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ABSTRACT: Definitions for heterogeneous congruences and heterogeneous ideals on
a Boolean module M are given and the respective lattices CongM and IdeM are
presented. A characterization of the simple Boolean modules is achieved differing
from that given by Brink in a homogeneous approach. We construct the smallest
and the greatest modular congruence having the same Boolean part. The same is
established for modular ideals. The notions of kernel of a modular congruence and
the congruence induced by a modular ideal are introduced to describe an isomor-
phism between CongM and IdeM. This isomorphism leads us to conclude that
the class of the Boolean module is ideal determined.
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1. Introduction

The application of abstract algebra in logic and computer science rely and
depends on the simultaneous study of algebras of sets and algebras of binary
relations. To talk about algebras of sets is synonymous to study Boolean al-
gebras and the most famous algebra of relations is that presented by Tarski
in [9]. There Tarski introduces the relations algebras as algebras of binary
relations adding to the Boolean structure the operations of composition, con-
verse and identity. Boolean modules were first established by Brink in [1].
Given a relation algebra R, Brink defined and studied Boolean R-modules as
a Boolean algebra B with actions from the relation algebra R. Such actions
were induced by a map called Peircean operator, :, from R x B to B, where
each element a € R defines in B a map

B — B
p = a:p
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satisfying a required set of axioms. A unified concept associated to this ho-
mogeneous approach is given naturally by a two sorted algebra M = (B, R, :)
containing a Boolean algebra B and a relation algebra R where the Peircean
operator, :, is interpreted now as a heterogeneous operation in M ranging
from R x B to B. The importance of the heterogeneous algebras approach
on Boolean modules is fully presented on the introduction of [6] by R. Hirsch
and [2] by Brink, Britz and Schmidt. Nevertheless, their characterization
of simple Boolean modules follows a homogeneous point of view, since their
definition of a Boolean module ideal is a Boolean algebra ideal closed un-
der multiplication by elements of the relation algebra. The same can be
stated concerning congruences. A throughout heterogeneous approach is fol-
lowed in our work for both concepts under study (Definitions 3.1 and 4.1).
Thus a modular congruence 6 is considered as adequate pair of congruences
0 = (01, 6) with 6, a Boolean congruence and 65 a relation congruence and
modular ideals I as suitable pairs of ideals I = (11, [5) where I; is a Boolean
ideal and I5 is a ideal on the relation algebra.

2. Boolean modules

Boolean modules were introduced by Brink [1] as homogeneous algebras,
Boolean algebras with a multiplication (Peircean product) from a relation
algebra. A Boolean module is, from a heterogeneous point of view, a two
sorted algebra containing a Boolean algebra, a relation algebra and an ope-
rator (a heterogeneous operation, the Peircean operator) taking a pair of a
relation algebra element and a Boolean algebra element and originating a
Boolean algebra element. We present here the standard definition of relation
algebras given by Brink (originated from Chin and Tarski [3] and modified
in Tarski [10]).

Definition 2.1. A relation algebra is an algebra R = (R,V,A,,0,1,;,%€)
satisfying the following axioms for each a,b,c € R

R1  (R,V,A,,0,1) is a Boolean algebra

R2  a;(b;c) = (a;b);c

R3 aie=a=¢€;a

R4 a "=a

R5 (aVb);c=a;cVbc
R6 (aVbh)=a"Vb

R7  (a;b)"=0b3a”

R8 a7’ (a;b) <V
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Notation. For a,b € R we also write ab instead of a;b.

As usual, for elements p,q on a Boolean algebra B we define p ® ¢ =
(pAqG)V (P’ Aq). In particular, for elements a, b on a relation algebra R we
also define a b= (a AV) V (a' A D).

The standard class of models of relation algebras is the class of proper
relation algebras.

Definition 2.2. A proper relation algebra over a non-empty set U is a set of
binary relations on U that contains the identity relation and is closed with
respect to union, intersection, complementation, relational composition and
converse. If a proper relation algebra consists of all binary relations defined
on U, then this algebra is called the full relation algebra and is denoted by
R(U). More precisely, R(U) is the power set algebra over U? endowed with

W,

composition (“;”), converse (“~”) and identity (“/d”) operations defined, for
a,b C U?, by
a;b={(s,t): exists u € U such that (s,u) € a and (u,t) € b}
a’={(s,t): (t,s) € a}
Id={(s,s):s € U}.

The arithmetic of relation algebras can be described by the facts assembled
on the following theorem.

Theorem 2.3. On any relation algebra 'R the following hold for any a,b, c,d €
R

R9 €e=e o0=0 1=1

R10  a<b ifand only if a <b

R11  (aAb)"=a’Ab, d"=a"'

R12 a;0=0=0a, 1;1=1

R13  a(bVe)=abVac

R14 If a<b then ca<cb and ac < bc.

R15  (ab)Ac= o if and only if (ac)ANb= o if and only if (cb)Na = o

R16  (ab) A (cd) < al(aT) A (bd)]d

R17 (a®b)’=a" @V
Proof: R9-R16 are proved in [3]. To prove R17 we use R6 and R11. Thus
(a®b)"=[(aNV)V(dAD)]"=(aANV)'V(dAb)"= (a"AD)V (d"AD) =
(@aAb)YV (@' AD)=a" DD m

As mentioned before, Brink introduced the notion of a Boolean R-module
B as a homogeneous algebra. Here, the heterogeneous approach followed in
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this study is emphasized from the very beginning, on the following definition,
where the roles of B and R are taken evenly.

Definition 2.4. A Boolean module is a two-sorted algebra M = (B,R,:)
where B is a Boolean algebra, R is a relation algebra and : is a mapping
R x B — B (written a : p) such that for any a,b € R and p,q € B, the
following assertions are satisfied.

Ml a:(pVqg =a:pVa:q
M2 (aVvVb):p=a:pVb:p
M3 a:(b:p)=(ab):p
M4 e:p=p

Mb o:p=0

M6 a:(a:p) <yp

Notation. For a,b € R and p € B we also use ap to represent a : p.

The standard models of Boolean modules are provided by the class of
proper Boolean modules.

Definition 2.5. A proper Boolean module is a two-sorted algebra of a proper
Boolean algebra (a field of sets) and a proper relation algebra together with
Peirce product defined on sets and relations. For any relation a over some
non-empty set U and any subset p of U, the Peirce product : of a and p is
defined by

a:p={s€U: there exists t € p such that (s,t) € a}.

A full Boolean module M(U) over a non-empty set U is the Boolean module
(B(U),R(U),:), where B(U) is the power set algebra over U, R(U) is the full
relation algebra over U and : is the Peirce product defined set-theoretically.

Some facts valid on Boolean modules deserve mention.

Theorem 2.6. On any Boolean module M = (B,R,:) the following hold for
any a,b € R and p,q € B

M7 If p<gq then ap <aq.

M8 If a<b then ap < bp.

M9 alpAq) < (ap A aq)

M10 (aAb)p < (ap A bp)

M11 apAq=0 1if and only if agAp=0

M12 If .. pi exists, then so does Y . ,ap;, and a) ,.;Di= Y c;aDi.

M13 a0 =0
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M14 1:1=1

M15 (al) <d'l

M16 apAq <a(pAaq)
M17 p<lp

Proof: Proved in [1]. _

3. The lattice CongM of modular congruences

The concept of congruence with its recognized unifier formulation plays a
central role both on lattice and universal algebra theories in general. Once
more the presentation of next notion follows a heterogeneous view-point.

Definition 3.1. Let M = (B, R, :) be a Boolean module. A pair § = (61, 6)
is a (modular) congruence relation on M if 0; is a congruence relation on B,
0, is a congruence relation on R and ap 6y bq whenever (p 6, ¢ and a 05 b).

Let us denote by CongM the set of all modular congruences defined on
a Boolean module M. The set CongM is partially ordered by (6;,62) <
(71,72) if and only if §; C ~+; and 65 C 5. Our next aim is to define the lattice
structure (CongM, A, V). Since the intersection 0 Ny = (61 N7y, 02 N o)
of any two modular congruences 0 and ~ defined on M is, itself, a modular
congruence on M, let § Apyy = 0 N~. Let us use (A)4 to represent the
congruence relation generated by the binary relation 6 on any (homogeneous
or heterogeneous) algebra A, i.e., the intersection of all congruence relations
6 on A containing 6

) 4=n{0:6 € CongAand  C0}.

Now we need to define 6 Vv = (71,72). Using the classic definition of
supremum of two congruences, the relation part of the congruence 6 Vv
can be given by 7 = 03 Vg 72 = (2 U y9)r. As far as the Boolean part is
concerned some caution is required. Since the Boolean part must be closed to
the operation : evolving elements of R, we could be led to think of enlarging
(A1 U 1) with, for instance, elements of the type (ap,bq) with (a,b) € 6,
and (p,q) € v1. In fact, that is not necessary, as shown below.

Proposition 3.2. Let M = (B,R,:) be a Boolean module. For 6,y €
CongM, (p,q) € (01Uy1)p and (a,b) € (,Uvs)r we have (ap,bq) € (61U1)5.

Proof: Analogous to proposition on dynamic algebra [8]. |



6 S. MARQUES PINTO AND M.T. OLIVEIRA-MARTINS

The structure (CongM, Ay, Vo) where, for every 6, € CongD the ope-
rations are defined by

OAmy =00y =(0iN71,02N07)
OVimy = (UM = (1 Un)s, (62U72)R)
is a lattice called the congruence lattice CongM of M.

In a Boolean module M = (B, R,:) we define congruences Ap and Vg on
B and Ai and Vg on R as expected

Ap ={(p,p) :p € B}, Ve ={(p,q) :p,q€ B},

Ar ={(a,a) : a € R}, Vi =A{(a,b) :a,b € R}.

One can easily show that the pairs (Ap, Ag), (Vp,Vg) and (Vp, Ag) are
congruences on M, but in general (Ap, Vg) is not a congruence on M.

Proposition 3.3. On a Boolean module M = (B, R,:) the pair (61,VRg) is
a modular congruence on M if and only if 61 = Vp.

Proof: If (61, VRg) is a modular congruence on M then 16,1 and oV g1 and
then 016;(1 : 1). So 0011, i.e., 6 = V3. ]

On an arbitrary Boolean module M = (B, R,:) (not full) it is possible that
for some relation algebra elements a and b we may have ap = bp for allp € B
without having a = b. Boolean modules for which this situation is forbidden
is presented next.

Definition 3.4. A Boolean module M = (B, R,:) is bijective if and only if,
for all a,b € R we have a = b whenever ap = bp for all p € B.

Proposition 3.5. On a bijective Boolean module M = (B, R,:) the pair
(Ap,0s) is a congruence on M if and only if 0 = Ag.

Proof: 1f the cardinal of the set R is 1 then Ap is the unique existing regular
congruence. Let us admit that the cardinal of the set R is great than 1. If
(Ap, ) is a congruence and if 6, # Ap, then there exist distinct elements
a,b € R such that afyb. Immediately, apAgbp for each p € B, i.e., ap = bp
for every p € B. Since M is bijective then a = b, a contradiction. Therefore
92 = AR. |

Corollary 3.6. On a bijective Boolean module M = (B,R,:) the pair (Ag, Vg)
is a congruence if and only if card R =1 (if and only if Vr = Agr).
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Adopting the general classic definition of a simple algebraic structure we
are able to characterize the class of simple Boolean modules.

Definition 3.7. A Boolean module M = (B,R,:) is simple whenever
Cong/\/l = {(AB, AR), (VB,VR>}.

Proposition 3.8. The degenerate Boolean module M = ({0}, {o},:) is the
unique simple Boolean module.

Proof: If the cardinal of the set R is great than 1 then R admits Agr and
Vi as distinct congruences. Immediately (Ap, Ag), (Vp, Vi) and (Vp, Ag)
are different congruences on M and, therefore, M is not a simple Boolean
module.

If the cardinal of the set R is 1, we have R = {o} (with o = e =1). Then
B = {0}. In fact, by My and Mj of Definition 2.4 we have p = ep =op =0
for every p € B. Therefore B = {0}. n

On a Boolean module M = (B,R,:), Boolean congruences on B can exist
that are not the Boolean part of any of its modular congruences. In fact, let
U = {p,q} and M be the full Boolean module over U. Since I} = {0, {p}}
is a Boolean ideal on B(U), we can construct the Boolean congruence ¢, on
B(U) defined by, for s,r € B, (s,r) € 6 if and only if s Vi = r Vi, for
some i € I, with congruence classes [0]g, = {0, {p}} and [¢ls, = {{q},U}.
Let us admit the existence of a congruence 6, on R(U) such that (6,6,) is a
modular congruence on M. Let a € R(U) defined by a = {(q,p)}. We have
00:{p} and absa, but (a : O,a : {p}) &€ 61 (in fact, a : 0 = 0,a : {p} = {q}
and (0,{q}) & 61). Therefore, on the Boolean module M, 6, € CongB but
it does not exist a congruence 6y € CongR such that (61,62) € CongM.

Definition 3.9. Let M = (B, R, :) be a Boolean module. A Boolean congru-
ence ¢, on B is called pro-modular on M whenever there exists a congruence
65 on R such that (6, 6:) is a modular congruence on M.

Proposition 3.10. Let M = (B, R,:) be a Boolean module and let 61 be a
(Boolean) congruence on B. The congruence 0y is a pro-modular congruence
on M if and only if the pair (01, Ag) is a modular congruence on M.

As previously done for dynamic algebras [7], next notion can also be es-
tablished for Boolean modules.

Definition 3.11. Let M = (B, R,:) be a Boolean module with the relation
algebra R containing an element d, satisfying 9,0 = 0 and d;p = 1 for every
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Boolean element p # 0. This element of R is called the simple quantifier on

M.

Proposition 3.12. If M = (B, R,:) is a Boolean module such that 3, € R,
then the congruences Ap and Vp are the only pro-modular ones.

Proof: Let 81 # Ap a pro-modular congruence on M. There exists a Boolean
element p # 0 such that pf,0. Since 45 € R, then d,pf;3,0, so 16,0. Therefore
91 = VB. |

Corollary 3.13. If M = (B, R,:) is a bijective Boolean module such that
s € R, then the congruences (Ap, Ag) and (Vp,0s) for every congruence 6,
on R, are the only modular congruences on M.

Proof: Using Propositions 3.12 and 3.5 we can infer that the congruence
(Ap, Agr) is the only modular congruence with Ap as Boolean part. We
know that, for every congruence 6 on R, the pair (Vpg,6s) is a modular
congruence on M. |

Corollary 3.14. For any set U, the congruences Ap and Vg are the only
pro-modular congruences in the full Boolean module over U, M(U) =

(B(U), R(U),:).

Proof: The relation Vg is an element of R(U) and Vi is the simple quantifier
on M(U). u

Proposition 3.15. Let 61 be a pro-modular congruence on a Boolean module
M= (B,R,:). Then
(1) (61, Ag) is the smallest modular congruence on M having 6, as Boolean
part,
(2) ¢ = (01,{(a,b) € R x R : there exists j € R such thataV j =
bV j, jpt10 and jpOi0 for every p € B}) is the greatest modular con-
gruence on M having 61 as Boolean part.

Proof: (1) Trivial.
(2) Our first aim is to show that ¢ = (¢1,¢2) with ¢ = 6 and ¢ =
{(a,b) € RXx R : there exists j € R such that aVj = bV, jpf0 and
Jj 010 for every p € B} defines a congruence on M.
(a) We prove that ¢o is an equivalence relation.
For a € R, we have a Vo = aV o, opf10 and oph,0, and therefore

apsa.
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Trivially if agsb then bgpqa.
Let agob and bgoc. So there exist 5,k € R such that a vV j =
bV 3, jpf10 and jpb,0 for every p € B and bV k = cV k, kpb,0
and k6,0 for every p € B.
But aV(jVk) = (aVj)Vk = (bVj)Vk = (bVEK)Vj = (cVk)Vj =
cV (jVEk).
Since jpA10 and kp#,0 then jp V kphi0 so (5 V k)pb:0.
Since j'p6h0 and kphi0 then jp V kphi0 so (j7V k)pbh0, ie.,
(7 V k)pb10.
Therefore agpsc.
(b) Let a, b, c,d € R such that agyb and cpod. We have to prove that
aheb’, (aNc)pa(bAd), (aVc)pe(bV d) and acpqbd.
Since ag9b and cgod there exist j,k € R such that aV j = bV
7, 7p610 and j 0,0 for every p € B and ¢V k =dV k, kpt,0 and
kp6,0 for every p € B.
(i) We have a™V j'= (aV j)'= (bV j7)"=b"V j and jp#0 and
7P = jpth0 so a'pab”
(ii) We have (aAc)V[(jAC)V(aNk)V(FAK)] = (aVI)A(cVE) =
bVIHAN@VE)=OBAVI]GAd)V(bBANE)V(jAE)]. Let
m = (jAc)V(aAk)V(jAKk)and n = (jAD)V (bAK)V (FAE).
Som = (JA)V(aANK)V (JAE)and n"= (AN d) V
(O"ANEK)V (57N K). Since (a Ac)Vm = (bAd)Vn then
(anc)V(mVn)=(bAd)V(mVn).
Since for every p € B, (jAc)p < jp, (ank)p < kp, (jAk)p <
ip, G Ad)p < jp, (b A Kk)p < kp, jpfi0 and kp6,0 then
(7 A e)pb10, (a A k)pbr0, (j Ak)pdi0, (5 Ad)pbr0, (bA k)pb:0.
So mph10 and npb;0, and therefore (m Vv n)pd0.
Since for every p € B, (j7A)p < 7, (&N K)p < kP,
AR <jp, "Ad)p < jp, O°AK)p < kD, jp010 and
k010 then (5°Ac)ph10, (aAK)pO10, (77AK)pb10, (jAd)pbh;0,
(0" A kE)pb0. So mpbhi0 and nph,0, and so (m V n)p =
(m”V n")pb0.
Therefore (a A ¢)pa(b A d).
(iii) We have (aVe)V (jVEk)=(bVvd)V(jVE).
Since jp6:0, kp6,0 then jp V kpb0, i.e., (5 V k)pb:0.
Since 7610, kph10 then jp V kpbi0, i.e., (77V k)pb0. So
(7 V k)pb,0. Therefore (a V c)po(bV d).



10 S. MARQUES PINTO AND M.T. OLIVEIRA-MARTINS

(iv) We have acV (ak V jd) = (acV ak) V jd = a(cV k) V jd =
a(dVEk)Vjid= (adVak)Vjd= (aVj)dVak = (bVj)dVak =
bdV (jdVak). Let | = akVjd. Sol”’= (ak)V(jd)"= kaVdy"
Since kp6:0 and jpb.0 for every p € B then akp6;0 and
Jdpth0 for every p € B. So (akpVjdp)0,0, i.e., (akVjd)pb;0,
i.e., [pf0. Since kpbh0 and jpb0 for every p € B then
kaph,0 and d7pb,0 for every p € B. So (kapV d7jp)6h0,
ie., (ka’Vv dj)pbi0, ie., pb0.

Therefore acg-bd.

(c) Let pbiq and agpob. We have to prove that apfbq.

Since a@yb then there exists j € R such that aV j =0V j, jp6:0
and jp6:0 for every p € B.

So (aV j)p=(bV j)p, ie., apV jp = 0bpV jp. Since jph;0 then
(apV jp)01(0V ap) and (bp V jp)B1(0V bp), i.e., (apV jp)hap and
(bp V jp)6hbp. So aphibp. Since phi1q and 6, is pro-modular then
bp61bq. Therefore apb bg.

(d) Now we have to prove that ¢ is the smallest modular congru-
ence having #; as Boolean part, i.e., if § = (61,65) is a modular
congruence on M, then 6 C ¢.

Let a,b € R and a#fb. Since # is a modular congruence on M
we have a’0b" and aBb” So (a’ A b)fy0 and (a A b')650 and then
[(a' Ab)V (a AV)]O20. Therefore (a @ b)bro and (a ® b)pb;0.
We also have (a” Ab)B20 and (a"Ab” )20 and then [(a” AD)V (a”A
b”")]0s0. Therefore (a”® b”)b50, i.e., (a & b)Yr0 and (a & b) pb,0.
Since a V (a@® b) = bV (a ® b) then apsb.

|

Definition 3.16. Let #; be a pro-modular congruence on a Boolean module
M= (B,R,:) and let ¢ = (¢1, ¢2) be defined by
¢1 = b1
¢2 = {(a,b) € R x R: there exists j € R such that aVj =bV j, jpb;0
and jpb,0 for every p € B}.
The relation ¢ is called the determining congruence of any 6 € CongD having
61 as Boolean part (or simply a determining congruence).

Next example illustrates Proposition 3.15.

Example 3.17. Let M = (B, R, :) be the proper Boolean module where B =
{0.{p}.{a}. {p.a}}, R = {A,a,b,c}, A is the empty relation, a = {(p,p)},
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b={(q,q)} and ¢ = {(p,p), (¢,q)}. Let 6; be the Boolean congruence with
congruence classes [0y, = {0,{p}} and [{p,q}t]s, = {{q},{p. q}}, ie.,

01 ={(0,0), {p}, {r}). {a}.{a}). {p. ¢}, {p. 4}), (0, {p}), ({r}.9), {a}, {p, q}),

({p. q},{q})}-
We have

AND=AD=10 a’®)=ad =0

AN{p} =Ap} =10 a{p} = a{p} = {p}
Mgy =Mqt =10 a{q} = a{q} =10
Ap,q} = Mp,q} =0 a{p,q} = a{p,q} = {p}

b0 = b = ) ch=ch=10

b'{p} = b{p} =10 c{p} = c{p} = {p}

b{q} = b{q} = {q} c{q} = clq} = {q}

b {p,q} = b{p, ¢} = {9} c{p,q} =c{p. ¢} =1{p, ¢}

So (01, Ag) is a modular congruence on M and then is the smallest (mo-
dular) congruence on M having 6; as Boolean part.

The greatest modular congruence on M having #; as Boolean part is
(01, ¢2) for ¢o = {(f,g9) € R X R : there exists j € R such that fV j =
gV 7, js010 and js6,0 for every s € B}.

So A and a are the only elements j of R such that 7560 and js6;( for every
s € B. Trivially we have sVA = sVA for every s € R, AVa = aVa, bVa = cVa
and for every j € {A,a} wehave AVj #bVj, AVj#cVj,aVj#bVjand
aVj#cVyj. So¢gs={(AAN),(a,a),(bb),(cc), (A a),(a,N),(b,c),(cb)}.

4. The lattice IdeM of modular ideals

Usually, the notion of ideal in a given class of algebras is established so
that the zero-classes of congruence relations are easily seen to be ideals.

Definition 4.1. A (modular) ideal on a Boolean module M = (B, R,:) is a
pair I = (I3, I5) satisfying the following conditions

(1) I; is a Boolean ideal on B;
(2) If pe I, and a € R then ap € I3;
(3) (a) I is a Boolean ideal on R;
(b) If a € I5,c € R then ac,ca,a” € Iy;
(4) If a € I, and p € B, then ap € I;.

Such a subset I of R satisfying condition (3) is called an ideal of R.
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We denote by IdeM the set of all ideals on a Boolean module M = (B, R, :).
We intend to insert a lattice structure into Ide M. To do so we need to define,
for arbitrary modular ideals [ and J, I Ay J and I Vg J. It is immediate
to put I Ay J = (11N J1, I, N Jy). Once again the disjunction requires some
attention. We denote by (X)4 the ideal generated by a subset X of any
(homogeneous or heterogeneous) algebra A, i.e., the intersection of all ideals
I on A containing X,

(X)a4=n{l:1ideal on A and X C I}.

Proposition 4.2. Let M = (B,R,:) a Boolean module, I = (I1,15) and
J = (J1, J2) be elements of IdeM. We have
(LuJy)yg={p€ B:p<p1Vpa, for somep; € [} UJy,i=12}
(I,UJy)yr ={a€ R:a<ayVay, forsomea; € LU Jy1=1,2}.

Proof: We only have to prove the second identity since the first is a well
known Boolean algebras result [4]. We want to show that, for X = {a € R:
a < ayV as, for some a; € LU Jy,i = 1,2}, we have

(i) X is an ideal of R;

(ii) LU J, C X;

(iii) if YV is an ideal of R and I, U Jo C Y, then X C Y.
A well known Boolean algebras result states that X is a Boolean ideal on R.
Now, let a € X, b € R. Then a < a; V as, for some a; € I, U Jy, i = 1,2. So
ca < cay V cas, ac < ajcV asc and a” < ay” V as. Since for i = 1,2, ca;, a;c
and a;” are elements of I, U Jo, we get ca,ac and a”in (Io U Jo)g. Therefore
X is an ideal of R. It is straightforward that Ib U o, C X. Let a € X and
Y be an ideal of R such that Io U Jy; C Y. Then a < a; V asy, for some
a; € LbUuJy, CY 1 =1,2. But Y is an ideal of R and a; € Y for 7+ = 1,2 so
a1V ags € Y. Therefore a < a; Vas € Y. Since Y is an ideal of R we get
acY. u

For M = (B,R,:) Boolean module, I C B and J C R we write JI to
represent the set JI = {ap:a € J and p € [}.

Proposition 4.3. Let M = (B,R,:) be a Boolean module, I = (I, I5) and
J = (J1, Jo) elements of IdeM. We have

R({(I; U Ji)) C (11 U J1)5,
(<IQ U J2>’R)B C <[1 U J1>B'

Proof: Analogous to proposition on dynamic algebra [8]. |
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Therefore the structure ZdeM = (IdeM, Ay, Vo) where, for every I =
(I1, 1), J = (J1, J2) € IdeM, the operations are defined by

IAmd = INJ = NJ, LN
IVpmJ = TUDwm = (T U J)g, (I U J)r)

is a lattice, called the lattice of ideals of M.

Similarly to the congruences case, on a Boolean module M = (B,R,:),
Boolean ideals on B can exist that are not the Boolean part of any modular
ideal on M. In fact, let U = {p, ¢} and M the full Boolean module over U.
The set Iy = {0,{p}} is a Boolean ideal on B(U) but, since for a € R(U)
given by a = {(¢,p)} we have a : {p} = {q} & L, the pair ([, 5) is not a
modular ideal on M, for any subset I of R (by 2 of Definition 4.1). Thus
we are led to establish the following definition.

Definition 4.4. Let M = (B,R,:) be a Boolean module. A Boolean ideal
I, on B is called pro-modular on M if there exists an ideal I, of R such that
(I1, I5) is a modular ideal on M.

Proposition 4.5. Let M = (B,R,:) be a Boolean module and let Iy be a
Boolean ideal on B. The ideal Iy is a pro-modular ideal on M if and only if
(11, {0}) is a modular ideal on M.

Proposition 4.6. Let 11 be a pro-modular ideal on a Boolean module M =
(B,R,:). Then
(1) (I1,{0}) is the smallest modular ideal having Iy as Boolean part;
(2) F = (I1,{a : ap,ap € I for every p € B}) is the greatest modular
tdeal having I; as Boolean part.

Proof: (1) It is trivial that (I;, {o}) is the smallest modular ideal having
I; as Boolean part.
(2) Let F' = (I, F3) with Fy = {a : ap,ap € I; for every p € B}.
(a) I is a Boolean ideal on B;
(b) Since I; is pro-modular ideal, for p € [; and a € R we have
ap € I;

(¢) (i) Since 0 € F, (op = op = 0 for every p € B), Fy # ().
Let a,b € F5 and d € R such that d < a. So ap,ap,bp,bp €
I, for every p € B. But
(aVb)p = apVbp € I1 and (aVb)p = (aVb)p = apVbp € I,
soaVbeF;.
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For every p € B we have dp < ap € I, so dp € I, and
dp <ap € I, so dp € I, and therefore d € F5.
So F5 is a Boolean ideal on R;

(ii) Let a € Fy and ¢ € R. So ap,ap € I for every p € B.

Then

(ac)p = a(ep) € I and (ac)p = (ca)p = clap) € I, so
ac € F».

(ca)p = c(ap) € I and (ca)p = (a€)p = alcp) € I, so
ca € F5.

ap € lyand a” p=ap € I, s0 a € Fs.
(d) By definition of Fy, if a € Fy and p € B, then ap € I;. Therefore,
(I1, Fy) is a modular ideal on M.

Let I = (I1,13) be an arbitrary modular ideal on M and a € I,.
Then a” € I, and ap € I; for every p € B. We also have ap € I; for
every p € B establishing the conditions required to a € F5,. Therefore,
(I1, F) is the greatest modular ideal on M having I; as Boolean part.

|

Definition 4.7. Let I; be a pro-modular ideal on a Boolean module M =
(B,R,:) and let F' = (Fy, F») be defined by

Fr=1

Fy ={a: ap,ap € I for every p € B}.

We say that F' is the determining ideal of any I € IdeM having I; as
Boolean part (or simply, a determining ideal).

Next example illustrates Proposition 4.6.

Example 4.8. Let M = (B, R,:) be the Boolean module defined in Example
3.17, i.e., B ={0,{p}, {q}, {p,q}}, R ={A, a,b,c}, A is the empty relation,
a={(p,p)}, b={(¢;9)} and c = {(p,p), (¢,9)}. Let I, be the Boolean ideal

L ={0,{p}}.
We have

ANDP=AD=10 aD=ad =0
A{p}=Mp} =10 a’{p} = a{p} = {p}
A{q} =Mq} =0 a{q} =a{q} =0
Ap,q} = Mp,q} =0 a{p,q} = a{p,q} = {p}



CONGRUENCES AND IDEALS ON BOOLEAN MODULES 15

b0 = bd = () ch=ch="0
b{p} = b{p} =0 c{p} = c{p} = {p}
b{q} = b{a} ={q} cHay = da} = {4}
0Ap,a} = b{p,ay ={a} cAp. ¢} =p,q} ={p, ¢}
So (I1,{A}) is a modular ideal on M and thus is the smallest ideal on M
having I; as Boolean part.
The greatest modular ideal on M having [; as Boolean part is (1, F»)
with Fo = {f € R: fs, f's € I; for every s € B} and A and a are the only
elements j of R such that js,js € I for every s € B. Therefore Fr = {A,a}.

5. Modular Congruences and Modular Ideals

The main purpose of this paragraph is to establish that the class of Boolean
module is ideal determined [5], i.e., that each modular ideal is the zero-class
of a unique modular congruence.

Definition 5.1. If § = (64, 02) € CongM where M = (B, R,:) is a Boolean
module, we say that Z(0) = Z = (ZV,Z9) defined by

I{ = {p € B:p6,0} = [0],

7Y ={a € R: a0} = [0y,
is the kernel of the congruence 6.

Proposition 5.2. The kernel Z(0) of a congruence 6 on a Boolean module
M = (B,R,:) is an ideal on M.

Proof: (1) The fact that Z? is a Boolean ideal on B is a known Boolean
algebras result.

(2) We have to prove that if p € Z¢ and a € R then ap € Z{. In fact, if
a € Rand p € Z¢, then p0,0 and afa. Therefore (ap)0;(a0), i.e.,
(ap) 6,0. So ap € IV.

(3) (a) The fact that Z¥ is a Boolean ideal on R is again a known Boolean

algebras result.

(b) We have to prove that, if a € 7§ and ¢ € R, then ac,ca,a” €
7Y. In fact, since a € ZY then afho, and therefore, since cfsc
then (ac) 02(oc) and (ca) O2(co), i.e., (ac) f20 and (ca) 030. To this
extend ac and ca are elements of Ig . Since a0 and 6, is a
congruence on R then a’0»07 so a 6,0, and therefore a” € Z9.

(4) Let a € Z§ and p € B. Then a 650 and p6;p, and therefore (ap) 6;0p,
i.e., (ap)6,0. Immediately ap € Z?.

m
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Definition 5.3. The kernel of a Boolean modular homomorphism A =
(h1,ha) : M — M’ between Boolean modules is the pair ({p € B : hi(p) =
0},{a € R: hy(a) = o}).

Proposition 5.4. The kernel of a Boolean modular homomorphism
h: M — M between Boolean modules is a modular ideal on M.

Proof: Trivial. |

Definition 5.5. If I = ([, ;) is a modular ideal on a Boolean module
M = (B,R,:), we define C(I) = C! = (C{,C]) by

pClqif and only if p Vi = ¢ Vi for some i € I,

aClbif and only if a V j = bV j for some j € I,
for p,q € B and a,b € R.

Proposition 5.6. If [ = (I1,15) is a modular ideal on a Boolean module
M = (B,R,:), then C(I) is a modular congruence on M.

Proof: (i) The relation C{ is a congruence relation on B, a known result in
Boolean algebras.

(ii) The relation C{ is a Boolean congruence relation on R, a known result
in Boolean algebras. To prove that the relation CI is a congruence relation on
R we have to prove that, for a,b,c,d € R, if aCib and cCld then (ac) Ci(bd)
and (a) C{(b). Let us admit that a C{b and ¢Cid. Then there exist j, k in I
such that aVj=bVjand cVEk=dV k. Now

(a) From ¢Vk=dV k we get a(cV k) =a(dVk),ie., acVak =adV ak.
Hence ac V (ak V jd) = a(cV k) V jd = a(dV k) V jd = (ad V ak) V jd =
(aV i )dVak = (bV j)dVak = bdV (jdV ak). Since jd V ak € I, we get
(ac)CL(bd).

(b) We have a™Vj = (aVj) = (bVj) = bV ;" Since j € I then (a) CI(b).

(iii) Now we have to prove that, for a,b € R and p,q € B, if aCib and pClq
then (ap) C(bq). Since pCfq and aClb, then pVi = qVi for some i € I; and
aVj=">bVj for some j € [, (and therefore aq V jq = bq V jq). But from
pVi=qViwe get apVai = aqVai and moreover apVaiVjq = aqVaiVjq. So
apV (aiVjq) = (apVai)Vjq = (aqVai)Vjq= (aqV jq)Vai = (bgVjq)Vai =
bq V (ai V jq). Since ai V jq € I; then (ap) Ci(bq). u

Definition 5.7. For I a modular ideal on a Boolean module, we say that
C(I) is the congruence induced by I.

Proposition 5.8. If I = (I}, 15) is a modular ideal on a Boolean module,
then Z(C(I)) = 1.
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Proof: Similar to Boolean algebras. |

Proposition 5.9. On a Boolean module a modular ideal s a determining
ideal if and only if it is the kernel of a determining congruence.

Proof: Let I = (I1,I5) be a modular ideal on a Boolean module M =
(B,R,:). By Prop.5.8 there exists a modular congruence # such that I =
Z(0). Let ¢ be the determining congruence of . We have ¢; = 0; and ¢9 =
{(a,b) € Rx R : there exists j € R such that aVj=0bVj, jpd0 and jpbh;0
for every p € B}. So, IV = I = I, and ZJ = {a : agyo}. Then, we have to
prove that {a : apo0} = {a : ap,a’p € I for every p € B}.

Let a1 € {a : ago0}. There exists j € R such that a; Vj = oV j, jp6;0
and jp6:0 for every p € B. Since a1 Vj =0V j = j then a;pV jp = jp and
a1 Vj =7soarpVip=jp. Butaip <aipVyp = jpbi0 so a;ph0. Similarly,
we have a1p < a;pV jp = jpb10 so a1 pbr0 and then ai;p,a1p € [0, = .

Let a; € {a : ap,ap € I for every p € B}. We have to prove that a;@-0,
i.e., there exists 7 € R such that a;Vj = 3, jp810 and ;36,0 for every p € B.
Since aip,a;p € I for every p € B and I} = [0]p, then aypd,0 and a;pb,0.
Since a1 V a1 = a; putting j = a; we have the required. [

Proposition 5.10. If0 = (01, 65) is a congruence on a Boolean module, then

C(Z(9))=19.
Proof: As in Boolean algebras. |

Proposition 5.11. On a Boolean module a modular congruence is a deter-
mining congruence if and only if is the congruence induced by a determining
vdeal.

Proof: 1f ¢ is a determining congruence on a Boolean module, Proposition
5.9 asserts that Z(¢) = F for some determining ideal F'. So C(Z(¢)) = C(F).
But Proposition 5.10 infers that ¢ = C(F).

If F'is a determining ideal on a Boolean module, using Proposition 5.9 we
have Z(¢) = F for some determining congruence ¢. So C(Z(¢)) = C(F). By
Proposition 5.10 we have ¢ = C(F) as required. |

Theorem 5.12. The pair of maps C : IdeM — CongM (that for each
I € IdeM assigns the congruence C(I1)) and T : CongM — IdeM (that

for each 6§ € CongM assigns the ideal Z(0)) defines an isomorphism between
the lattices IdeM and CongM.
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Proof: As in Boolean algebras. |

We infer that the class of the Boolean module is ideal determined, i.e.,
each ideal is the zero-class of a unique congruence. We can easily affirm that
the modular ideal F' defined on Proposition 4.6 is the kernel of the modular
congruence ¢ presented on Proposition 3.15. Conversely, the congruence ¢
defined on Proposition 3.15 is the congruence induced by the modular ideal
F' constructed on Proposition 4.6, i.e., either Proposition 4.6 and Proposition
3.15 can now be stated as corollaries of each other using Theorem 5.12.
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