}

is a partition of n = {1, 2, . . . , n} and

B = {β1, β2, . . . , βl}, B′ = {β′
1, β

′
2, . . . , β

′
m−l}

is a partition of m = {1, 2, . . . ,m}. Select c1α, d1α ∈ L such that

a1α �1 c1α �1 d
1
α �1 b1α for every α ∈ n

and c2β, d
2
β ∈ L such that

a2β �2 c2β �2 d
2
β �2 b2β for every β ∈ m.
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By (SB5), (c2β)
∗ �1 (a

2
β)

∗ for every β ∈ m and (c1α)
∗ �2 (a

1
α)

∗ for every α ∈ n.
Suppose (u1, u2) ∈ U is such that

u1 =
∧
α∈A

b1α ∧
∧
β∈B′

(a2β)
∗ and u2 =

∧
β∈B

b2β ∧
∧
α∈A′

(a1α)
∗,

with A ∪ A′ = n,A ∩ A′ = ∅, B ∪B′ = m,B ∩B′ = ∅. Then set

ũ1 =
∧
α∈A

d1α ∧
∧
β∈B′

(c2β)
∗ and ũ2 =

∧
β∈B

d2β ∧
∧
α∈A′

(c1α)
∗.

Clearly ũ1 �1 u1 and ũ2 �2 u2. Therefore u∗1 �2 (ũ1)
∗ and u∗2 �1 (ũ2)

∗.
Let j ∈ {1, 2}, j ̸= i, and

U1 = {(u1, u2) ∈ U | uj ∧ a = 0}, U2 = {(u1, u2) ∈ U | uj ∧ a ̸= 0}.

This is a partition of U . Now, by the first De Morgan law (which holds in
any frame),

a ≤
∧

{u∗j | (u1, u2) ∈ U1} = (
∨

{uj | (u1, u2) ∈ U1})∗. (4.6.1)

Since U is finite and ũj �j uj, we have∨
{ũj | (u1, u2) ∈ U1} �j

∨
{uj | (u1, u2) ∈ U1}

and then by (SB5)

(
∨

{uj | (u1, u2) ∈ U1})∗ �i (
∨

{ũj | (u1, u2) ∈ U1})∗. (4.6.2)

But {(ũ1, ũ2) | (u1, u2) ∈ U} is a paircover of L (it coincides with the paircover

C1
c11,d

1
1
∧ C1

c12,d
1
2
∧ · · · ∧ C1

c1n,d
1
n
∧ C2

c21,d
2
1
∧ C2

c22,d
2
2
∧ · · · ∧ C2

c2m,d2m
).

This means that

1 =
∨

(u1,u2)∈U

(ũ1 ∧ ũ2) ≤
∨

{ũj | (u1, u2) ∈ U1} ∨
∨

{ũi | (u1, u2) ∈ U2}

which immediately implies that

(
∨

{ũj | (u1, u2) ∈ U1})∗ ≤
∨

{ũi | (u1, u2) ∈ U2}

≤
∨

{ui | (u1, u2) ∈ U2} = sti(a, U) ≤ b.
(4.6.3)

By (4.6.1), (4.6.2) and (4.6.3) we have a�i b as desired.
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Remark 4.7. The dual adjoint situation between quasi-uniform spaces and
quasi-uniform frames established in [15] by functors

Ω : QUnif → QUFrm and Σ : QUFrm → QUnif

restricts immediately to a dual adjunction

QProx� QPFrm

between the categories of quasi-proximal spaces and quasi-proximal frames
(since for each totally bounded quasi-uniform space (X,µ), Ω(X,µ) is a
totally bounded quasi-uniform frame and for each totally bounded quasi-
uniform frame (L,U), the quasi-uniform space Σ(L,U) is also totally bounded).
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