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ABSTRACT: The strong inclusion, a specific type of subrelation of the order of a
lattice with pseudocomplements, has been used in the concrete case of the lattice
of open sets in topology for an expedient definition of proximity, and allowed for a
natural point-free extension of this concept. A modification of a strong inclusion
for biframes then provided a point-free model also for the non-symmetric variant.
In this paper we show that a strong inclusion can be non-symmetrically modified
to work directly on frames, without prior assumption of a biframe structure. The
category of quasi-proximal frames thus obtained is shown to be concretely isomor-
phic with the biframe based one, and shown to be related to that of quasi-uniform
frames in a full analogy with the symmetric case.

KEYWORDS: Frame, biframe, pseudocomplement, strong inclusion, paircover, quasi-
uniform frame, quasi-proximal frame, total boundedness.
AMS SUBJECT CLASSIFICATION (2010): 06D22, 06D15, 54E05, 54E15, 54E55.

Introduction

In a general setting, a strong inclusion is a subrelation <1 of the order of a
lattice with pseudocomplements that

e is a sublattice of L x L,
e interpolates,
e satisfies the implication

a<b<c<d= a<d,

and
e a<b= b"<ar.

This concept (and term) was, first, introduced by Dowker ([4]) for purposes
of enriched topology. There it naturally appears, e.g as the “completely
below” relation U <<V (where U is separated from the complement of V' by

Received July 12, 2010.

Support from the Centre for Mathematics of the University of Coimbra (CMUC/FCT), project

1MO0545 of the Ministry of Education of the Czech Republic and grant MTM2009-12872-C02-02 of
the Ministry of Science and Innovation of Spain and FEDER is gratefully acknowledged.

1



2 J. PICADO AND A. PULTR

a real-valued continuous function), or “U is uniformly below V” in a uniform
space.

In particular, the prorimity, a certain enrichment of a topological structure,
originally described by specifying for sets when they are “near” (“proximal”
[12]) can be alternatively, and to advantage, described in terms of a strong
inclusion stronger than the inclusion order.

This has proved to be particularly useful in the point-free setting where
the strong inclusion, strengthening the order in a frame (a lattice with \/ A-
distributivity, see 1.1) makes for a suitable extension of the classical concept
([7]); imitating the “proximity of elements” makes here good sense only in
(complete) Boolean algebras where it is then equivalent with the strong in-
clusion approach ([13]). It should be noted that besides of the properties
above, the strong inclusion one deals with is further required that

e a<b= a*VvVb=1 (implying the “rather below” relation), and
e for each a, a = \/{b | b<ta} (admissibility of the additional structure).

It turns out that the resulting category of proximity frames is concretely
isomorphic to that of totally bounded uniform frames (see [7]) and that the
compactifiable frames are exactly those that admit strong inclusions (see [1]).

In classical topology it was found useful to generalize proximities by drop-
ping symmetry. This can be modeled in the point-free (frame) setting ([8],
[19]) by introducing modified strong inclusions on biframes (triples (L, L1, Lo)
where L; are specific subframes of L. — see 1.1 below) as couples of subre-
lations <; of the orders of L; with certain intertwined properties (see 1.2).
Thus generalized strong inclusions are, again, closely connected with com-
pactifications (of biframes — see Schauerte [19]).

In our recent paper [15] we have shown, for uniformities, another environ-
ment of the frame structure, that when dropping the symmetry the biframes
can be, essentially, avoided. The question naturally arises whether this can
be done with the (quasi-) proximity as well. In the present paper we an-
swer this question in the affirmative introducing (in Section 2) a category of
quasi-proximal frames that enriches the plain frames directly. Such proxi-
mal structures make the picture in the point-free setting more similar to the
classical one (where the bitopologies appear only a posteriori and clarify the
discussion in the introduction of Doitchinov [3]). In Section 3 we prove that
this category is concretely isomorphic with the biframe based one. Finally,
in Section 4 the new category of quasi-proximal frames is related with that
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of quasi-uniform frames. It turns out that the relation is analogous with
the symmetric case: namely, there is a one-to-one correspondence between
quasi-proximities and totally bounded quasi-uniformities, yielding a concrete
isomorphism of the categories.

1. Preliminaries

1.1. Frames and biframes. Recall that a frame is a complete lattice
satisfying the distributivity law

a/\\/bi = \/(a/\bz)
iel iel
and that frame homomorphisms preserve all joins (including the bottom el-
ement 0) and finite meets (including the top element 1). Frames and frame
homomorphisms are the objects and morphisms of the category Frm.

A biframe is a triple (L, L1, L) in which L is a frame and L; and L are
subframes of L such that L;U Ly generates L (in the sense that any element of
L can be expressed as a join of finite meets of elements of LU Ls); a biframe
homomorphism h : (L, Ly, Ls) — (M, My, M) is a frame homomorphism
from L to M such that the image of L; (¢ = 1,2) under h is contained in M;.
Biframes and biframe homomorphisms are the objects and morphisms of the
category BiFrm. If (L, L1, Ls) is a biframe and a € L; (i = 1,2), the element

o =\/{beLjlanb=0} (je{1,2},j+#1)
is the analogue in biframes of the pseudocomplement
a*=\/{beL|anb=0}

of an element a of a frame L.

For more about frames the reader can consult [16] or [17], for biframes see
2] and [19].

1.2. Strong inclusions on biframes: quasi-proximities. A strong
inclusion [19] on a biframe (L, L1, Lo) is a pair (<y, <l2) of relations on I
and Ly respectively satisfying the following conditions (for ¢ = 1, 2):

(S1) <; is a sublattice of L; x L;.

(S2) a < b <; ¢ < d implies that a <; d.

(S3) a <; b implies that a® vV b =1 (usually denoted by a <; b).

(S4) a <; b implies that there exists ¢ € L; with a <; ¢ <; b.
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(S5) If a <; b then b* <; a® for j € {1,2} and j # i.

(S6) For every a € L;, a=\/{be L; | b<;a}.
Note that the more standard strong inclusion in a frame is the < from (<1, <)
on (L,L,L).

A triple ((L, L1, Ls), <1, <2) where (<, <) is a strong inclusion on the
biframe (L, Ly, L) is called a quasi-proximal frame [7] (proximal biframe in
the more recent [8]). Given proximal biframes

((L7L17L2)7<]fu<]§) and ((M7 M17M2)7<{\47<]§/[)7

a biframe homomorphism A : (L, Ly, Ly) — (M, My, Ms) is a prozimal biframe
homomorphism if

a <F b implies h(a) <M h(b) (for i = 1,2 and every a,b € L;).

The category of proximal biframes and proximal biframe homomorphisms
will be denoted by
PBiFrm.

1.3. Quasi-uniform frames. Let L be a frame. A subset C C L x L is a
paircover [15] of L if

\/{01 Ney | (cr,00) € CF=1.

A paircover C' of L is strong if, for any (c1, o) € C, (¢1,c2) = (0,0) whenever
¢t Ncg =0. For any C, D C L x L we write C' < D (and say that C' refines
D) if for any (c¢y,c2) € C there is (di,dy) € D with ¢; < dy and ¢ < do.
Further we write

CND= {(Cl A dl,CQ A dg) | (01,02) c C, (dl,dg) - D},

obviously it is a is a paircover again.
Fora € L and C,D C L x L, we set

st1(a,C) = \/{01 | (c1,¢2) € C and ¢y A a # 0},

sto(a,C) = \/{02 | (¢1,¢2) € C and ¢y A a # 0},
C'={(c,c1) | (c1,¢c2) € C},and
st(D,C) = {(st1(dy, C),sta(d2, C)) | (d1,d2) € D}

and write
C* for st(C,C).
We shall need the following facts from [15, Proposition 2.2]:
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Proposition 1.3.1. Let C,D C L x L and a,b € L. Then:
(1) If a < b then st;(a,C) < st;(b,C).
(2) If C < D then sti(a, C) < sti(a, D).
(3) a Asti(b,C) =0 iff b Asta(a,C) = 0.
(4) If C is a paircover then a < st;(a,C) and C' < C*.
(5) If C is a paircover then st;(st;(a,C),C) < st;(a, C*).
(6) For any frame homomorphism h: L — M,
st;(h(a), h[C]) < h(st;i(a,C)).
(7) For any frame homomorphism h : L — M, h|C]* < h|C*]. O

Given a non-empty family U of paircovers of L, we write a <4 b (i = 1,2)
whenever st;(a, C') < b for some C' € U, and set

Liy={acLla=\/{beL|b<a}} (i=1,2).

From [15, Proposition 2.4] we know the following:

Proposition 1.3.2. Let U be a basis for a filter of paircovers of L. Then,
fori=1,2:

(1) The relations <“ are sublattices of L x L, both stronger than <.

(2) For any a,b,c,d € L, a<b<luc<dzmplzesa<lud

(3) Li(U) are subframes of L. O

A system U of paircovers of L is admissible [15] if (L, L1(U), Lo(U)) is a
biframe or, equivalently, if for every a € L, a = \/{b € L | b <¥ a}, where
U denotes the filter of paircovers of L generated by {C A C~! | C € U}.

Now, an admissible system U of paircovers of L is a quast-uniformity on L
if it satisfies the following conditions:

(QU1) For any C' € U and any paircover D with C' < D, then D € U.
(QU2) For any C, D € U there exists a strong E € U such that £ < C A D.
(QU3) For any C' € U there is a D € U such that D* < C.

The pair (L,U) is called a quasi-uniform frame [15]. Let (L,U) and (M, V)
be quasi-uniform frames. A frame homomorphism A : L — M is uniform if
h|C] € V for every C € U. The resulting category will be denoted by

QUFrm.

We say that a quasi-uniform frame (L,U) is totally bounded if for every
C' € U there is a finite paircover D € U such that D < C.
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Quasi-uniform frames (L,U) have the following crucial properties (see [15,
lemmata 2.6, 3.2, 3.4)):
Consider the interior operator on P(L x L) defined by
U
int(C) = {DC LxL|DeC},
where

U
C €D =g st(C,U) < D for some U € U.

Proposition 1.3.3. For every C' € U we have:

(1) int(C) < C <int(C*).
(2) sti(a,int(C)) € Ly(U) (i=1,2) for every a € L. O

Given U € U, a € L is said to be U-small if
a < \/{u1 Aug | (ug,ue) € Ujug Aug ANb # 0}
whenever a A b # 0. Let
Cy = {(st1(a,int(U)), sta(a,int(U))) | a is an U-small member of L}.

Proposition 1.3.4. (1) Each Cy is a strong paircover of L contained in
Ll(U) X LQ(U)

(2) sti(a, Cy) <sti(a,U*) (1 =1,2).
(3) SJEZ'(CL7 U) < sti(a, OU*) (Z = 1, 2)
(4) Cy < U*; if U is strong then U < Cy. O

2. Quasi-proximities without biframes

Let L be a frame, < a binary relation in L and
L(<)={a€Lla=\/{beL|b<a}}.
Lemma 2.1. If < is a sublattice of L X L, stronger than < (that is, < C<),
satisfying
a<b<c<d=a<d (2.1.1)
then L(<) is a subframe of L.
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Proof: Since 0 <0 and 1 < 1, then 0,1 € L(<). Since < C<, we have
V{be L |b<a} <a. Let a,b € L(<). Then, since < is closed under finite
meets,

anb=\/{d eL|d aa} N\/{V eL|V b} =
:\/{a'/\b'\a’,b/EL,a'Qa,b'Qb}§\/{c€L\c<la/\b}

which shows that a A b € L(<).

Now, let a; € L(<1) (i € I). Then V,.;a; = V,.;V{b € L |b<a;}. For
each such b, b < a; < \/,.;a;. Consequently, by (2.1.1), V,.;a < V{be L |
b<iV,c ai} and \/, ;a; € L(<). m

In the sequel we will have to refer to pseudocomplements relatively to
distinct subframes. Therefore we will adopt the following notation: for a
subframe K of a frame L and a € L, we denote by cx(a) the element

\A{be K|bra=0}.

We have cp(a) = a*, cx(a) < a*, cx(0) =1, cx(1) = 0 and a < cx(ck(a))
for every a € K.

Definition 2.2. Let L be a frame. A pair (<, <3) of relations in L will be
called a strong bi-inclusion on L if for i,j € {1,2} we have:

(SB1) <«; is a sublattice of L x L.

(SB2) a < b<; ¢ < d implies that a <; d.

(SB3) a <i; b implies that cp,)(a) Vb =1 (j #1).

(SB4) a <; b implies that there exists ¢ € L(<;) with a <; ¢ <; b.
(SB5) If a <; b then b* <; a* for j # i.

(SB6) (L, L(<11), L(<13)) is a biframe.

Remarks 2.3. (1) (SB3) implies that each <; (i = 1,2) is stronger than <:
if cr(q,)(a) Vb =1then a =aA (cyq,(a) V) =aAb. It also implies that
b* < cr(q,)(a) whenever a <; b (because cp4,)(a) Vb =1and b* ANb=0).

(2) For any a,b € L,

a <l; b* = a < CL(Qi)(b) (Z: 1,2)

Indeed, by (SB4) there exists ¢ € L(<;) such that a <; ¢ <; b*. Since ¢ < b*,
then ¢ A b = 0 and consequently ¢ < cp4,)(b). Therefore a <; ¢z, (b) by
(SB2).
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(3) Also, it may be worth mentioning that any pair (<1, <l3) satisfying (SB2),
(SB3) and (SB4) satisfies (SB5) if and only if it satisfies

(SB5a) if a <1; b then cp4,)(b) < cp(q,)(a) for j # 1.

Indeed:

=: If a<i;b then, by (SB5), cp4,)(b) < b*<ja* and therefore by the preceding
remark cr4y(b) < cria,(a).

<: In order to prove (SB5), suppose a<1;b and apply (SB4) to get ¢ satisfying
a<;c<;b. By (SBba) and Remark (1) we obtain b* < c4y(b) < cpo,y(a) <
a”.

(4) (SB3) is obviously stronger than
(SB3a) a <; b implies that a* Vb =1

(since cp(4,)(a) < a*). However, if (<Iy, <) satisfies (SB2) and (SB4) then it
satisfies (SB3) and (SB5) if and only if it satisfies (SB3a) and (SB5a): the
implication “=" was already proved in (3) and, conversely, if a <; b then,

by (SBba), cr,)(b) < cra,(a); applying (SB3a) we get (cr(,)(b))" V
CL(qj)(CL) =1 and thus bV CL(qj)(CL) =1 (since b < (CL(<}j.)(b>)*).

(5) In addition, (SB3) may be equivalently replaced by the conjunction

(SBO) for every a,b € L, a<;b = a < b, and
(SB3b) for every a,b € L(<;), a <; b implies that cj,y(a) Vb= 1(j # 1).

Indeed, the implication
(SB3) = (SB0)+(SB3b)

is obvious by the preceding observation. On the other hand, if a <; b then
there exist by (SB4) ¢,d € L(<;) such that a <; ¢ <; d <;b. Thus, by (SB3b),
Cr(a,)(c) Vd=1. But d < b and cpq,)(c) < cpq,(a) (because a < ¢) and
hence cp(4,y(a) Vb= 1.

Any strong bi-inclusion (<ly, <2) on a frame L induces two subframes L(<)
and L(<) of L. The triple (L, L(<1), L(<2)) is a biframe by (SB6). The
following proposition provides an alternative to condition (SB6) that avoids
biframes.
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Proposition 2.4. Let (<y, <9) be a pair of binary relations in L, both stronger
than < and satisfying (SB1) and (SB2). Then (<1, <) satisfies (SB6) if and
only if

(SB6') for each a € L,a = \/{b € L|b<al,

where < 1s the binary relation in L defined by
b<a =g Jag € L(<1),Tas € L(<a), a1 ANas < a, b<lya; and b <3 as.

Proof: =: For each a € L we can write a = \/,_;(a} A a?) for some

{aj |i€ I} CL(<y) and {a?|i€ I} C L(<y).
Taking into account that, for any ¢ € I,
aj ={bec L|b<ia;} and a?={be L |b<a’},

it suffices to show that by A ba<ta; A as whenever by<1ja; and by<lsas. This,
however, is an immediate consequence of (SB1) and the definition of <.

<: By 2.1, each L(<;) (i = 1, 2) is a subframe of L. It remains to show that
each a € L is a join of finite meets in L(<1;) U L(<y).

Let a € L. Then a =\/ S where S = {b € L | b<a}. For each b € S there
exist a} € L(<;) and a} € L(<ly) satisfying b <1y a}, b <13 a4 and a? A af < a.
Hence a = \/;cob < Vpes(ah A db) < a. _

A frame L with a strong bi-inclusion (<1;, <13) will be called a quasi-prozimal
frame. Given quasi-proximal frames (L, <, <%) and (M, <, <), a quasi-
proximal map

he (L, <y, <) = (M, <), ")

is a frame homomorphism h : L — M such that a < b = h(a) <} h(b) for
every a,b € L. The resulting category will be denoted by

QPFrm.

Note that our definition of a quasi-proximal frame contains, of course, the
symmetric case of proximal frames (as defined by strong inclusions) [7]: it is
a frame equipped with a strong bi-inclusion (<1j, <l3) such that <i; = <.

Quasi-uniform frames provide canonical examples of quasi-proximal frames:

Proposition 2.5. For each quasi-uniform frame (L,U), the triple (L, <%, <)
1S a quasi-prorimal frame.



10 J. PICADO AND A. PULTR

Proof: The properties (SB1) and (SB2) follow from Proposition 1.3.2, and
(SB6) is obvious.

(SB3) Suppose a <¥ b. Then st;(a,U) < b for some U € U. It suffices to
show that cp4,)(a) Vsti(a,U) = 1. Consider V' € U such that V** < U. By
Proposition 1.3.4, V < Cy+ and Cy» < V*** < U. Therefore st;(a,Cy+) <
sti(a,U). Let

(Ul,vg) € CV* - Ll(U) X LQ(U)

If ujAa = 0 then u; < cpq,(a); otherwise, u; < st;(a, Cy+) < sti(a,U). This
shows that

\/{u1 Nz | (ur,uz) € Oy} < cp(qy(a) Vsti(a,U).

Hence cp4;)(a) Vsti(a, U) = 1, since Cy~ is a paircover.

(SB4) Let st;(a,U) < b for some U € U and take V' € U such that V** < U.
By Proposition 1.3.3,

sti(a,int(V")) € Lil) = L u .
Of course a <¥ st;(a,int(V*)). On the other hand, by 1.3.1(5),
st;(st;(a, int(V")), V™)) < sti(sti(a, V"), V")) <st;(a, V)sti(a,U) < b

and hence st;(a,int(V*)) <¢ b.

(SB5) Let st;(a,U) < b for some U € U. Then st;(a,U) Ab* =0 (j #1i). By
1.3.1(3), a Ast;(b*,U) = 0, that is, st;(b*,U) < a*. _

3. The concrete isomorphism QPFrm = QPBiFrm

Given a proximal biframe ((L, L1, Ls), <1, <2), let
O((L, L1, Ly), <1, <2) = (L, <1, <2)
where, for any a,b € L,
a<;b=gtdc,deLi:a<c<;d<b (i=1,2).
Proposition 3.1. For any prozimal biframe ((L, Ly, Lo), <11, <l3),
O((L, Ly, L), <11, <2)

1S a quasi-prorimal frame.
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Proof: (SB1) 0<,0 and 1<;1 are trivial. Let aj,a9 <; b. Then a; < ¢ <
di < band ay < ¢ <; dy < b for some cy,¢9,d1,dy € L;. Consequently,
a1 <c1<;diVdy <band ay < ¢y <;dy Vde <bwith ¢p,c9,dy Vdy € L. By
hypothesis, ¢1 A ¢y <; di V do and ¢; A co € L;. Thus a; A as <; b. Similarly,
a1 Vas<ci1Ve<d Vdys <band a;Vay <;b.

(SB2) is obvious.

(SB3) First note that L; C L(<;). Indeed, for each a € L;, since <; C <,
we have

a=\/[{beLilb<ia} <\/{beL|[bGa} <a

Now, let a,b € L(<;) and a < ¢ <; d < b with ¢,d € L;. By hypothesis,
Cr(a,)(c) V d =1 and from the inclusion L; C L(<;) and the fact that a < c
it follows that

crz(a) = \/{d € L(S)) | d Aa=0} > \/{d € L; | d Ae =0} = ¢4, (0).

Hence cpz,)(a) Vb = 1.

(SB4) follows immediately from (S4) and the fact that L, C L(<;) proved
above.

(SB5) By Remark 2.3(3) it suffices to prove (SBba). Let a,b € L with
a <; b, that is, a < ¢ <; d < b for some ¢,d € L;. Then, by hypothesis,
Cr(«,)(d) <y cria,)(c) and, of course, cr(,)(d), cr(q,)(c) € Lj. Now it suffices
to show that cr(a,)(0) < cp(a,(d) and cpqy(c) < cpeg,y(a). The latter was
already proved in (SBS) above and the former can be proved in a similar
way.

(SB6) By Lemma 2.1, each L(<;) is a subframe of L. Since (L, Ly, Lo) is
a biframe and L; C L(<;) (i = 1,2), then immediately (L, L(<1), L(<2)) is
also a biframe. ]

Given a quasi-proximal frame (L, <, <ls), let
\Ij(Lv <1, <]2) = ((L7 L(<]1)7 L(<]2))7 <1‘L(<11)7 <]2’L(<2))'

Proposition 3.2. For any quasi-proximal frame (L, <1, <), (L, <y, <2) is
a prorximal biframe.

Proof: By hypothesis, (L, L(<1), L(<l2)) is a biframe and ¥(L, <y, <z) sat-
isfies conditions (S1)-(S5) trivially. It remains to check (S6):
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For every a € L(<;), a = \/{b€ L |b<;a}. But by condition (SB4) there
is some ¢ € L(<;) satisfying b <; ¢ <; a. Therefore a = \/{b € L(<;) | b<;a},
as desired. |

Concerning morphisms, the next result allows us to define ®(h) = h for
every h € PBiFrm and W (h) = h for every h € QPFrm.

Proposition 3.3. (1) Let h : (L, Ly, Lo), <t <) — (M, My, My), <}, <df)
be a proximal biframe homomorphism. Then

h: ®((L, Ly, Ly), <y, <) — (M, My, My), <1’ <i3' ) € QPFrm.

(2) Let h: (L, <t <) — (M, <}, <)) be a quasi-prorimal map. Then

h:W(L,<F, <b) = (M, <M, <)) € PBiFrm.
Proof: (1) We have to check that

Va,be L, a <X b= h(a) I h(b) (i=1,2).
Let a ZZ-L b, that is a < ¢ < d < b for some ¢,d € L;. Then, by hypoth-
esis, h(c),h(d) € M; and h(a) < h(c) <M h(d) < h(b), which shows that
h(a) <" h(b).
(2) It suffices to check that h is a biframe map

(L, L(<1), L(<1z)) = (M, M(<y"), M(<y"))
(the rest is obvious). Consider a € L(<t¥). Since a = \/{b € L | b <l a} and
b <t a implies h(b) <M h(a), then
h(a) = \/{h(b) | b€ Lb<a}a} <\/{ce M |c<a) h(a)} < h(a).
Hence h(a) € M(<}?). m
Finally, we have:

Theorem 3.4. The functors ¥ and ® constitute a concrete isomorphism
between QPFrm and PBiFrm.

Proof: It suffices to show that
(a) OV = IdQPFrm and (b) Ud = IdPBiFrm
on objects.

(a) We will show that <|;,) = <;. Consider a,b € L with a <; b. By
(SB4), there is ¢,d € L(<;) such that a <; ¢ <; d <; b. Since ¢ <[p(«,) d
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then, immediately, a <|r(q,) 0. On the other hand, if a,b € L are such
that a <|z(,) b then there exists a pair ¢, d of elements of L(<;) satisfying
a<c<;d<b. Thus a<;b.

(b) It suffices to check that L(<;) = L; for ¢ = 1,2. Let a € L;. Then, since
<; € ;, we have

a:\/{bELi|b<lia}§\/{b€L|bZ¢a}§a.

Conversely, if a € L(<;), meaning that « € L and a = \/{b € L | b G; a},
then for each such b there is ¢, d;, € L; satisfying b < ¢, <1; dp < a. Conse-
quently,

aS\/{cELi\CQia}Sa
and, therefore, a € L;. |

Remark 3.5. As a consequence of Proposition 1 of Schauerte [19], every
quasi-proximity (<lj,<l3) on a frame L induces a compactification of the
associated biframe (L, L(<;), L(<2)). Then by Proposition 3 of [19] this is
a zero-dimensional compactification if and only if a <; b (for a,b € L(<;),
i = 1,2) implies the existence of ¢ € L(<;) satisfying a < ¢ <; ¢ < b. Note
that, by (SB3), ¢ <; ¢ means that ¢ € L(<;) is complemented in L with
complement in L(<;) (5 # 1).

4. Quasi-proximities and quasi-uniformities:

total boundedness

To finish we show, in analogy with the spatial case or the symmetric case
(see [5, 7, 9, 12, 13]), that the category QPFrm is isomorphic to the full
subcategory TBQUFm of QUFrm of all totally bounded quasi-uniform frames.

First, we need a few basic facts about paircovers. Let C' be a paircover of
the frame L. Set

CS = {(61702) ec(C | c1 N\ ¢y 7é 0}
Lemma 4.1. Let C, D be paircovers of the frame L. Then:

(1) Cs is a strong paircover of L.

(2) (CAD)s <Cs A Dg.

(3) C* < D — (Cy)" < D;.

(4) If h: L — M s a frame homomorphism, then (h|C])s < h[CY].



14 J. PICADO AND A. PULTR

Proof: (1) and (2) are obvious.

(3) Let (c¢1,¢9) € C with ¢4 A ¢y # 0. Since st;(c;, Cs) < sti(¢;,C) < d;
(2 =1,2) for some (dy,ds) € D and ¢; Aco < sty(cy, Cs) Asta(ca, C5) < dy Ads,
then (dy,dy) € D;.

(4) Suppose h(c1) A h(c2) # 0 for (c1,c2) € C. Then h(c; A ¢g) # 0, hence
c1 A\ ¢ # 0 and consequently (c¢1,¢2) € Cs. Hence (h(c1), h(c2)) € h[Cs]. =

AN

Lemma 4.2. Let U be an admussible filter of paircovers of L with property
(QU3), and let Uy be the filter of paircovers of L that has {Cs | C € U} as
subbasis. Then (L,Us) is a quasi-uniform frame.

Proof: Uy is a filter of paircovers of L which by Lemma 4.1 satisfies the
requirements (QU1)-(QU3). Since U C U, then L;(U) C L;(Us) (i = 1,2).
Hence (L, L1(Us), Lo(U)) is also a biframe and U, is admissible. m

Let (L, <1, <2) be a quasi-proximal frame. For any a <1; b we define

C;,b - {(17 CL*), (bv 1)}

and for a <19 b we define

Cg,b - {(a*7 1)7 (17 b)}
Of course, C’;,b and Cib are paircovers of L.

Proposition 4.3. The filter U of paircovers of L which has as subbasis the
family of paircovers {C, | a <; byi = 1,2} satisfies the conditions of the
preceding lemma.

Proof: Let a<i1b. Use (SB4) to select ¢1, co € L(<11) such that a<ijc1 <ijca<iyb
and consider C = C; . AC., ., AC, ;. Then

a,C1 C1,C2

C={(c1, 1), (e1, 1), (e1,63), (e2,a7), (2, ¢3), (b)), (1,¢5)}-
Since
sti(c1,C) < b, sti(cy, C) < b, sty(c],C) <a* and sty(c;,C) < a’,
we have C* < C';’b. Similarly, for a <o b and a <15 ¢1 <3 ¢2 <o b,

(C2. NC2 . NCE ) < Coy

This shows that U satisfies (QU3). In order to prove the admissibility of U

it suffices to show that a <; b implies a <1§-4 b which is obvious since a <; b
implies st;(a, Cy ;) <b. m
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Hence the corresponding U, given by the lemma is a quasi-uniformity on
L (which is of course totally bounded). We shall denote it by Up (L, <1, <3).

Proposition 4.4. The correspondence (L, <y, <2) ~» (L,Ur(L, <1, <3)) de-
termines a concrete functor ® : QPFrm — TBQUFrm.

Proof: It remains to check that for any quasi-proximal map
h:(L,<f, <) — (M, <}, <!,

h:(L,Up(L, <7, <)) = (M, Up(M, )", <3"))
is a quasi-uniform map. By Lemma 4.1(4) it suffices to show that h[C’fL,b] €
Ur(M, <, <) whenever a <1; b (i = 1,2).
Suppose a <; b and apply (SB4) to select ¢ € L(<;) such that a <; ¢ <; b.
By (SB3), a* V ¢ = 1, which in turn implies that h(c)* < h(a*):

a*Ve=1= h(a")Vh(c) =1= h(c)" = h(c)"A(h(a")Vh(c)) = h(c)* Ah(a").
Hence
Chieyniy = L1 h(e)), (h(D), 1)}
refines h[Cy,] = {(1, h(a®), (h(b),1)} and
Cz(c),h(b) = {(h(c)*v 1)7 (17 h(b))}
refines h[CZ,] = {(h(a*), 1), (1, h(b))}. _

On the other hand, going back to Proposition 2.5, we have:

Proposition 4.5. The correspondence (L,U) ~ (L, <4, <Y) determines a
concrete functor ¥ : TBQUFrm — QPFrm.

Proof: Let h : (L,U) — (M,V) be a quasi-uniform map. We need to show
that

b (L <, <) = (M <), <)
is a quasi-proximal map, that is, a <¥ b implies h(a) <tV h(b). But a <% b
means that st;(a,U) < b for some U € U and, by the statement (6) in
1.3.1, st;(h(a), h[U]) < h(b). Since h[U] € V this makes h(a) <1} h(b), as
required. |

Theorem 4.6. The functors ® and ¥ constitute a concrete isomorphism
between QPFrm and TBQUFrm.
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Proof: We want to show that ¥® = Idqpgm and @V = Idrtgquem. After 4.4
and 4.5 there is nothing left to prove for morphisms.
Now for the objects. We have

U((L,U)) = O((L, <, <)) = (L, Ur(L, <, <¥)) and
UD((L, <1, <z)) = W((L,Up(L, <y, <)) = (L, <), frlbana)),
so that we need to prove that

(a) Up(L, <Y, <) =U and (b) Q?F(L’ql’qz) = <; for i =1,2.
(a) Let C!, be a subbasic paircover of Up(L, <, <¥). Then a < b, that is,
sti(a,U) < b for some U € U.

Suppose ¢ = 1 and let (uy,us) € U. If us A a # 0 then u; < sty(a,U) < b
and (uy,us) < (b,1); otherwise, us < a* so (uy,us) < (1,a*). Hence U <
C;’b which shows that C’;,b € U. The case i = 2 proceeds similarly. Thus
Ur(L, <4, <) C U.

Now let U € U and select a strong paircover V' € U such that V* < U.
Since U is totally bounded, there is a finite F' C V such that F' is still a
paircover:

F = {(Cl,dl),(CQ,dg)...,(Cn,dn)}, CZ/\dZ 7&07 \/(CZ/\dZ) = 1.
i=1
Since (sti(c;, V), sta(d;, V) < (u4,v;) for some (u;,v;) € U (i =1,2,...,n),
it follows that ¢; <lzf u; and d; <17§’ v;. It suffices now to show that for

C = Ol N Cl JANREIRIVAN Cl A Cgl,’ul A 032,'02 AREERA Oﬁna”n’

C1,U1 C2,U2 CnylUn

the corresponding strong paircover C, (which belongs to Up(L, <%, <)) is a
refinement of U.
Any element (x,y) in C' is of the form

(wiy ANiy A= A Ny Ay A+ AN,

Jn—l’

* * *
Vi AUj A= ANvj Neg Neg N Ney

n—=k

)
where
I ={iy,i9,... 01}, I' = {i'l,ié, ce ,i;%k}
and
J={jgos- ity I =G0 e
are partitions of m = {1,2,...,n}.
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If INJ # @ then (z,y) < (uq,v,) € U for « € I NJ. Otherwise, if
INJ=@then I'UJ =7 (and k+ [ =n). Since

(@, y) < (djy Ndjy N+ Ndjy e Aejg Ao Negp )

Y-k

this in turn implies that
n
r ANy < /\ (c; vd).

But

Veind)=1= Ncnrnd) =0= N(vd)=0.
i=1 i=1 i=1
Hence x Ay =0 and (z,y) ¢ Cs.

(b) If a <1; b then C; , € Up(L, <1, <2). Since st(a, C},) < b we have

a QMF(L )

Conversely, suppose for some U € Up(L,<1,<3) we have st;(a,U) < b
(¢ =1or¢=2). Our aim is to show that a <; b. We may assume that

U Cllbl/\cllbl/\ AC;}L7b}LAC22b2/\0221)2/\"'/\03%1,[)%1

a,17 a17 a27

where al < b} for @ = 1,2,...,n and a% <9 bf for § = 1,2,...m. Any
element (uy,us) in U is of the form

(b}%1 Al N Ny Nag)* A (ay)" A== Alag ),
b5, A5, A NG A (agr)™ A agy)" A= A (ag, k)*)
where
A={ay,a0,..., 01}, A ={a],ah,....a, .}
is a partition of @ = {1,2,...,n} and

B:{Blaﬁ%"wﬁl} B/:{Binﬁéa"w ;nl}
is a partition of m = {1,2,...,m}. Select ¢}, d} € L such that

acll <1 Cé <4 dé <4 bl

., foreveryaemn
and c%, d% € L such that

a% <9 C% <9 d% <9 b% for every 3 € m.
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By (SB5), (¢3)* <11 (a3)* for every 8 € m and (c})* <2 (ay)* for every a € 7.
Suppose (ug,us) € U is such that

up = /\ bL A /\ (a3)* and wy = /\ b5 A /\ (aa)",

acA pseB’ BEB acA’
with AUA'=m,ANA' =@, BUB =m,BN B = @. Then set
uy = /\ d: A /\ (c3)* and Uy = /\ 3 A /\ (ch)*.
acA peB’ peB acA’

Clearly uy <17 u1 and g <lg us. Therefore ui <o (u1)* and uj <1y (us)*.
Let j € {1,2}, j # i, and

Ulz{(ul,uQ) EU"LL]'/\CL:O}, UQI{(ul,UQ) €U|uj/\a7é0}.

This is a partition of U. Now, by the first De Morgan law (which holds in
any frame),

a < N{uj | (ur,us) € Ur} = (\/{uy | (u1,us) € U1})". (4.6.1)

Since U is finite and u; <; u;, we have
VAT, | (ur,u) € Un} <t \[{uy | (ur, u2) € Uy}

and then by (SB5)

(/A | (ur,u) € U} < (\/{; | (ur, ug) € Ur})", (4.6.2)
But { (w1, u2) | (u1,u2) € U} is a paircover of L (it coincides with the paircover

Cam ANCap N NCa g NCH p NCh g N NCh ).

This means that

1=\ (@A) <\ | (u,u) € U} v \/{Ti | (u1,u) € Un}

(’ul,UQ)EU

which immediately implies that
(\A{E; | (w,u2) € U <\ | (ur, u0) € Us}
< \/Auwi | (u1,us) € Un} = sty(a,U) <D
By (4.6.1), (4.6.2) and (4.6.3) we have a <; b as desired. m

(4.6.3)
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Remark 4.7. The dual adjoint situation between quasi-uniform spaces and
quasi-uniform frames established in [15] by functors

Q : QUnif — QUFrm and X : QUFrm — QUnif
restricts immediately to a dual adjunction

QProx = QPFrm

between the categories of quasi-proximal spaces and quasi-proximal frames
(since for each totally bounded quasi-uniform space (X, pu), Q(X,u) is a
totally bounded quasi-uniform frame and for each totally bounded quasi-
uniform frame (L, U), the quasi-uniform space (L, U) is also totally bounded).
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