
Pré-Publicações do Departamento de Matemática
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Abstract: For a Peirce algebra P, lattices CongP of all heterogenous Peirce con-
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kernel of a Peirce congruence and the congruence induced by a Peirce ideal are in-
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leads us to conclude that the class of the Peirce algebras is ideal determined. Oppo-
sed to Boolean modules case, each part of a Peirce ideal I = (I1, I2) determines the
other one. A similar result is valid to Peirce congruences. A characterization of
the simple Peirce algebras is presented coinciding to that given by Brink, Britz and
Schmidt in a homogeneous approach.
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1. Introduction
Boolean modules were defined and studied by Brink in [1]. A Boolean

module is a two-sorted algebra M = (B,R, :) of a Boolean algebra B and a
relation algebra R (Tarski [9] and Chin and Tarski [3]) that are combined by
an operator : (the Peircean operator) a map R × B → B taking a relation
algebra element and a Boolean algebra element and returning a Boolean
algebra element.
A Peirce algebra P = (B,R, :,c ) is a Boolean module (B,R, :) with an

additional operator c (the right cylindrification) a map B → R that creates
a relation algebra element from a Boolean algebra element. There is a close
relationship between the class of relation algebras and the class of Peirce
algebras since every relation algebra gives rise to a Peirce algebra. In [2],
Brink, Britz and Schmidt defined a simple Peirce algebra as a Peirce algebra
whose underlying Boolean module is simple. There they claim that this
definition is equivalent to requiring that the underlying relation algebra is
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simple. But a homogeneous approach was taken on the characterization of a
simple Boolean module. A heterogeneous approach will be taken throughout
our work: in the study of the lattices of heterogeneous Peirce congruences
and of heterogeneous Peirce ideals and in the classification of the simple
Peirce algebras.

2. Preliminaries
Peirce algebras are closely related to Boolean modules. We present here

the required notions to establish the definition of a Peirce algebra.

Definition 2.1. A relation algebra is an algebra R = (R,∨,∧,′ , o, 1, ; ,̆ , e)
satisfying for each a, b, c ∈ R the following axioms
R1 (R,∨,∧,′ , o, 1) is a Boolean algebra
R2 a; (b; c) = (a; b); c
R3 a; e = a = e; a
R4 ă ˘= a
R5 (a ∨ b); c = a; c ∨ b; c
R6 (a ∨ b)̆ = ă ∨ b̆
R7 (a; b)̆ = b̆ ; ă
R8 ă ; (a; b)′ ≤ b′

Notation. For a, b ∈ R we also write ab instead of a; b.
As usual, for every elements p, q on a Boolean algebra B we define p⊕ q =

(p ∧ q′) ∨ (p′ ∧ q). In particular, for every elements a, b on a relation algebra
R we define a⊕ b = (a ∧ b′) ∨ (a′ ∧ b).

The standard class of models of relation algebras is the class of proper
relation algebras.

Definition 2.2. A proper relation algebra over a non-empty set U is a set of
binary relations on U that contains the identity relation and is closed with
respect to union, intersection, complementation, relational composition and
converse. If a proper relation algebra consists of all binary relations defined
on U , then this algebra is called the full relation algebra and is denoted by
R(U). More precisely, R(U) is the power set algebra over U 2 endowed with
composition (“; ”), converse (“˘”) and identity (“Id”) operations defined, for
a, b ⊆ U 2, by
a; b = {(s, t) : exists u ∈ U such that (s, u) ∈ a and (u, t) ∈ b}
ă = {(s, t) : (t, s) ∈ a}
Id = {(s, s) : s ∈ U}.
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Definition 2.3. An element a of a relation algebra is a right ideal element
if and only if a; 1 = a.

The arithmetic of relation algebras can be described by the facts assembled
on the following theorem.

Theorem 2.4. On any relation algebraR the following hold for any a, b, c, d ∈
R
R9 ĕ = e, ŏ = o, 1̆ = 1
R10 a ≤ b if and only if ă ≤ b̆
R11 (a ∧ b)̆ = ă ∧ b̆ , a′˘= ă

′

R12 a; o = o = o; a, 1; 1 = 1
R13 a(b ∨ c) = ab ∨ ac
R14 If a ≤ b then ca ≤ cb and ac ≤ bc.
R15 (ab)∧c = o if and only if (ă c)∧b = o if and only if (cb̆ )∧a = o
R16 (ab) ∧ (cd) ≤ a[(ă c) ∧ (bd̆ )]d
R17 If b is a right ideal element then a ∧ b = (b ∧ e)a.
R18 (a⊕ b)̆ = ă ⊕ b̆

Proof : R9-R16, R17 and R18 are proved in [3], [2] and [6], respectively.

Associated to a relation algebraR Brink introduced the notion of a Boolean
R-module B as a homogeneous algebra, a Boolean algebra B where each
element of R define an action on B. The roles of B and R as universes of a
single two-sorted algebra are taken evenly on the next notion.

Definition 2.5. A Boolean module is a two-sorted algebra M = (B,R, :)
where B is a Boolean algebra, R is a relation algebra and : is a mapping
R × B −→ B (written a : p) such that for any a, b ∈ R and p, q ∈ B the
following assertions are satisfied.
M1 a : (p ∨ q) = a : p ∨ a : q
M2 (a ∨ b) : p = a : p ∨ b : p
M3 a : (b : p) = (a; b) : p
M4 e : p = p
M5 o : p = 0
M6 ă : (a : p)′ ≤ p′

Notation. For a, b ∈ R and p ∈ B we also use ap to represent a : p.
The standard models of Boolean modules are the proper Boolean modules.

Definition 2.6. A proper Boolean module is a two-sorted algebra of a proper
Boolean algebra (a field of sets) and a proper relation algebra together with
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Peirce product defined on sets and relations. For any relation a over some
non-empty set U and any subset p of U , the Peirce product : of a and p is
defined by

a : p = {s ∈ U : there exists t ∈ p such that (s, t) ∈ a}.

A full Boolean module M(U) over a non-empty set U is the Boolean module
(B(U),R(U), :), where B(U) is the power set algebra over U , R(U) is the full
relation algebra over U , and : is the Peirce product defined set-theoretically.

On a Boolean module M = (B,R, :) a part of B, the set of all ideal
elements, will take a fundamental role later on.

Definition 2.7. Let M = (B,R, :) be a Boolean module. An ideal element
in M is a p ∈ B satisfying 1p = p.

Some facts satisfied on Boolean modules deserve mention.

Theorem 2.8. On any Boolean module M = (B,R, :) the following hold for
any a, b ∈ R and p, q ∈ B
M7 If p ≤ q then ap ≤ aq.
M8 If a ≤ b then ap ≤ bp.
M9 a(p ∧ q) ≤ (ap ∧ aq)
M10 (a ∧ b)p ≤ (ap ∧ bp)
M11 ap ∧ q = 0 if and only if ă q ∧ p = 0
M12 If

∑
i∈I pi exists, then so does

∑
i∈I api, and a

∑
i∈I pi =

∑
i∈I api.

M13 a0 = 0
M14 1 : 1 = 1
M15 (a1)′ ≤ a′1
M16 ap ∧ q ≤ a(p ∧ ă q)
M17 p ≤ 1p
M18 If p is an ideal element so is p′.
M19 If p and q are ideal elements so is p ∨ q.
M20 1p is an ideal element.
M21 If p is an ideal element, then aq ∧ p = a(q ∧ p).
M22 If p is an ideal element, then ap = a1 ∧ p.

Proof : Proved in [1].
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3. Peirce algebras
A Peirce algebra P = (B,R, :,c ) is a Boolean module (B,R, :) with an

additional operator c (the right cylindrification) a map B → R that creates
a relation algebra element from each Boolean algebra element.

Definition 3.1. Let B = (B,∨,∧,′ , 0, 1) be a Boolean algebra and R =
(R,∨,∧,′ , o, 1, ; ,̆ , e) be a relation algebra. A Peirce algebra is a two-sorted
algebra P = (B,R, :,c ) where (B,R, :) is a Boolean module and c : B → R
is a mapping such that for every p ∈ B and a ∈ R
P1 pc : 1 = p
P2 (a : 1)c = a; 1.

The standard models of Peirce algebras are provided by the class of proper
Peirce algebras.

Definition 3.2. A proper Peirce algebra is an algebra (B,R, :,c ) in which
(B,R, :) is a proper Boolean module and c is the cylindrification operation
on sets, defined by pc = p× V , for V the universal set of B and p any subset
of V .
The full Peirce algebra P(U) = (B(U),R(U), :,c ) over some non-empty

set U is the full Boolean module (B(U),R(U), :) closed with respect to set-
theoretical cylindrification c. Here pc = p× U = {(s, t) ∈ U × U : s ∈ p} for
p any subset of U .

Example 3.3. The following example can be found on [2]. We can cons-
truct a Peirce algebra P = (B,R, :,c ) through a relation algebra R =
(R,∨,∧,′ , o, 1, ; , ,̆ e). In fact, if B is the Boolean algebra of right ideal
elements of R, : is ; on R and c is de map B → R defined by pc = p, then P
is a Peirce algebra.

Later on, a subclass of Peirce algebras will be quite useful.

Definition 3.4. A Peirce algebra P = (B,R, :,c ) is bijective if and only if,
for all a, b ∈ R we have a = b whenever ap = bp for all p ∈ B.

Theorem 3.5. On any Peirce algebra (B,R, :,c ) the following hold for each
p, q ∈ B and a, b ∈ R
P3 pc is a right ideal element.
P4 0c = o, 1c = 1
P5 (p ∨ q)c = pc ∨ qc
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P6 p′c = pc
′

P7 (p ∧ q)c = pc ∧ qc

P8 p = q if and only if pc = qc

P9 p ≤ q if and only if pc ≤ qc

P10 (a; pc) : 1 = a : p
P11 (a : p)c = a; pc

P12 a : p = q if and only if a; pc = qc

P13 a : 1 = 0 if and only if a = o
P14 a ∧ pc = (pc ∧ e); a, pc = (pc ∧ e); 1
P15 a ∧ pc˘= a; (pc ∧ e), pc˘= 1; (pc ∧ e)
P16 (pc ∧ e) : q = p ∧ q, (pc ∧ e) : 1 = p
P17 (a ∧ pc )̆ : 1 = a : p
P18 (a ∧ pc )̆ : q = a : (p ∧ q)
P19 (p⊕ q)c = pc ⊕ qc.

Proof : P3-P18 are proved in [2]. To prove P19 we use P5, P6 and P7. Thus
(p⊕ q)c = [(p ∧ q′) ∨ (p′ ∧ q)]c = (p ∧ q′)c ∨ (p′ ∧ q)c = (pc ∧ q′c) ∨ (p′c ∧ qc) =
(pc ∧ qc

′
) ∨ (pc

′ ∧ qc) = pc ⊕ qc.

In [6] we proved that, for R = {o} any Boolean module M = (B,R, :) is
the degenerate Boolean module. The same proof can be used to validate a
similar result for Peirce algebras. Next we present a specific proof to this
class of algebras.

Proposition 3.6. In P = (B,R, :,c ) a Peirce algebra, if R = {o}, then P is
the degenerate Peirce algebra P = ({0}, {o}, :,c ).

Proof : For any p ∈ B we have pc ∈ R and then pc = o. Since 0c = o then
pc = 0c. By P8 we obtain p = 0.

4. The lattice CongP
The lattice of congruences on a given general structure plays a central role

both on lattice theory and in the theory of the structure under consideration.

Definition 4.1. Let P = (B,R, :,c ) be a Peirce algebra. The pair θ = (θ1, θ2)
is a (Peirce) congruence relation on P if θ is a modular congruence on the
Boolean module reduct of P and moreover pcθ2q

c whenever pθ1q, i.e., if θ1
is a congruence relation on B, θ2 is a congruence relation on R, ap θ1 bq
whenever (p θ1 q and a θ2 b) and pcθ2q

c whenever pθ1q.
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Let us denote by CongP the set of all Peirce congruences defined on a
Peirce algebra P .
The set CongP is partially ordered by (θ1, θ2) ≤ (γ1, γ2) if and only if

θ1 ⊆ γ1 and θ2 ⊆ γ2. Our next aim is to define the lattice structure
(CongP ,∧P ,∨P). Since the intersection θ ∩ γ = (θ1 ∩ γ1, θ2 ∩ γ2) of any
two Peirce congruences θ and γ defined on P is, itself, a Peirce congruence
on P, let θ∧P γ = θ∩γ. Let us use ⟨θ⟩A to represent the congruence relation
generated by the binary relation θ on any (homogeneous or heterogeneous)
algebra A, i.e., the intersection of all congruence relations θ

′
on A containing

θ,
⟨θ⟩A = ∩{θ′

: θ
′ ∈ CongA and θ ⊆ θ

′}.
Now we need to define θ ∨P γ = (τ1, τ2).
Attending to results valid on Boolean modules [6] (τ1, τ2) defined by

τ1 = θ1 ∨B γ1 = ⟨θ1 ∪ γ1⟩B
τ2 = θ2 ∨R γ2 = ⟨θ2 ∪ γ2⟩R

is a modular congruence on the Boolean module reduct of P and then (τ1, τ2)
will define a Peirce congruence if and only if for every θ, γ ∈ CongP , if
(p, q) ∈ ⟨θ1 ∪ γ1⟩B, then (pc, qc) ∈ ⟨θ2 ∪ γ2⟩R. In fact we have

Proposition 4.2. Let P be a Peirce algebra. For θ = (θ1, θ2), γ = (γ1, γ2)
Peirce congruences on a Peirce algebra P, if (p, q) ∈ ⟨θ1∪γ1⟩B, then (pc, qc) ∈
⟨θ2 ∪ γ2⟩R.

Proof : Let (p, q) ∈ ⟨θ1 ∪ γ1⟩B. By [4], we know that there exists a natural
number n, a sequence p1, p2, p3, · · · , pn of elements in B such that

pθ1p2, p2γ1p3, · · · , pn−1γ1q.

Since θ and γ are Peirce congruences, then

pcθ2p
c
2, p

c
2γ2p

c
3, · · · , pcn−1γ2q

c.

Since pci ∈ R for i = 2, · · · , n− 1 we have (pc, qc) ∈ ⟨θ2 ∪ γ2⟩R.
The structure (CongP ,∧P ,∨P) where, for every θ, γ ∈ CongP the opera-

tions are defined by

θ ∧P γ = θ ∩ γ = (θ1 ∩ γ1, θ2 ∩ γ2)

θ ∨P γ = ⟨θ ∪ γ⟩P = (⟨θ1 ∪ γ1⟩B, ⟨θ2 ∪ γ2⟩R)
is a lattice called the congruence lattice CongP of P .
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5. The lattice IdeP
Usually ideals and congruences are closely related, in the sense that the

zero-class of any congruence is an ideal. Here we present the notion of Peirce
ideals that, later on, will enable us to confirm that such a relationship exists
for Peirce algebras.

Definition 5.1. A (Peirce) ideal on a Peirce algebra P = (B,R, :,c ) is a
pair I = (I1, I2) satisfying the following conditions

(1) I1 is a Boolean ideal on B;
(2) If p ∈ I1 and a ∈ R then pc ∈ I2 and ap ∈ I1;
(3) (a) I2 is a Boolean ideal on R;

(b) If a ∈ I2, c ∈ R then ac, ca, a˘∈ I2;
(4) If a ∈ I2 and p ∈ B then ap ∈ I1.

Such a subset I2 of R satisfying condition (3) is called an ideal of R.

We note that the pair I = (I1, I2) is a Peirce ideal on a Peirce algebra
P = (B,R, :,c ) if it is a modular ideal [6] on the Boolean module reduct of
P and if pc ∈ I2 whenever p ∈ I1.
We denote by IdeP the set of all ideals on a Peirce algebra P = (B,R, :,c ).

We intend to insert a lattice structure into IdeP . To do so we need to define,
for arbitrary Peirce ideals I and J , I ∧P J and I ∨P J . It is immediate to
put I ∧P J = (I1 ∩ J1, I2 ∩ J2).
We denote by ⟨X⟩A the ideal generated by a subset X of any (homoge-

neous or heterogeneous) algebra A, i.e., the intersection of all ideals I on A
containing X,

⟨X⟩A = ∩{I : I ideal on A and X ⊆ I}.
In [6] we saw that for I = (I1, I2) and J = (J1, J2) elements of IdeM, with

M = (B,R, :) a Boolean module reduct of P = (B,R, :,c ) we have
⟨I1 ∪ J1⟩B = {p ∈ B : p ≤ p1 ∨ p2, for some pi ∈ I1 ∪ J1, i = 1, 2}
⟨I2 ∪ J2⟩R = {a ∈ R : a ≤ a1 ∨ a2, for some ai ∈ I2 ∪ J2, i = 1, 2}
Since for I, J ∈ IdeP we have I ∨P J = ⟨I ∪ J⟩P = (⟨I1 ∪ J1⟩B, ⟨I2 ∪ J2⟩R)

on the Boolean module reduct of P [6] we need to prove that if p ∈ ⟨I1∪J1⟩B
then pc ∈ ⟨I2 ∪ J2⟩R to infer that this definition is valid on P .

Proposition 5.2. For P = (B,R, :,c ) a Peirce algebra and I = (I1, I2)
and J = (J1, J2) Peirce ideals on P we have pc ∈ ⟨I2 ∪ J2⟩R whenever p ∈
⟨I1 ∪ J1⟩B.
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Proof : If p ∈ ⟨I1∪J1⟩B, then there exists p1, p2 ∈ I1∪J1 such that p ≤ p1∨p2.
Then pc ≤ pc1 ∨ pc2 with pc1, p

c
2 ∈ I2 ∪ J2 (since I and J are Peirce ideals on

P).

Therefore, the structure IdeP = (IdeP,∧P ,∨P) with, for every I =
(I1, I2), J = (J1, J2) ∈ IdeP , the operations defined by

I ∧P J = I ∩ J = (I1 ∩ J1, I2 ∩ J2)

I ∨P J = ⟨I ∪ J⟩P = (⟨I1 ∪ J1⟩B, ⟨I2 ∪ J2⟩R)
is a lattice called the lattice of ideals of P .

6. Peirce congruence versus Peirce ideals
The purpose of this paragraph is to establish the notions of kernel of a

congruence and of Peirce congruence induced by a Peirce ideal. That will
enable us to prove the existence of an isomorphism between the lattices
CongP and IdeP . This isomorphism will lead us to conclude that the class
of Peirce algebra is ideal determined [5], i.e., each ideal is the zero-class of a
unique Peirce congruence.

Definition 6.1. If θ = (θ1, θ2) ∈ CongP where P = (B,R, :,c ) is a Peirce
algebra we say that I(θ) = Iθ = (Iθ

1 , Iθ
2) defined by

Iθ
1 = {p ∈ B : p θ10} = [0]θ1

Iθ
2 = {a ∈ R : a θ2o} = [o]θ2

is the kernel of the congruence θ.

Proposition 6.2. The kernel I(θ) of a congruence θ on a Peirce algebra
P = (B,R, :,c ) is an ideal on P.

Proof : Since the kernel of a modular congruence θ is a modular ideal on the
Boolean module reduct of P [6] we only have to prove that if p ∈ Iθ

1 then
pc ∈ Iθ

2 . If p ∈ Iθ
1 , then pθ10. Since (θ1, θ2) is a Peirce congruence pcθ20

c,
i.e., pcθ2o. So pc ∈ Iθ

2 .

Definition 6.3. The kernel of a Peirce homomorphism h = (h1, h2) :
P −→ P ′ between Peirce algebras is the pair ({p ∈ B : h1(p) = 0},
{a ∈ R : h2(a) = o}).

Proposition 6.4. The kernel of a Peirce homomorphism h : P −→ P ′

between Peirce algebras is a modular ideal on P.

Proof : Trivial.
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Definition 6.5. If I = (I1, I2) is a Peirce ideal on a Peirce algebra P =
(B,R, :,c ) we define C(I) = CI = (CI

1 , CI
2) by

p CI
1q if and only if p ∨ i = q ∨ i for some i ∈ I1,

a CI
2b if and only if a ∨ j = b ∨ j for some j ∈ I2,

for p, q ∈ B and a, b ∈ R.

Proposition 6.6. If I = (I1, I2) is a Peirce ideal on a Peirce algebra P =
(B,R, :,c ), then C(I) is a Peirce congruence on P.

Proof : Since C(I) is a modular congruence on the Boolean module reduct of
P we only have to prove that if p CI

1q then pc CI
2q

c. If p CI
1q then there exists

i ∈ I1 such that p∨ i = q∨ i. So (p∨ i)c = (q∨ i)c, i.e., pc∨ ic = qc∨ ic. Since
i ∈ I1 then ic ∈ I2 and we have pc CI

2q
c.

Proposition 6.7. If I = (I1, I2) is an ideal on a Peirce algebra, then I(C(I)) =
I.

Proof : Similar to Boolean algebras.

Proposition 6.8. If θ = (θ1, θ2) is a congruence on a Peirce algebra, then
C(I(θ)) = θ.

Proof : Similar to Boolean algebras.

Theorem 6.9. The pair of maps C : IdeP −→ CongP (that for each
I ∈ IdeP assigns the congruence C(I)) and I : CongP −→ IdeP (that
for each θ ∈ CongP assigns the ideal I(θ)) defines an isomorphism between
the lattices IdeP and CongP.

Remark 6.10. Corresponding to any assertion valid for Peirce ideals there
exists a valid assertion for Peirce congruence and vice versa.

Remark 6.11. The Peirce algebra class is ideal determined.

7. Peirce ideal/congruence determined by one of its two
parts
As on Boolean modules [6], on a Peirce algebra P = (B,R, :,c ), Boolean

ideals on B can exist that are not the Boolean part of any Peirce ideal on
P . In fact, let U = {p, q} and P the full Peirce algebra over U . The set
I1 = {∅, {p}} is a Boolean ideal on B(U) but, since, for a ∈ R(U) given by
a = {(q, p)}, we have a : {p} = {q} ̸∈ I1, so the pair (I1, I2) is not a Peirce
ideal on P , for any subset I2 of R (by 2 of Definition 5.1).
This gives rise to the following definitions.
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Definition 7.1. Let P = (B,R, :,c ) be a Peirce algebra.

(1) A Boolean congruence θ1 on B is called pro-Peirce congruence on P
whenever there exists a congruence θ2 on R such that (θ1, θ2) is a
Peirce congruence on P .

(2) A Boolean ideal I1 on B is called pro-Peirce ideal on P if there exists
an ideal I2 of R such that (I1, I2) is a Peirce ideal on P .

Now we give a characterization of pro-Peirce ideals on a Peirce algebra.

Proposition 7.2. On a Peirce algebra P = (B,R, :,c ) a Boolean ideal I1
is a pro-Peirce ideal on P if and only if the pair (I1, {a ∈ R : ap, a p̆ ∈
I1 for every p ∈ B}) is a Peirce ideal on P.

Proof : It is trivial that if the pair (I1, {a ∈ R : ap, ă p ∈ I1 for every p ∈ B})
is a Peirce ideal on P , then the Boolean ideal I1 is a pro-Peirce ideal on P .
Now suppose that I1 is a pro-Peirce ideal on P and let F2 = {a : ap, a p̆ ∈

I1 for every p ∈ B}. In [6] we proved that (I1, F2) is a modular ideal on
the Boolean module reduct of P so we only have to prove that if for p ∈ I1
then pc ∈ F2. Since I1 is pro-Peirce ideal on P there exists a ideal I2 of R
such that (I1, I2) is a Peirce ideal on P and then for p ∈ I1 we have pc ∈ I2
and then pc˘∈ I2. Since (I1, I2) is a Peirce ideal then pcs, pc s̆ ∈ I1 for every
s ∈ B. Therefore pc ∈ F2.

Next example illustrates Proposition 7.2.

Example 7.3. Let R be the relation algebra with R = {Λ, a, b, c}, Λ the
empty relation, a = {(p, p)}, b = {(q, q)} and c = {(p, p), (q, q)} where the
operations are defined as in a full relation algebra. Let P = (B,R, :,c ) be
the Peirce algebra constructed through R as in Example 3.3. Since every
element of R is a right ideal element then B = {Λ, a, b, c}. Let I1 = {Λ, a}.
Since

Λ˘Λ = ΛΛ = Λ ă Λ = aΛ = Λ b̆ Λ = bΛ = Λ c̆ Λ = cΛ = Λ
Λ ă = Λa = Λ ă a = aa = a b̆ a = ba = Λ c̆ a = ca = a
Λ b̆ = Λb = Λ ă b = ab = Λ b̆ b = bb = b c̆ b = cb = b
Λ c̆ = Λc = Λ ă c = ac = a b̆ c = bc = b c̆ c = cc = c

then F2 = {d ∈ R : dp, d̆ p ∈ I1 for every p ∈ B} = {Λ, a} and so (I1, F2) is
a Peirce ideal on P and I1 is a pro-Peirce ideal.
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Corollary 7.4. On a Peirce algebra P = (B,R, :,c ) a Boolean congruence θ1
is a pro-Peirce congruence on P if and only if the pair (θ1, {(a, b) ∈ R×R :
there exists j ∈ R such that a∨j = b∨j, jpθ10 and j p̆θ10 for every p ∈ B}
is a Peirce congruence on P.

Proof : Let F = ([0]θ1, {a : ap, a p̆ ∈ [0]θ1 for every p ∈ B}). By Proposition
7.2 we know that [0]θ1 is a pro-Peirce ideal on P if and only if F is a Peirce
ideal on P . So it is sufficient to acknowledge that C(F ) = (θ1, {(a, b) ∈ R×R :
there exists j ∈ R such that a ∨ j = b ∨ j, jpθ10 and j p̆θ10 for every p ∈
B}).

In the theory of Boolean modules we recognized [6] the existence, under
assumed conditions, of several modular ideals (I1, I2) with the same Boolean
part I1. In particular, we were able to construct the smallest and the greatest
modular ideals with the same Boolean part. This does not happen for Peirce
algebras. In fact, we can establish the following result.

Proposition 7.5. For each pro-Peirce ideal I1 on a Peirce algebra P =
(B,R, :,c ) there exists a unique ideal I2 of R such that (I1, I2) is a Peirce
ideal on P.

Proof : Let I1 be a pro-Peirce ideal on P and suppose that (I1, I2) and (I1, F2)
are distinct Peirce ideals on P. If j ∈ I2, then jp ∈ I1 for every p ∈ B. In
particular, for p = 1 we have j1 ∈ I1. Since (I1, F2) is a Peirce ideal, then
(j1)c ∈ F2. But (j1)c = j; 1c = j; 1 and then j; 1 ∈ F2. Since e ≤ 1 we have
j; e ≤ j; 1, i.e., j ≤ j; 1 and so j ∈ F2.

Corollary 7.6. For each pro-Peirce congruence θ1 on a Peirce algebra P =
(B,R, :,c ) there exists a unique congruence θ2 on R such that (θ1, θ2) is a
Peirce congruence on P.

We have already seen that on a Peirce algebra P = (B,R, :,c ), Boolean
ideals on B can exist that are not the Boolean part of any Peirce ideal on
P . We can ask if the same happens for ideals of R, i.e., if there are ideals
of R that are not the relation part of any Peirce ideal on P . Proposition 7.7
states that every ideal of R is the relation part of a Peirce ideal on P and
gives us the corresponding Peirce ideal construction.

Proposition 7.7. For each ideal I2 of R on a Peirce algebra P = (B,R, :,c )
the pair ({p ∈ B : pc ∈ I2}, I2) is a Peirce ideal on P.
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Proof : Let P = (B,R, :,c ) be a Peirce algebra, I2 be an ideal of R and
I1 = {p ∈ B : pc ∈ I2}. Since 0c = o ∈ I2 we have 0 ∈ I1 and then I1 ̸= ∅.
Let p, q ∈ I1. then pc, qc ∈ I2 and (p ∨ q)c = pc ∨ qc ∈ I2. So p ∨ q ∈ I1. Let
p ∈ I1 and q ≤ p. Then qc ≤ pc and since pc ∈ I2 and I2 is an ideal of R we
have qc ∈ I2 and then q ∈ I1. Therefore I1 is a Boolean ideal on B.
Now we have to prove that if a ∈ R and p ∈ I1 then ap ∈ I1 and pc ∈ I2.

In fact, (ap)c = a; pc and since pc ∈ I2 and I2 is closed by composition by
any element of R we have a; pc ∈ I2, i.e., (ap)

c ∈ I2. So ap ∈ I1. Trivially if
p ∈ I1 then pc ∈ I2.
It remains to be proved that if a ∈ I2 and p ∈ B, then ap ∈ I1. In fact,

(ap)c = a; pc and since a ∈ I2 and I2 is closed by composition by any element
of R we have a; pc ∈ I2, i.e., (ap)

c ∈ I2 and then ap ∈ I1.

Corollary 7.8. For each congruence θ2 on R on a Peirce algebra P =
(B,R, :,c ) the pair ({(p, q) ∈ B × B : there exists i ∈ B such that p ∨ i =
q ∨ i and icθ2o}, θ2) is a Peirce congruence on P.

Proof : For θ2 a congruence on R we know that F = ({p ∈ B : pc ∈
[o]θ2}, [o]θ2) is a Peirce ideal on P (Proposition 7.7). So it is sufficient to
acknowledge that C(F ) = ({(p, q) ∈ B × B : there exists i ∈ B such that
p ∨ i = q ∨ i and icθ2o}, θ2).
Next example illustrates Proposition 7.7.

Example 7.9. Let P = (B,R, :,c ) be the Peirce algebra defined in Example
7.3, i.e., R is the relation algebra with R = {Λ, a, b, c}, Λ the empty relation,
a = {(p, p)}, b = {(q, q)} and c = {(p, p), (q, q)} where the operations are
defined as in a full relation algebra and P is the Peirce algebra constructed
through R as in Example 3.3. So B = {Λ, a, b, c}, the Peirce product : is ;
on R and c is de map B → R defined by sc = s for every s ∈ B. The set
I2 = {Λ, a} is a ideal of R and {s ∈ B : sc ∈ I2} = {s ∈ B : s ∈ I2} = {Λ, a}.
Therefore ({Λ, a}, I2) is a Peirce ideal on P with I2 as its relation part.

Proposition 7.5 states that for a pro-Peirce ideal I1 on a Peirce algebra
P = (B,R, :,c ) there exists only an ideal I2 of R such that (I1, I2) is a Peirce
ideal on P . Similarly, for any ideal I2 of R we will show that there exists
only a Boolean ideal I1 on B such that (I1, I2) is a Peirce ideal on P .

Proposition 7.10. For each ideal I2 of R on a Peirce algebra P = (B,R, :,c )
there exists a unique Boolean ideal I1 on B such that (I1, I2) is a Peirce ideal
on P.
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Proof : Proposition 7.7 assures us that, for every ideal I2 of R there exists a
Boolean ideal I1 on B such that (I1, I2) is a Peirce ideal on P . Suppose there
is another Boolean ideal F1 on B such that (F1, I2) is a Peirce ideal on P. If
i ∈ I1, then ic ∈ I2. Since (F1, I2) is a Peirce ideal on P , then icp ∈ F1 for
every p ∈ B. In particular, for p = 1 we have ic1 ∈ F1. But by P1 we have
ic1 = i, so i ∈ F1.

Corollary 7.11. For each congruence θ2 on R on a Peirce algebra P =
(B,R, :,c ) there exists a unique Boolean congruence θ1 on B such that (θ1, θ2)
is a Peirce congruence on P.

8. Simple Peirce algebras
A simple Peirce algebra is defined in [2] by Brink, Britz and Schmidt as

a Peirce algebra whose underlying Boolean module is simple. And in their
characterization of a simple Boolean module a homogeneous approach is
taken. Although a heterogeneous point of view was followed on our study,
our classification (Proposition 8.3) of a simple Peirce algebra agrees with that
reached by them.

Definition 8.1. A Peirce algebra P = (B,R, :,c ) is simple if and only if
CongP = {(∆B,∆R), (∇B,∇R)} (or equivalently, IdeP = {({0}, {o}), (B,R)}).

Next result, that will be required in the proof of Proposition 8.3, is proved
in [1].

Proposition 8.2. On a Boolean module M = (B,R, :) a element p ∈ B is
an ideal element if and only if Ip = {s ∈ B : s ≤ p} is a Boolean ideal on B
satisfying the condition (as ∈ I1 whenever a ∈ R and s ∈ I1).

Proposition 8.3. A Peirce algebra P = (B,R, :,c ) is simple if and only if
1 : p = 1 for every p ̸= 0 in B.

Proof : Let P = (B,R, :,c ) be a Peirce algebra where 1 : p = 1 for every
p ̸= 0 in B and let be I1 ̸= {0} a pro-Peirce ideal on P . So, there exists a
Boolean element p ̸= 0 such that p ∈ I1. Since I1 is pro-Peirce ideal then
ap ∈ I1 for every a ∈ R. In particular, for a = 1 we have 1 : p ∈ I1. But
1 : p = 1, so 1 ∈ I1 and so I1 = B. Trivially ({0}, {o}) and (B,R) are
Peirce ideals and the only ones with, respectively, Boolean part {0} and B
(Proposition 7.5). Conversely, suppose that exists p0 ̸= 0 in B such that
1 : p0 ̸= 1. Let q0 = 1 : p0. By M20 we know that q0 is a ideal element
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and using Proposition 8.2 we conclude that the set I1 = {s ∈ B : s ≤ q0}
is a Boolean ideal on B and as ∈ I1 whenever a ∈ R and s ∈ I1. Let
I2 = {a ∈ R : ap ≤ q0 and ă p ≤ q0 for every p ∈ B}. We will prove that
(I1, I2) is a Peirce ideal on P . (The use of Proposition 7.2 to prove that
(I1, I2) is a Peirce ideal on P is not allowed since the assumption of I1 being
a pro-Peirce ideal on P is not taken.)
(a) We have to prove that if s ∈ I1, then sc ∈ I2. So we have to prove that

if s ≤ q0, then (sc : p) ≤ q0 and (sc˘: p) ≤ q0 for every p ∈ B.
We know that pc ≤ 1 for every p ∈ B and using R14 we have qc0; p

c ≤ qc0; 1.
But by P11 we have qc0; p

c = (qc0 : p)c and since qc0 is a right ideal element
(P3) we have qc0; 1 = qc0. So (qc0 : p)

c ≤ qc0 and by P9 we have (qc0 : p) ≤ q0 for
every p ∈ B. As s ≤ q0 we have (sc : p) ≤ (qc0 : p) for every p ∈ B, and since
(qc0 : p) ≤ q0 then (sc : p) ≤ q0.
We know that pc ≤ 1 for every p ∈ B and using R14 we have qc0 ;̆ p

c ≤ qc0 ;̆ 1.
By P15 we have qc0 ;̆ 1 = 1; (qc0∧e); 1. Since qc0∧e ≤ qc0 we obtain qc0 ;̆ 1 ≤ 1; qc0; 1.
Since q0 is a ideal element then q0 = 1 : q0 and so qc0 = (1 : q0)

c = 1; qc0
(by P11). As qc0 is a right ideal element (P3) then 1; qc0 = 1; qc0; 1 and so
qc0 = 1; qc0; 1. Therefore qc0 ;̆ 1 ≤ qc0 and then qc0 ;̆ p

c ≤ qc0. But q
c
0 ;̆ p

c = (qc0˘: p)
c

so (qc0˘ : p)
c ≤ qc0, and by P9 we have (qc0˘ : p) ≤ q0. Since s ≤ q0 we have

(sc˘: p) ≤ (qc0˘: p) for every p ∈ B and then (sc˘: p) ≤ q0.
(b) We have to prove that the set I2 is a Boolean ideal. In fact, o ∈ I2, so

I2 ̸= ∅.
If a, b ∈ I2, then ap ≤ q0, ă p ≤ q0, bp ≤ q0 and b̆ p ≤ q0 for every p ∈ B.

So (a∨ b)p = ap∨ bp ≤ q0 and (a∨ b)̆ p = ă p∨ b̆ p ≤ q0 and then (a∨ b) ∈ I2.
If a ∈ I2 and d ∈ R with d ≤ a, then for every p ∈ B we have dp ≤ ap ≤ q0

and d̆ p ≤ ă p ≤ q0. So d ∈ I2.
(c) We have to prove that if a ∈ I2 and b ∈ R, then ă , ab, ba ∈ I2. In fact,

if a ∈ I2, then ap ≤ q0 and ă p ≤ q0 for every p ∈ B. So ă p̆ = ap ≤ q0.
Therefore ă ∈ I2.
Since ap ≤ q0 for every p ∈ B then (ab)p = a(bp) ≤ q0. As ă p ≤ q0

then ă p ∈ I1 and since ds ∈ I1 whenever (d ∈ R and s ∈ I1) we have
(ab)̆ p = b̆ (ă p) ∈ I1, i.e., (ab)̆ p ≤ q0. Therefore ab ∈ I2.
Since ap ≤ q0 for every p ∈ B then ap ∈ I1, and since ds ∈ I1 whenever

(d ∈ R and s ∈ I1) then (ba)p = b(ap) ∈ I1, i.e., (ba)p ≤ q0. As ă p ≤ q0 for
every p ∈ B, then (ba)̆ p = ă (b̆ p) ≤ q0. Therefore ba ∈ I2.
(d) We have to prove that ap ∈ I1 whenever a ∈ I2 and p ∈ B. In fact, if

a ∈ I2 then ap ≤ q0 for every p ∈ B so ap ∈ I1.
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Therefore (I1, I2) is a Peirce ideal on P . Since q0 ̸= 1 and q0 ̸= 0 (since by
M17 we have q0 = 1 : p0 ≥ p0 ̸= 0) then I1 ̸= B and I1 ̸= {0} and so P is
not simple.

Corollary 8.4. Every full Peirce algebra P(U) over a set U is simple.

Proof : The relation ∇R ∈ R(U) satisfied ∇R : p = ∇B for every p ̸= 0 in
B(U).

Let P = (B,R, :,c ) be a Peirce algebra where its relation algebraR contains
an element ∃s satisfying ∃s0 = 0 and ∃sp = 1 for every boolean element p ̸= 0.
As in Boolean modules, we say that this element of R is the simple quantifier
on P .

Remark 8.5. Let P = (B,R, :,c ) be a bijective Peirce algebra with the relation
algebra R containing the simple quantifier on P . Then ∃s = 1 and 1p = 1
for every p ̸= 0. (Since for Boolean element p ̸= 0, ∃sp = 1 and 1p ≥ ∃sp = 1
we have 1p = 1.)

Corollary 8.6. A bijective Peirce algebra P = (B,R, :,c ) is simple if and
only if ∃s ∈ R.

We remark that in [7] we were able to classify the class of simple sepa-
rable dynamic algebras (following Pratt’s definition [8]) as the algebras D =
(B,R = {∃s}, ⟨⟩) with B arbitrary Boolean algebras. Here, the simple quan-
tifier ∃s played again a central role.
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Departamento de Matemática, Universidade de Coimbra, 3001-454 Coimbra, PORTUGAL
E-mail address: sandra@mat.uc.pt

M.Teresa Oliveira-Martins
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