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Abstract: It is conjectured that given positive integers l, m, n with l−1 + m−1 +
n−1 < 1 and an integer g ≥ 0, the triangle group ∆ = ∆(l, m, n) = 〈X, Y, Z|X l =
Y m = Zn = XY Z = 1〉 contains infinitely many subgroups of finite index and of
genus g. A slightly stronger version of this conjecture is as follows: given positive
integers l, m, n with l−1 + m−1 + n−1 < 1 and an integer g ≥ 0, there are infinitely
many nonisomorphic compact orientable hypermaps of type (l, m, n) and genus g.
We prove that these conjectures are true when two of the parameters l, m, n are
equal, by showing how to construct appropriate hypermaps.

1. Introduction

The following conjecture arose in discussions with Jürgen Wolfart:

Conjecture 1.1 (A). Given positive integers l, m, n with l−1+m−1+n−1 < 1,
and an integer g ≥ 0, the triangle group

∆ = ∆(l, m, n) = 〈X, Y, Z | X l = Y m = Zn = ZY Z = 1〉

contains infinitely many subgroups of finite index and of genus g.

The well-known connections between triangle groups and hypermaps (dis-
cussed in [4], for example), yield the following slightly stronger form of this
conjecture (see section 3):

Conjecture 1.2 (B). Given positive integers l, m, n with l−1 + m−1 + n−1 <
1, and an integer g ≥ 0, there are infinitely many nonisomorphic compact

orientable hypermaps of type (l, m, n) and of genus g.

In these conjectures, which are independent of the ordering of l, m and n,
it is necessary to impose the inequality to avoid trivial cases. The natural
action of ∆ is on the Riemann sphere, the complex plane or the hyperbolic
plane as l−1 + m−1 + n−1 > 1, = 1 or < 1. In the first case, ∆ is finite
and there are only finitely many hypermaps of a given type (l, m, n), all of

Received September 2, 2010.

1



2 G. A. JONES AND DANIEL PINTO

them having genus 0. In the second case, ∆ is abelian-by-finite and there are
infinitely many subgroups and hypermaps of genus 0 or 1, but none of any
genus g > 1. We will therefore assume from now on that we are in the third
case, where the triple (l, m, n) is said to be hyperbolic.

The conjectures are false if one restricts attention to uniform hypermaps
(equivalently torsion-free subgroups of ∆), those for which the hypervertices,
hyperedges and hyperfaces all have valencies l, m and n respectively; this in-
cludes the case of regular hypermaps, corresponding to normal subgroups of
∆. The reason is that in this case the size of the hypermap (equivalently the
index of the corresponding subgroup) is proportional to its Euler character-
istic, so for a fixed genus there can be only finitely many uniform hypermaps
of a given type. We shall therefore allow nonuniform hypermaps, where the
valencies of the hypervertices, hyperedges and hyperfaces have least common
multiples l, m and n respectively, but they are not necessarily all equal to
l, m and n. Our main result is the following:

Theorem 1.1. Conjectures A and B are true in all cases where at least two

of l, m and n are equal.

Hypermaps of type (l, 2, n) are simply maps of type {n, l} in the notation
of Coxeter and Moser [2], where we interpret this more widely to mean that
the valencies of the faces and the vertices have least common multiples n
and l. Such a type is hyperbolic provided l−1 + n−1 < 1

2 , or equivalently
(l − 2)(n − 2) > 4. We therefore have:

Corollary 1.1. Conjecture B is true for maps of each type {n, n} with n ≥ 5.

Our method of proof of Theorem 1 (from section 7 onwards) is take l = m
and to construct the required hypermaps of type (m, m, n) by first construct-
ing their Walsh bipartite maps [9]. These are maps of type {2n, m} and genus
g, so (with a change of notation and applying duality) our method of proof
yields:

Corollary 1.2. Suppose that either m or n is even. Then Conjecture A is

true for ∆(2, m, n) and Conjecture B is true for maps of type {m, n}.

The representation of a hypermap by its Walsh bipartite map corresponds
to the inclusion of ∆(m, m, n) as a subgroup of index 2 in ∆(m, 2, 2n) (see [4]
for this and other representations of hypermaps). Similar arguments, based
on triangle group inclusions described by Singerman in [7], imply:
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Corollary 1.3. Conjecture A is true for ∆(2, 3, 7) and ∆(2, 3, 9), and Con-

jecture B is true for maps of type {3, 7} and {3, 9}.

These results leave many remaining cases in which Conjectures A and B
are still open, for instance for maps of type {m, n} where m and n are odd,
excluding those types covered by Corollary 1.3. Indeed, in many cases it is
not clear whether there are any hypermaps of a given type and genus, let
alone infinitely many.

2. Hypermaps and triangle groups

The connections between hypermaps and triangle groups are described in
some detail in [4], but for convenience we will summarise them here, mainly
in the case of orientable hypermaps without boundary. The extended triangle
group

∆[l, m, n] = 〈R0, R1, R2 | R2
i = (R1R2)

l = (R2R0)
m = (R0R1)

n = 1〉

is generated by reflections R0, R1 and R2 in the sides of a triangle T with
angles π/l, π/m and π/n in a simply connected Riemann surface U , where U
is the Riemann sphere, the complex plane or the hyperbolic plane as l−1 +
m−1 + n−1 > 1, = 1 or < 1. The orientation-preserving subgroup of index 2
in ∆[l, m, n] is the triangle group

∆ = ∆(l, m, n) = 〈X, Y, X | X l = Y m = Zn = XY Z = 1〉,

generated by rotations X = R1R2, Y = R2R0 and Z = R0R1 through angles
2π/l, 2π/m and 2π/n around the vertices of T . These two groups are the full
automorphism group and the orientation-preserving automorphism group of
the universal hypermap H̃ of type τ = (l, m, n) drawn on U . Any hypermap
H of this type is isomorphic to the quotient of H̃ by some subgroup H ≤
∆[l, m, n], which is unique up to conjugacy. Conversely, any conjugacy class
of subgroups H determines a hypermap H/H of type τ ′ = (l′, m′, n′) where
l′, m′ and n′ (dividing l, m and n) are the orders of the permutations of
the cosets of H induced by X, Y and Z. Two hypermaps are isomorphic if
and only if the corresponding subgroups are conjugate in ∆[l, m, n] (or in
∆(l, m, n) if we require an orientation-preserving isomorphism). Compact
hypermaps H correspond to subgroups H of finite index in ∆[l, m, n], and
those on orientable surfaces without boundary correspond to subgroups H ≤
∆(l, m, n).
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Any subgroup H of finite index in ∆ has a presentation

H = 〈a1, b1, . . . , ag, bg, x1, . . . , xr, y1, . . . , ys, z1, . . . , zt|

g
∏

i=1

[ai, bi].
r

∏

i=1

xi.

s
∏

i=1

yi.

t
∏

i=1

zi = xli
i = ymi

i = zni

i = 1〉,

where g ≥ 0 and each li, mi or ni is a nonidentity divisor of l, m or n re-
spectively. Here g, called the genus of H, is the genus of the corresponding
hypermap H, and the generators xi, yi and zi correspond to any cycles of X, Y
and Z of lengths l/li < l, m/mi < m or n/ni < n in their action on the cosets
of H in ∆, or equivalently to any degenerate hypervertices, hyperedges and
hyperfaces of H, those of valencies l/li < l, m/mi < m or n/ni < n. We say
that H has signature (g; l1, . . . , lr, m1, . . . , ms, n1, . . . , nt). These parameters
are related by the Riemann-Hurwitz formula

2g − 2 +
r

∑

i=1

(

1 −
1

li

)

+
s

∑

i=1

(

1 −
1

mi

)

+
t

∑

i=1

(

1 −
1

ni

)

= N
(

1 −
1

l
−

1

m
−

1

n

)

,

where N = |∆ : H|. The hypermap H is uniform if and only if r = s = t = 0,
or equivalently H is a surface group, with signature (g; —).

A permutation of the triple (l, m, n) corresponds to a renaming of the
generators of ∆[l, m, n] and of ∆(l, m, n), or equivalently to one of Mach̀ı’s
operations on hypermaps, permuting hypervertices, hyperedges and hyper-
faces [Ma]. We can therefore identify ∆(l, m, n) with ∆(l′, m′, n′) for any
permutation (l′, m′, n′) of the triple (l, m, n).

Hypermaps of type (l, 2, n) are equivalent to maps of type {n, l}, where we
interpret this notation more generally than in [2] to mean that the valencies
of the faces and the vertices have least common multiples n and l.

3. The relationship between Conjecture A and Conjec-

ture B

Suppose that Conjecture B is true for a given triple τ = (l, m, n) and a
given genus g, so that there are infinitely many nonisomorphic hypermaps H
of type τ and genus g. These correspond to mutually nonconjugate subgroups
H of finite index in ∆ = ∆(l, m, n), all of genus g, so Conjecture A is true
for τ and g.
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Conversely, suppose that Conjecture A is true for type τ and genus g, so
that ∆ has infinitely many subgroups H of genus g. Having finite index, each
H has only finitely many conjugates, so among these subgroups there are
infinitely many which are mutually nonconjugate, corresponding to infinitely
many nonisomorphic hypermaps H of genus g. Each of these has type τ ′ =
(l′, m′, n′) for some divisors l′, m′ and n′ of l, m and n, namely the orders of
the permutations induced by X, Y and Z on the cosets of H. For a given
triple τ there are only finitely many such triples τ ′, so for at least one of
them — but not necessarily for τ itself — there must be infinitely many
nonisomorphic hypermaps of type τ ′ and genus g. In particular, if g > 1
then this type must be hyperbolic. In this situation, it is conceivable that
there could be only finitely many hypermaps of type τ and genus g (or even
none), though we know of no example of this phenomenon.

This shows that Conjecture A is a weaker statement than Conjecture B.
We will therefore first prove Conjecture B for various triples τ and genera g,
so that we can immediately deduce Conjecture A for the same τ and g. The
following result shows that for a given type τ , it is in fact sufficient to prove
Conjecture B for genera g = 0, 1 and 2.

Theorem 3.1. Suppose that there are infinitely many nonisomorphic hyper-

maps of type τ and genus 2, and that G is a 2-generator group of order g− 1
for some g ≥ 2. Then there are infinitely many nonisomorphic hypermaps K
of type τ and genus g with G ≤ AutK.

Proof. Let H be an orientable hypermap of type τ and genus 2. This cor-
responds to a subgroup H ≤ ∆ as described in the preceding section. By
mapping the generators a1 and a2 of H to a pair of generators for G, and all
the other canonical generators of H to the identity, we obtain an epimorphism
H → G. The kernel K is a normal subgroup of index g−1 in H, correspond-
ing to a hypermap K of type τ and genus g, which is a regular unbranched
(g−1)-sheeted covering of H with covering group G ∼= H/K ≤ AutK. Since
each hypermap K can arise in this way from only finitely many hypermaps
H, the result follows.

In each case one can, for example, take G to be a cyclic group of the
appropriate order, so this reduces the problem of proving Conjecture B to
the cases g = 0, 1 and 2. One can also reduce the proof of Conjecture B for
genus 1 to that of constructing a single hypermap of type τ and genus 1:
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Theorem 3.2. If H is a hypermap of type τ and genus 1, and G is any

2-generator finite abelian group, then there is a hypermap K of type τ and

genus 1 which is a regular unbranched covering of H with covering group G.

Proof. The argument is similar to that used for Theorem 3.1, except that
now the generators a1 and b1 of H are mapped to a pair of generators of G,
and the rest to the identity.

In particular, by taking G to be arbitrarily large we see that if there is at
least one hypermap of type τ and genus 1 then there are infinitely many.

Although these two theorems apparently reduce the task of proving Con-
jecture B for any given type, a direct proof of the result for all g in fact
uses exactly the same ingredients as a proof of the results for g ≤ 2. One
should therefore regard these theorems as giving slightly stronger results,
rather than as reducing the task of proving them.

4. The general method

In proving Theorem 1, we will construct each hypermap H by first con-
structing its Walsh map W = W (H) [9]. This is a bipartite map on the same
surface as H, with each hypervertex or hyperedge of H represented as a black
or white vertex, each incidence between them represented as an edge between
the corresponding vertices, so that each vertex has the same valency as the
hypervertex or hyperedge it represents, and each hyperface of H represented
as a face of twice the valency (since it is bordered by alternating black and
white vertices).

When assuming that two of l, m and n are equal, we may by permuting
them assume that l = m, so that we are dealing with hypermaps H of type
τ = (m, m, n). These correspond to bipartite maps W = W(H) of type
{2n, m} on the same surface, with a colour-preserving isomorphism W(H) ∼=
W(H′) if and only if H ∼= H′, so if Conjecture B is true for hypermaps of
type τ then it is also true for maps of type µ = {2n, m}. Equivalently, we are
using the inclusion of ∆(m, m, n) as a subgroup of index 2 in ∆(m, 2, 2n) to
deduce Conjecture A for the latter group from its truth for the first group.

In order to prove Conjecture B for a specific triple τ = (m, m, n) we will
construct bipartite maps W of type µ = {2n, m} by joining together suitable
numbers of copies of a few basic ‘building blocks’. These are bipartite maps
A = Aµ, T = Tµ and D = Dµ on three surfaces with boundary, namely a
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closed annulus A, a torus minus two open discs, called 2-trisc and denoted
by T , and a closed disc D. Sometimes, we will use Ai, Ti and Di (with i = n
or m, instead of µ) when we just want to pay attention to the valencies of the
faces or to the valencies of the vertices (assuming the other parameter of µ is
fixed and known). We will give the precise details of the construction of these
building blocks later, starting in section 7. By taking suitably many copies
of them, and joining them in pairs by identifying boundary components,
compact orientable bipartite maps W = Wµ of type µ and of arbitrary genus
g can be constructed, and these are the Walsh maps W(H) of the required
hypermaps H. For this to work, one has to ensure that the interior of each
building block ‘looks like’ part of a bipartite map of type µ, and that the
boundary identifications produce suitable local behaviour, so that the final
result is a bipartite map of this type.

To ensure this, we will construct the maps A, T and D so that each of
their boundary components C is a cycle in the map, homeomorphic to S1

and consisting of vertices and edges. We define an allowed joining of two
such maps to be an identification of a pair of their boundary components C0

and C1 by means of a homeomorphism C0 → C1 which matches vertices with
vertices of the same colour, so that C0 and C1 become a single cycle in the
resulting bipartite map. If vertices of valencies v0 and v1 in C0 and C1 are
identified with each other, they give rise to a vertex of valency v = v0+v1−2,
so we also require that v divides m; in fact, we will generally arrange that
v = m.

If two surfaces X0 and X1 are joined by identifying their boundary compo-
nents C0 and C1, then the resulting surface has Euler characteristic χ(X0 ∪
X1) = χ(X0) + χ(X1). Now χ(A) = 0, χ(T ) = −2 and χ(D) = 1, so if
g ≥ 2 then g − 1 copies of B and an arbitrary number h ≥ 0 of copies of
A can be joined pairwise in some cyclic order to give an orientable bipartite
map W of characteristic 2− 2g and hence of genus g; by fixing g and letting
h vary we obtain the required infinite set of nonisomorphic hypermaps H.
Alternatively, it is sufficient to take one copy of T and an arbitrary number
of copies of A, giving infinitely many hypermaps of genus 2, and then by
using Theorem 3.1 to extend this to any genus g > 2. Similarly, if g = 1 we
can take h copies of A in cyclic order, where h ≥ 1 (or just one copy if we
use Theorem 3.2), and if g = 0 we can use h copies of A in linear order, with
the two ends of the resulting tube capped by copies of D.
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If we ignore the vertex-colours, we can regard each W = Wµ as an ori-
entable map of type µ, so these constructions prove Conjecture B for maps
of this type, and hence prove Conjecture A for the corresponding triangle
group ∆(m, 2, 2n). With a minor change of notation, this proves Corollary
1.2.

This method of proof is based on that used in [3], where similar build-
ing blocks were used to construct infinitely many maps of type {3, 24} for
each genus g ≥ 0, and then the corresponding subgroups of ∆(24, 2, 3) were
lifted back via the natural epimorphism ∆(∞, 2, 3) → ∆(24, 2, 3) to obtain
infinitely many noncongruence subgroups of genus g in the modular group
∆(∞, 2, 3) = PSL2(Z).

5. Proof of Corollary 1.3

Singerman [7] has classified all pairs of hyperbolic triangle groups ∆ =
∆(l, m, n) and ∆′ = ∆(l′, m′, n′) such that ∆ is a subgroup of ∆′ (neces-
sarily of finite index). The list includes several infinite families, such as
∆(s, s, t) ≤ ∆(2, s, 2t) with index 2, and finitely many sporadic examples,
such as ∆(7, 7, 7) ≤ ∆(2, 3, 7) with index 24 and ∆(9, 9, 9) ≤ ∆(2, 3, 9) with
index 12.

Given such an inclusion ∆ ≤ ∆′, any subgroup H of genus g in ∆ is
automatically a subgroup of genus g in ∆′, so if Conjecture A is true for ∆
then it is also true for ∆′. In particular, the inclusions ∆(7, 7, 7) ≤ ∆(2, 3, 7)
and ∆(9, 9, 9) ≤ ∆(2, 3, 9), together with Theorem 1.1, show that ∆(2, 3, 7)
and ∆(2, 3, 9) satisfy Conjecture A, thus proving the first part of Corollary
1.3.

If ∆ ≤ ∆′ then the hypermap H corresponding to an inclusion H ≤ ∆
gives rise to a hypermap H′ of the same genus corresponding to the inclusion
H ≤ ∆′. Since ∆ has finite index in ∆′, at most finitely many conjugacy
classes of subgroups H in ∆ can lie in the same conjugacy class in ∆′, so
this function H 7→ H′ is finite-to-one on isomorphism classes; it follows that
any infinite set of nonisomorphic hypermaps H gives rise to infinitely many
nonisomorphic hypermaps H′. In general, there is no guarantee that these
hypermaps H′ will have type (l′, m′, n′). However, in the two cases we are
interested in, namely ∆(7, 7, 7) ≤ ∆(2, 3, 7) and ∆(9, 9, 9) ≤ ∆(2, 3, 9), the
canonical generators of ∆′ of orders 2, 3 and 7 or 9 induce permutations of
these orders on the cosets of ∆, and hence also on the cosets of any subgroup
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H ≤ ∆, so H′ has type (2, 3, 7) or (2, 3, 9) respectively. Thus Theorem 1.1
implies that Conjecture B is true for hypermaps of these two types, and hence
for maps of types {3, 7} and {3, 9}. This proves the second part of Corollary
1.3.

Similar arguments can be applied to various other triangle group inclu-
sions, such as ∆(4, 8, 8) ≤ ∆(2, 3, 8), but the results obtained are particular
cases of Corollary 1.2. It is also possible to give direct proof of Corollary 1.3
for ∆(2, 3, 7), either by designing Lego pieces to build maps of type {3, 7}
or by deducing it from results of Stothers [8] on subgroups of this triangle
group. Since the periods 2, 3 and 7 are prime, a subgroup H of finite in-
dex in ∆(2, 3, 7) must have signature σ = (g; 2(r), 3(s), 7(t)) for some integers
g, r, s, t ≥ 0. Stothers used coset diagrams to show that for all but finitely
many choices of g, r, s and t there is a subgroup H of finite index with the
corresponding signature σ. In particular, by fixing g and letting r, s and t
vary we obtain Corollary 1.3 for this group.

6. Multiplication of an edge

Some of the methods will be applied, with small modifications, several
times. One of the operations that will often be used is the multiplication

of an edge e of the map, by an integer k, and that consists of replacing e
with k edges between the same pair of vertices, enclosing k − 1 new faces of
valency 2. If e is a boundary edge then one of these new edges will also be a
boundary edge (but not the other ones).

The valencies of the vertices of the boundary components are relevant to
describe the pieces and to confirm that a map of a specific type is obtained
when they are glued together. We say that a boundary component (denoted
by ∂iA, ∂iT or ∂D for i = 0, 1) has type k(t) if it has t vertices of valency
k. If the vertices have not all the same valency, we will explicitly give those
different valencies to the reader.

3

or
multiplication by 3

Figure 1. Multiplication of an edge by 3.

Important note: We leave, in the drawing of the graph, the edge that
is multiplied. It follows that that edge should not be counted twice. For
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instance, the number 3, in Figure 1, means exactly the number of edges
between those two vertices.

7. The proof

We will divide the proof into several cases for different families of hyper-
maps. There will be three different main cases:

i) when n is even and the parameters are not too small (if they are not
≤ 3);

ii) when n is odd and the parameters are not too small (if they are not
≤ 4);

iii) the other possibilities, when at least one of the parameters is small.

All possibilities will be covered but we will solve the problem by dealing,
in the following order, with families of hypermaps of type:

• (m, m, n) with m ≥ 4, even n ≥ 4;
• (m, m, 2) with m ≥ 6;
• (5, 5, 2);
• (3, 3, 4);
• (3, 3, n) with even n ≥ 6;
• (m, m, n + 1) with m ≥ 5, odd n + 1 ≥ 5;
• (m, m, 3) with m ≥ 5;
• (4, 4, 3);
• (4, 4, n) with, odd n ≥ 5;
• (3, 3, n) with odd n ≥ 5.

8. Hypermaps of type (m, m, n) with n even

When proving Theorem 1.1, we may without loss of generality assume that
l = m. In considering hypermaps of type τ = (m, m, n) we will first deal with
the case where n is even. The Walsh maps W have type µ = {2n, m}, so
their vertices and faces must have valencies dividing m and 2n respectively;
we will, in fact, construct each bipartite map W so that all its vertices have
valency m, and the face-valencies (which are necessarily even) are equal to
2, 4 or 2n, corresponding to hyperfaces of valencies 1, 2 or n.

8.1. Hypermaps of type (m, m, n) with m ≥ 4, even n ≥ 4. For each
even n, let Rn be a bipartite map on the rectangle [0, 4] × [0, 2n − 6] ⊂ R

2.



INFINITELY MANY HYPERMAPS OF A GIVEN TYPE AND GENUS 11

2n-6

2n-8

2n-7

n-1

n-2

n-3

n-4

0

1

2n

2n

0 1 2 3 4

Figure 2. Bipartite map on the rectangle [0, 4] × [0, 2n − 6].

This bipartite map (see Figure 2) has vertices at the points: (0, j), (1, j), for i ∈
{n − 3, ..., 2n − 6} ∪ {0}; (2, j), (3, j), for j ∈ {0, ..., n − 3} ∪ {2n − 6};
(4, j), for j ∈ {n − 3, 2n − 6} ∪ {0}. The vertices (i, j) are black or white if
i + j is even or odd, respectively. Because we want some of them to be adja-
cent, we introduce some edges: the horizontal edges (i, j) × (i, j + 1) for i ∈
{0, n − 3, 2n − 6} and j ∈ {0, ..., 3}; (i, 0) × (i, 1) for i ∈ {n − 2, ..., 2n − 7},
(i, 2)× (i, 3) for i ∈ {1, ..., n− 4}; and vertical edges (i, j)× (i + 1, j) for i ∈
{n − 3, ..., 2n − 7} and j ∈ {0, 1, 4} (i, j) × (i + 1, j) for i ∈ {0, ..., n −
4} and j ∈ {2, 3}. These edges enclose 2n − 4 faces. 2n − 6 of them are
square faces: 0 < x < 1, j < y < j + 1 for j ∈ {n − 3, ..., 2n − 7};
2 < x < 3, j < y < j+1 for j ∈ {0, ..., n−4}; and two of them are 2n-gons:
0 < x < 2 or 3 < x < 4, and 0 < y < n−3 1 < x < 4 and n−3 < y < 2n−6.

To obtain a bipartite map on the torus, we identify the opposite sides in
the usual way: (4, y) = (0, y) for 0 ≤ y ≤ 2n − 6 and (x, 2n − 6) = (x, 0) for
0 ≤ x ≤ 4. All the vertices have valency 3 at this stage. To build a 2-trisc T
we need to remove two discs. We can do this by removing two non adjacent
square faces (see Figure 3). For instance: 0 < x < 1, n − 3 < y < n − 2
and 2 < x < 3, n − 4 < y < n − 3.
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The trivalent map on the 2-trisc, Tn, has now 2n− 8 square faces and two
2n-gonal faces. The two boundary components of Tn have both type 3(4)

(they have 4 vertices of valency 3). We will use this bipartite map as a basis
to build blocks of type µ = {2n, m}. These are obtained by multiplying by
m−2 each horizontal edge of the form: (i, 0)×(i, 1) for i ∈ {n−1, ..., 2n−6}
and (i, 2) × (i, 3) for i ∈ {0, ..., n − 5}.

2n-6

2n-8

2n-7

n-1

n-2

n-3

n-4

0

1

2n

2n

0 1 2 3 4

Figure 3. 2-trisc.

Then we choose integers m0, m1 ≥ 3 such that m0 + m1 = m + 2 and,
for each i = 0, 1, we multiply each of the horizontal edges in the boundary
components ∂iTµ by mi − 2. This is a general procedure that always works
but we could fix (for instance) m0 = 3 and then take m1 = m−1, multiplying
only the edges of one of the boundary components of ∂iTµ.

Each vertex is incident with exactly one of these multiplied edges. There-
fore, every internal vertex has valency m and the vertices on the boundary
component ∂iTµ (i=0,1) have valency mi, so that this component has type

m
(4)
i .
Hence, this modified map on the 2-trisc (with some edges multiplied) has

two faces of valency 2n and 2n − 8 faces of valency 4, just as the first basic
bipartite map we have built on this surface, but also: 2(m − 3)(n − 4) +
2(m0 − 3) + 2(m1 − 3) = 2(n − 3)(m − 3) new faces of valency 2. This does
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not affect the type of the hypermap since they correspond to hyperfaces of
valency 1 in the hypermap.

The bipartite map on the annulus is constructed using the same tessellation
Rn, identifying, as before, the left and right sides but not the top and bottom
sides. We obtain, by this process, a map Aµ with two faces of valency 2n and
2n− 6 faces of valency 4. The two boundary components ∂iAµ (i = 0, 1) are
cycles of length 4, like those in ∂iTµ. If we multiply suitable edges, as before,
we can create a bipartite map on A with all internal vertices of valency m,

one boundary component of type m
(4)
0 and the other one of type m

(4)
1 . This

new map has two faces of valency 2n, 2n − 6 faces of valency 4, and the
others of valency 2.

To build the disc for each integer k ≥ 2, we construct a tessellation Dk of
a closed disc D, with boundary type k(4). We achieve that by starting with a
square, regarded as a bipartite map on D with one face and with four vertices
and four edges on ∂D. Then, we multiply a pair of opposite edges by k − 2,
introducing 2(k − 3) extra faces of valency 2, so that all four vertices have
valency k.

m-2k-2

k-2

Figure 4. Disc Dk

The gluing process is now easy to describe. For a given genus g, we choose
an arbitrarily large h ∈ N0 and if g ≥ 1 we take g − 1 copies of T and
h copies of A in some arbitrary cyclic order. By making allowed joinings
between consecutive pieces, we will get a bipartite map Wg,h of genus g and
with all vertices of valency m. This map Wg,h has 2(g−1+h) faces of valency
2n, two on each copy of T or A and the remaining faces have valency 2 or
4. Hence, Wg,h is the Walsh map of a compact orientable hypermap Hg,h of
genus g and type µ = (m, m, n). Because h is as large as we want, we can
build in this way an infinite number of nonisomorphic hypermaps of genus g
and type µ, as required. If g = 0 we do not need to use a 2-trisc, we only
need A and two discs Dm0

and Dm1
(remember m0 +m1 = m+2), capping a

tube of h ≥ 1 copies of A in linear order, by allowing joining at its ends. The
resulting map will have 2h faces of valency 2n and all other faces of valency



14 G. A. JONES AND DANIEL PINTO

2 or 4. Since all the vertices have valency m, the map is a Walsh bipartite
map of a hypermap of type µ = (m, m, n) on the sphere.

8.2. Hypermaps of type (m, m, 2) with m ≥ 6. The method used in
the previous case does not work for n = 2 but we just need to introduce a
slight modification to make it right, provided m ≥ 6. This is achieved by
using, first, eight 1×1 square faces to form a tessellation R2 of the rectangle
[0, 4] × [0, 2] ⊂ R

2 with vertices at the points (i, j) colored black or white as
i+j is even or odd. By identifying opposite sides of R2 we obtain a bipartite
map of type {4, 4} on a torus. To build a bipartite map T2 on a 2-trisc we
remove, before identification, two nonadjacent faces: 0 < x < 1, 0 < y < 1
and 2 < x < 3, 0 < y < 1.

Figure 5. Tessellation of R2 = [0, 4] × [0, 2] with 2 faces removed.

This bipartite map has six square faces and each of the eight vertices lies
on a boundary component ∂iT2 (i = 0, 1) of type 4(4). Then we choose
integers mi ≥ 4 (i = 0, 1) so that m0 + m1 = m − 2 and multiply each of

the two horizontal edges on ∂iT2 by mi − 3 so that ∂iT2 has type m
(4)
i .

The annulus A2 can be constructed using the same rectangle R2 but only
identifying the vertical sides (not the horizontal ones). On each boundary
component ∂iA2 (i = 0, 1) of A2 we multiply each of two nonadjacent

edges by mi − 2 so that this component has type m
(4)
i . Because we now

have internal vertices, we also need to multiply each of two nonadjacent
internal edges by m − 3. This will transform all the internal vertices into
vertices of valency m, as required. With these pieces (together with the discs
previously described) we can construct infinitely many hypermaps of type
(m, m, 2), provided m ≥ 6.

8.3. Hypermaps of type (5, 5, 2). The method described in the previous
subsection does not work for m = 5 because we have mi ≥ 4 and, conse-
quently, m = m0 + m1 − 2 ≥ 6. To get a hypermap that will work in this
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particular case, we need to build different blocks whose boundary compo-
nents have types 3(4) and 4(4), so that after joining them we will get vertices
of valency 3 + 4 − 2 = 5.

Figure 6. 2-trisc map to build hypermaps of type (5, 5, 2).

To build T we use the same bipartite torus map T2 described for the pre-
vious case but with four extra vertices, a square S, with vertices at (1

3 ,
1
3),

(2
3 ,

1
3), (2

3 ,
2
3) and (1

3 ,
2
3), each joined by a straight edge to the vertex (0, 0),

(1, 0), (1, 1) or (0, 1) respectively (see Figure 6). This tessellation has five
new faces and the new vertices have valency 3. If we remove the face within
S, we create a boundary component of type 3(4). Removing the face given
by 2 < x < 3 and 0 < y < 1, we create another boundary component, this
one of type 4(4).

We also need to build an annulus satisfying the same conditions, that is,
with one boundary component of type 3(4) and another one with type 4(4).
This can be done in the following way: we take the map of the cube on the
sphere, removing a pair of opposite faces and we multiply a pair of opposite
edges of one of those faces by 2. The resulting bipartite map has four faces
of valency 4 and two of valency 2. We just need now two other blocks D3

and D4, as described earlier, and proceed as before but this time joining
boundary components of type 3(4) to boundary components of type 4(4).

8.4. Hypermaps of type (3, 3, 4). The previous methods used square tes-
sellations of a rectangle R2 and can not be applied to build hypermaps of
type (3, 3, 4). The reason is obvious: if we want to obtain, after joining two
blocks, a hypermap with hypervertices of valency m = m0 + m1 − 2 we will
need here m = 3. So, m0 + m1 = 5, giving m0 = 2 and m1 = 3 or vice versa,
which is impossible using the strategy we have already introduced. Another
method is needed to solve the problem, which means we have to build the
blocks following a different idea, an alternative approach.

To build the map T we take the regular map {3, 4 + 4} of type {3, 8} and
genus 2 (described in [2, Chapter 8] and represented in Figure 7, with opposite
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sides of the octagon identified) and then cut it along a simple closed curve
that follows two edges. The map {3, 4+4}, a double cover of the octahedron
branched over six vertices, can be constructed by taking a regular octagon,
placing vertices at the center, the eight corners and the midpoints of the
eight sides; each of these last eight vertices is then joined by straight edges
to the central vertex, to the two corner vertices incident with its side, and to
the vertices at the midpoints to the two adjacent sides. so that the octagon
is tessellated by 16 triangles. If we make orientable identifications of the four
pairs of opposite sides of the octagon we obtain the regular map {3, 4 + 4}.
If we identify just three pairs of opposite sides instead (or, equivalently, we
cut the map {3, 4 + 4} open along the simple closed path corresponding to
the fourth pair), we obtain a triangular map on a 2-trisc.

Figure 7. Map {3, 4 + 4} of type {3, 8} and genus 2.

The boundary components in this block both have type 5(2) and all the four
interior vertices have valency 8. To construct the annulus we take A = {z ∈
C|1 ≤ |z| ≤ 2}, with vertices at ±1, ±2 and ±3i/2, and with edges along
the boundary components, along A ∩ R, and joining ±3i/2 each to ±1 and
±2. We have then eight triangular faces and the two internal vertices have
valency 4. The disc is formed by dividing the closed unit disc D into four
triangular faces, with vertices at ±1 and ±i/2 and edges along the boundary,
along D ∩ R and joining each of ±i/2 to ±1, so that the internal vertices
have valency 2. In both of these maps, each boundary component has type
5(2).

Figure 8. Annulus.
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Figure 9. Disc.

All the vertices in the boundary components have valency 5, which means
that after joining together the pieces these vertices will give rise to vertices of
degree 8 = 5 + 5− 2. Moreover, all the vertices that are not in the boundary
have valency 2, 4 or 8 and all the faces have valency 3. Therefore, the resulting
maps will have type {3, 8}. These maps are also 2-face-colorable, since all
the pieces are 2-face-colourable and each of their boundary components has
two edges incident with faces of opposite colors.

Then, if we take the duals of these 2-face-colourable maps of type {3, 8}
we get maps which are bipartite and of type {8, 3}. Hence, these can be
understood as the Walsh bipartite maps for hypermaps of type (3, 3, 4). The
gluing process of the required pieces, in order to get an infinite number of
these with any genus, is exactly as before.

8.5.Hypermaps of type (3, 3, n) for even n ≥ 6. To solve this case we use
the same 2-trisc as in Section 8.1 but this time removing two rectangles given
by 0 < x < 1, n−3 < y < n and by 2 < x < 3, n−6 < y < n−3 (see Figure
10). Consequently, not all the vertices in the boundary components have
the same valency, so we need to explicitly write the type of those boundary
components. They are cycles of length 8 and type (2, 2, 3, 3, 2, 2, 3, 3) in
cyclic order. Both of them are of this type but if we fix an orientation,
travelling around each component in the same direction, the first colour of
these vertices is black in one of the boundary components and white in the
other one. Hence, after the second consecutive vertex of order 2 we will have
a black vertex of order 3 in one boundary and a white vertex of order 3 in the
other one. Those two boundary components of the same type will be called,
respectively: black component and white component.

To build the map on the annulus we use two copies of the rectangle R2 of
the first case, one for 0 ≤ x ≤ 4 and another for 4 ≤ x ≤ 8, identifying the
two sides of this bigger rectangle. It has boundary components for y = 0 and
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Figure 10. 2-trisc map with boundary components of type
(2, 2, 3, 3, 2, 2, 3, 3).

y = 2n − 6, both of type (2, 2, 3, 3, 2, 2, 3, 3), like the map in the 2-trisc, one
black and another one white (see Figure 11).

Finally, the disc is just an octagon with two edges from two consecutive ver-
tices to their opposite. This gives the disc a white (Dw) or, if we interchange
colours, black (Db) boundary component of the same type (2, 2, 3, 3, 2, 2, 3, 3)
(see Figure 12). Because all the internal vertices are trivalent, and all faces
are of order dividing 2n we will obtain hypermaps of the correct type by
conveniently gluing the pieces:

• a black boundary is joined to a white boundary;
• a vertex of valency 2 is identified with another of valency 3.

9. Hypermaps of type (m, m, n + 1) with n + 1 odd: the

general method

If m, n+1 ≥ 5 we can use the construction presented for n even and intro-
duce some slight but important changes. In the previous cases we could use
faces of valency 4 in our pieces because these would correspond to hyperfaces
of valency 2, which do not interfere with the type of a hypermap if we require
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2n

2n

2n

2n

Figure 11. 2-trisc map with boundary components of type
(2, 2, 3, 3, 2, 2, 3, 3).

Figure 12. A disc map with a boundary component of type
(2, 2, 3, 3, 2, 2, 3, 3).

the parameter n (the l.c.m of the valency of the faces) to be even. However,
these faces of valency 4 can not appear if we want n+1 to be odd. Therefore,
other tools must be developed to solve this problem. The general method is
the following: to build a hypermap of type (m, m, n + 1), n + 1 odd, we take
the pieces that we have built for hypermaps of type (m, m, n) and add new
vertices and edges in order to increase by 2 the valency of the old faces of
valency 2n and transform all the square faces into faces of valency 2n + 2.

The first part is easier because we just need a new edge and a new vertex.
For the second, a more delicate procedure, we need to introduce a few stalks

of length n−1: paths of length (n−1) with consecutive vertices v0, v1, ..., vn−1

alternately black and white and with alternate edges vivi+1 (i odd) multiplied
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by m − 1 so that v0 and vn−1 have valency 1 while the others have valency
m.

...
m-1m-1 m-1m-1 m-1m-1

v0 v1 v2 v3 v4 vn-3 vn-2 vn-1

Figure 13. A stalk

By attaching a stalk S to a vertex v within a face F we mean identifying
v0 or vn−1 with v, as v is black or white, and embedding the rest of the stalk
in F without crossings. This raises the valency of the face F by 2(n− 1) and
that of v by 1. It also introduces (m − 2)(n − 2)/2 new faces of valency 2,
together with n−2 vertices of valency m and one of valency 1. Because these
new faces have valency 2 they correspond to hyperfaces of valency 1, so they
do not affect the type of the final hypermap. On the other hand, the vertex
where the stalk is attached increases its valency by 1, which means that we
need to correct this change by modifying the factors by which certain edges
are multiplied. We will describe this operation later with more details.

9.1. Hypermaps of type (m, m, n + 1) with n + 1 odd with m ≥ 5 and

n + 1 ≥ 5. Let Tn be the trivalent bipartite map constructed in section 8.1
by identifying opposite sides of the rectangle Rn. If we remove, as before, the
two square faces given by 0 < x < 1, n − 3 < y < n − 2 and by 2 < x < 3,
n − 4 < y < n − 3, the underlying surface is a 2-trisc. In the face of valency
2n given by 1 < x < 4, n − 3 < y < 2n − 6 we insert a white vertex,
joined by an edge to the black vertex at (1, n − 3), and in the other face of
valency 2n we insert a black vertex, joined by an edge to the white vertex
at (2, n − 3), so that both of these faces now have valency 2(n + 1). At
each white vertex of the form (i, j) = (0, n − 1), (0, n + 1), ..., (0, 2n − 7) or
(2, 1), (2, 3), ..., (2, n − 5) we attach a stalk of length n − 1, with all interior
vertices of order m, within the incident square face i < x < i+1, j < y < j+1;
at each black vertex of the form (i, j) = (1, n − 1), (1, n + 1), ..., (1, 2n − 7)
or (3, 1, ), (3, 3), ..., (3, n − 5) we also attach a stalk of length n − 1, with all
interior vertices of order m, within the incident square face i − 1 < x < i,
j − 1 < y < j. The result of this is that each of the 2n − 8 originally square
faces now contains a stalk, and hence has valency 2(n + 1). Since m ≥ 5,
we can choose integers m0 ≥ 4 and m1 ≥ 3 so that m0 + m1 = m + 2 and
then multiply the horizontal boundary edges 0 < x < 1, y = n − 3 and
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0 < x < 1, y = n − 2 by m0 − 3 and m0 − 2, respectively, and the other two
horizontal boundary edges 2 < x < 3, y = n− 4 and 2 < x < 3, y = n− 3 by
m1 − 2, so that the boundary components have types (m0 − 1, m0, m0, m0)
and (m1 + 1, m1, m1, m1), with both first vertices of these sequences being
white vertices. Finally, we multiply each remaining horizontal internal edge
of the form i < x < i + 1, y = j for i = 0 or i = 2 by m − 2 or m − 3 as
i + j is even or odd, that is, as the vertex (i, j) is black or white, so that all
internal vertices have valency m. This map on the 2-trisc is represented in
Figure 14 (before multiplication of edges), with stars representing the stalks
of length n − 1.

*

*

*

*

2n-6

2n-8

2n-7

n-1

n-2

n-3

n-4

0

1

2n+2

2n+2

0 1 2 3 4

*

*

*

*

Figure 14. 2-trisc map for the odd case (before multiplication of edges).

To construct a map A on the annulus, before identifying the vertical sides
of Rn, we insert a black vertex in the face of valency 2n given by 1 < x <
4, n− 3 < y < 2n− 6, joined by an edge to the white vertex at (3, 2n− 6),
and in the other face of valency 2n we insert a white vertex, this time joined
by an edge to the black vertex at (0, 0). At each white vertex of the form
(i, j) = (0, n − 3), (0, n + 1), ..., (0, 2n − 7) or (2, 1, ), (2, 3), ..., (2, n − 5) we
attach a stalk of length n−1, with all interior vertices of order m, within the
incident square face i < x < i + 1, j < y < j + 1; at each black vertex of the
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form (i, j) = (1, n−1), (1, n+1), ..., (1, 2n−7) or (3, 1, ), (3, 3), ..., (3, n−3) we
also attach a stalk of length n−2, with all interior vertices of order m, within
the incident square face i−1 < x < i, j−1 < y < j. It follows that each of the
2n− 6 square faces now has valency 2(n + 1). This annulus is represented in
Figure 15 (before multiplication of edges), with stars representing the stalks
of length n − 1.

*

*

*

*

*

2n-6

2n-8

2n-7

n-1

n-2

n-3

n-4

0

1

2n+2

2n+2

0 1 2 3 4

*

*

*

*

*

Figure 15. Annulus map for the odd case (before multiplication
of edges).

We then multiply the boundary edges 0 < x < 1, y = 0 and 2 < x <
3, y = 0 by m0 − 2, and the boundary edges 0 < x < 1, y = 2n − 6 and
2 < x < 3, y = 2n − 6 by m1 − 2 and m1 − 1, respectively, so that the two
boundary components y = 0 and y = 2n− 6 have types (m0 − 1, m0, m0, m0)
and (m1 + 1, m1, m1, m1), with both first vertices of these sequences being
white vertices. Finally we multiply each horizontal internal edge i < x <
i + 1, y = j for i = 0 or i = 2 by m − 2 or m − 3 as i + j is even or odd and
we add an extra edge between vertices (1, n − 3) and (2, n − 3), so that all
internal vertices have valency m.

Finally, we will need two discs. To build the disc Da we construct a tessel-
lation Da of a closed disc D, with boundary type (m1 + 1, m1, m1, m1). We
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achieve this by starting with a square, regarded as a bipartite map on D with
one face and with four vertices and four edges on δD. We multiply each pair
of opposite edges by m1 − 3, introducing 2(m1 − 4) extra faces of valency 2,
so that all four vertices have valency m1. Then we introduce, within the face
of valency 4, a stalk of length n − 1 starting at a white vertex. We will get
a disc with 2(m1 − 4) internal faces of valency 2, one face of valency 2n + 2
and with a boundary component of type (m1 + 1, m1, m1, m1), with the first
vertex of this sequence being white (see Figure 16). For the other disc, Db,
we use the same tessellation but with a stalk at a black vertex, and instead
of multiplying both opposite edges by m0 − 3 we multiply just one of them
by m0 − 3 (the one that is not adjacent to the black vertex with a stalk) and
the other by m0 − 4. Then, we will get a disc with 2(m0 − 4) internal faces
of valency 2 and one face of valency 2n + 2, with a boundary component of
type (m0 − 1, m0, m0, m0), with the first vertex of this sequence being also
white (see Figure 17).

* m-2m -31

m -31

m +11 m1

m1m1

Figure 16. Disc a.

m-2m -40

m -30

m -10 m0

m0m0

*

Figure 17. Disc b.

Using the bipartite map A, together with B, Da and Db, the proof proceeds
as in earlier cases though we have to be careful, this time, to always attach
the boundary white vertices of valency m0−1 to the boundary white vertices
of valency m1 + 1.
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9.2. Hypermaps of type (m, m, 3) with m ≥ 5. To build A we take the
rectangle [0, 1] × [0, 6] ⊂ R

2, tesselated by six squares. The vertices, as in
previous examples, are the integer points (i, j), coloured black or white as
i+j is even or odd, joined by edges along the sides and from (0, j) to (1, j) for
j = 1, ..., 5. Before identifying the vertical sides y = 0 and y = 6, we multiply
three of the vertical edges: x = 1, 1 ≤ y ≤ 2, 3 ≤ y ≤ 4 and 5 ≤ y ≤ 6 by
m−4. This means that in one of the sides we are multiplying alternate edges
leaving the other ones unaltered. To increase the valency of the faces and
make them of valency 6, corresponding to hyperfaces of valency 3, we also
need to add a stalk of length 1 (which is just an edge with a vertex) at each
of the six vertices with x = 1 (the ones on the right side of the rectangle),
in the 4-gonal face below and to the left of those vertices. Thus, we get six
faces of valency 6 and the rest of valency 2, as it can be verified with the
help of Figure 18. All the six internal vertices are of valency 1 and, because
of that, they do not interfere with the type of our final hypermap.

m-4

m-4m-4

m-4

Figure 18. Annulus map for hypermaps of type (m, m, 3) with
m ≥ 5.

On the other hand, the boundary components x = 0 and x = 1 have types
3(6) and (m − 1)(6), respectively.

To construct T we take another rectangle, this time the rectangle [0, 2] ×
[0, 8] ⊂ R

2, with opposite sides identified. The vertices are again at the
integer points (i, j), coloured black or white as i + j is even or odd. There
are vertical edges between (i, j) and (i, j + 1) for i = 0, 1, 2 and j = 0, ..., 7
with those between (i, 1) and (i, 2), for i = 0, 1, multiplied by m − 3. The
horizontal edges are the ones between (i, j) and (i+1, j) for i = 0 and j even,
and for i = 1 and j odd. Some of these, the ones between (1, j) and (2, j) for
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j = 3 and 7, are multiplied by m − 2 and the edge between (0, 0) and (1, 0)
is multiplied by m− 3. We then remove two 6-gonal faces, the ones given by
0 < x < 1 for 0 < y < 2 and 4 < y < 6. This will leave us with boundary

m-2

m-2

m-3 m-3

m-3

Figure 19. 2-trisc map for hypermaps of type (m, m, 3) with
m ≥ 5.

components of types (m − 1)(6) and 36 respectively (see Figure 19).
Six of the faces of T are 6-gons and the rest are 2-gons. All the four

internal vertices are of valency m, which is important to obtain the required
final type.

Finally, for the disc we need to place six vertices around the boundary
of D, alternately black and white. Three alternate boundary segments are
multiplied by m−2 and by this process all the six vertices have valency m−1
and the disc has type (m − 1)(6). All the faces of this piece have valency 2
except one of them that has valency 6 (see Figure 20).

m-2m-2m-2 m-2m-2m-2

m-2m-2m-2

Figure 20. Disc map for hypermaps of type (m, m, 3) with m ≥ 5.

We also need another disc of type 3(6). That can be achieved by multiplying
alternate boundary segments by 2 instead of m − 2. To obtain the final
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hypermaps we just need to join the boundary components of type (m− 1)(6)

with those of type 3(6), proceeding as in earlier cases.

9.3. Hypermaps of type (4, 4, 3). This case must be dealt separately
because the previous annulus does not work for such a low value for m. If
m = 4, m − 4 would be 0 and that will lead us to a nonconnected graph.
However, we can use the same T and D as in the previous section and
proceed as before, in earlier proofs. The new annulus is the following: we
take a rectangle [0, 2] × [0, 6] ⊂ R

2, with vertices at the integer points (i, j),
colored black or white as i + j is even or odd. The edges are along the sides,
and also from (i, j) to (i + 1, j), for i = 0, 1 and j = 0, ..., 6, so that the
rectangle is tessellated by six faces, all of valency 6 (see Figure 21).

Figure 21. Annulus map for hypermaps of type (4, 4, 3).

The side y = 0 is identified with the side y = 6 and the two boundary
components are both of type 3(6).

9.4. Hypermaps of type (4, 4, m), odd m ≥ 5. If, by a Machi operation
[5], we transpose hyperedges and hyperfaces, we will deal with hypermaps of
type (4, m, 4) instead, which will be enough to solve this case.

To construct the 2-trisc we take the rectangle [0, 3] × [0, 2] ⊂ R
2, with

vertices at the integer points (i, j) coloured black or white as i + j is even or
odd. The edges are around the sides and also from (1, 1) to (0, 1), (1, 0), (2, 1)
and (1, 2), and from (2, 1) to (2, 2). We then remove the square 1 < x < 2,
1 < y < 2.

The identifications of the sides of the rectangle are slightly different from
previous cases: the side y = 0 is identified with the side y = 2 by putting
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Figure 22. 1-trisc map.

(x, 0) = (x, 2) and the side x = 0 is identified with the side x = 3 by putting
(0, y) = (3, y+1) where we take y+1 mod (2). Within the square 0 < x < 1,
1 < y < 2 we draw m−5 paths of length 2 between the black vertices at (0, 2)
and (1, 1), each containing a white vertex of valency 2, creating (m−5)/2+2
new faces of valency 4. Then, in one of the new faces that shares edges with
the old one, we draw two paths of length 1, each joining the black vertex
at (0, 2) to another white vertex (see example on Figure 23). This last step
creates a new face of valency 8, representing a hyperface of valency 4). By

4

8

4

Figure 23. A face of valency 8 transformed into two faces of
valency 4 and one of valency 8.

this process we obtain a torus minus a disc, with boundary having black
vertices of order 4 and 2, and white vertices of valencies m − 1 and 3. This
torus minus one disc (1-trisc) has two 8-gonal faces and the other faces are
4-gons. Its unbranched double covering gives us the 2-trisc, with twice the
number of faces.

To construct the annulus we consider the rectangle [0, 1]× [0, 4] ⊂ R
2 with

vertices at integer points (i, j) coloured white or black as i+j is even or odd.
There are edges around the sides and also from (0, 3) to (1, 3). The edges
from (0, 2) to (0, 3) and from (1, 0) to (1, 1) are multiplied by 2. Within the
square 0 < x < 1, 3 < y < 4 we draw m − 5 paths of length 2 between the
black vertices at (0, 4) and (1, 3), each containing a white vertex of valency
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2. From each white vertex (0, 4) (1, 3), and inside the same face, we draw
two paths of length 1.

Finally we identify the side y = 0 with the side y = 4 to form an annulus.
Both boundary components have the same type (m−1, 4, 3, 2) as the ones in
the 2-trisc but with mutually inverse cyclic orders, so we need to use these
annuli in mirror-image pairs to make the identification work properly.

To construct the disc D we place four vertices around the boundary of
D, two black alternating with two white, joined by four edges around the
boundary. We then join one black vertex to the two white vertices by edges
across the interior, creating one 4-gonal face and two 2-gons. Within one of
these 2-gons, we place k = (m−5)/2+1 black vertices, each joined by a pair
of edges to the white in nested fashion, creating one 2-gon and k 4-gons (see
Figure 24 for an example).

Figure 24. Example of a disc with boundary of type (2, 4, 7, 2).

This will make the boundary of the disc have the same type as the boundary
components of the 2-trisc and the annulus. In the gluing process, we need to
join vertices of order m− 1, 4, 3 and 2 with vertices of order 3, 2, m− 1 and
4, respectively, to get black vertices of order m and white vertices of order 4.

9.5. Hypermaps of type (3, 3, m), for odd m ≥ 5. In order to build
the required hypermaps of type (3, 3, m), for odd m ≥ 5, we will use 2-face
colourable maps of type {3, 2m} and then take the duals of these, a method
previously used in Section 8.4 for the case (3, 3, 4). Let R be the rectangle
[0, 6]× [0, 2] ⊂ R

2 with vertices at (i, j) (with i ∈ {1, 3, 5} and j ∈ {0, 2}) and
(i, 1) with i ∈ {0, 2, 4, 6}). There are horizontal edges between all consecutive
vertices with the same horizontal coordinates and also:

(i, 1) × (i − 1, j) if i ∈ {2, 4, 6} and j ∈ {0, 2}

(i, 1) × (i + 1, j) if i ∈ {0, 2, 4} and j ∈ {0, 2}
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We then identify opposite sides of the rectangle to get a torus. This will
give rise to 11 triangular faces but we remove two of them (one correspond-
ing to the triangle of vertices (0, 1), (1, 2), (5, 2) and the other to the triangle
(2, 1), (3, 2), (4, 1). The face (2, 1), (3, 0), (4, 1) is coloured red and the re-
maining ones are coloured red or white in such a way that no adjacent faces
have the same colour (this operation is possible because this map is 2-face
colourable). Hence, there are three vertices in each boundary component of
the 2-trisc adjacent to three red faces, in one case, and three white faces on
the other∗. All the vertices have valency 6. To build the right map on the
2-trisc, we need to add a suitable amount of wedges to some faces (see Figure
25 for an example), before identification.

A wedge (v0, w, v1), attached to vertices v0, v1 on a triangular face f =
(v0, v1, v2), is constructed by adding a vertex w inside the face f and then
joining w to v0 and v1, within f , and adding another edge, also within f ,
between v0 and v1 in such a way that (v0, v1, v2) is still a triangular face. Each
time we introduce a wedge to a face, we are also adding two more triangular
faces to the map. And if the original map is 2-face colourable, so it will be
after introducing as many wedges as we want.

Figure 25. 2 wedges attached to the same vertices and on the
same face.

In this case, to build our 2-trisc map, we need to add, three times, (2m −
10)/4 wedges. First, between vertices (2, 1), (3, 2) inside the face ((2, 1), (3, 2), (1, 2)),
then between vertices (3, 2), (4, 1) inside the face ((3, 2), (4, 1), (5, 2)), and fi-
nally between vertices ((2, 1), (4, 1) inside the face ((2, 1), (4, 1), (3, 0). We

∗The colours of the faces adjacent to the boundary components are important because we want
the final map to be also 2-face colourable and this is only possible if we have no adjacent faces of
the same colour after gluing the pieces.
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will get then two boundary components, one of type 6(3) and another one of
type (2m − 4)(3) (see Figure 26, an example of a 2-Trisc for m = 7).

1 2 3 4 5 60

1

2

0

Figure 26. 2-Trisc for m = 7.

To build the annulus we use the same rectangle [0, 6] × [0, 2] ⊂ R
2 with

the vertices in the same places as before. However we do not remove any
triangular face and we attach (2m−8)/2 wedges to each one of the following
two pairs of vertices:

(1, 2), (3, 2) inside face ((1, 2), (3, 2), (2, 1)),

(6, 1), (5, 2) inside face ((6, 1), (5, 2), (1, 2));

(2m − 6)/2 wedges to the following pair of vertices:

(2, 1), (4, 1) inside face ((2, 1), (4, 1), (3, 2));

and one wedge to each of the two following pairs:

(3, 0), (5, 0) inside face ((3, 0), (5, 0), (4, 1)),

(0, 1), (1, 0) inside face ((0, 1), (1, 0), (2, 1));

If we identify the vertical sides of the rectangle we get a map on an annulus
and, by the way we constructed it, that map is 2-face colourable (we use the
opposite colour scheme we have used in the 2-trisc and we use the white
colour to each wedge inside a red triangular face, and the red colour to each
wedge inside a white triangular face). It follows that one of the boundary
components has type 6(3) and is adjacent to three red faces, and the other
one has type (2m − 4)(3) and is adjacent to three white faces (see Figure 27
for an example). All the interior vertices have valency 2m.

To construct the disc, we take D = {z ∈ C : |z| ≤ 2}, with vertices at
±2, ±1+ i, 0 and 2i, with edges along the boundary components and joining
the vertex at −2 to 0 and −1 + i, the vertex at 2 to 0 and 1 + i, and the



INFINITELY MANY HYPERMAPS OF A GIVEN TYPE AND GENUS 31

1 2 3 4 5 60

1

2

0

Figure 27. Annulus for m = 5.

vertex at 2i to 1+ i and −1+ i. We have then, at this stage, three triangular
faces and one face of valency 6. Inside this hexagonal face we add three
more edges, between −2 and 2, between −2 and 2i, and between 2 and 2i.
Hence, this new Disc, D1, has 7 triangular faces, is 2-face-colourable and has
type 6(3) (see Figure 28). Depending on the way we coloured the faces, we
might have three white faces adjacent to the boundary component or three
red faces instead. If we introduce (2m − 6)/4 wedges attached to each one
of the three possible different pairs of boundary vertices (and in each one of
the three boundary faces) we will get again a 2-face-colourable disc, D2, but
this time of type (2m − 4)(3).

Figure 28. Disc D1 with red boundary.

To build infinitely many hypermaps of type (3, 3, m) we need to glue, a
suitable number of times, the red boundary component 6(3) of an annulus (or
a 2-trisc, or a disc) with the white boundary (2m − 4)(3) of another annulus
(or a 2-trisc, or a disc).

This completes the proof of Theorem 1.1.
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10. Reduction to the planar case

A 2-sheeted covering of the sphere, branched over four points, is a torus. A
2-sheeted covering of a torus, branched over two points, is a surface of genus
2. If g ≥ 3 then a (g − 1)-sheeted unbranched covering of a surface of genus
2 is a surface of genus g.

Now suppose that we can construct infinitely many hypermaps of type
(l, m, n) and genus 0, where one of l, m, n (say m) is even, and each hypermap
has at least five hyperedges e1, . . . , e5 of valency dividing m/2. Taking 2-
sheeted coverings branched over e1, . . . , e4 gives infinitely many hypermaps
of type (l, m, n) and genus 1, each with at least two hyperedges e′5 and e′′5
(covering e5) of valency dividing m/2. Taking 2-sheeted coverings of these
branched over e′5 and e′′5 gives infinitely many hypermaps of type (l, m, n) and
genus 2. Taking (g−1)-sheeted unbranched coverings of these gives infinitely
many hypermaps of type (l, m, n) and genus g ≥ 3.

In particular, taking m = 2, if we can construct infinitely many planar
maps of a given type, each with at least five free edges, then we can construct
infinitely many maps of genus g of that type for each g.

11. Maps of type {3, 7}.

One of the most interesting of the hyperbolic triangle groups is ∆ =
∆(2, 3, 7): for example, the normal subgroups of finite index in ∆ uniformise
those compact Riemann surfaces of genus g > 1 which attain Hurwitz’s up-
per bound of 84(g − 1) automorphisms. By contrast, the subgroups of finite
index we are interested in here are generally not normal. By earlier remarks,
if we regard ∆ as the triangle group ∆(7, 2, 3) then conjugacy classes of sub-
groups of finite index in ∆ correspond to compact oriented hypermaps of
type (7, 2, 3), that is, compact oriented maps of type {3, 7} in Coxeter and
Moser notation [2], with the subgroups having the same genus as the map.
As a simple example of the more general methods to be used later, we will
prove the following result:

Theorem 11.1. For each integer g ≥ 0 there are infinitely many noniso-

morphic maps of type {3, 7} and genus g, including at least one uniform map

if g ≥ 2.

As an immediate corollary we have:
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Corollary 11.1. For each integer g ≥ 0 the triangle group ∆ = ∆(2, 3, 7)
has infinitely many subgroups of finite index and of genus g, including at least

one surface subgroup if g ≥ 2.

Proof of Theorem 11.1: Our method is to construct maps of type {3, 7} by
joining together suitable numbers of copies of three basic ‘Lego’ pieces, each
carrying a triangulation. These are a disc D, an annulus A, and a pair of
pants P (topologically a sphere minus one, two or three open discs).

We form P by subdividing a pair of pants P into 14 triangles, with no
vertices in the interior of P , so that each of its three boundary components
is a 4-gon with its edges as part of the triangulation, and with vertices of
valencies 4, 5, 4 and 5 in cyclic order. For instance one can construct P by
choosing three pairs of adjacent faces of an icosahedron, no two pairs having
a vertex in common, and removing these six faces together with the three
edges separating the faces in each pair.

We take D to be the closed unit disc D in C, with four edges around the
boundary ∂D = S1 joining vertices at ±1 and ±i, and three disjoint edges
across D joining the pairs of vertices −i and 1, 1 and −1, and −1 and i, so
that D is subdivided into two faces of valency 3 and two of valency 2. We
then add a loop at each of the vertices ±i within its incident face of valency
2, dividing this face into two faces of valencies 1 and 3 (see Figure 29). Thus
D has four faces of valency 3 and two of valency 1, and its boundary is a
cycle of length 4, with vertices of valencies 4, 5, 4 and 5 in that cyclic order.
We construct A from P by capping one of its three ‘holes’ with the disc D. If

Figure 29. Disc.

we identify ∂D with one of the boundary components of P , so that vertices
of valency 4 are matched with those of valency 5, the result is an annulus
A subdivided into 18 faces of valency 3 and two of valency 1; it has four
internal vertices of valency 4+5− 2 = 7 on ∂D, and eight boundary vertices
(those of ∂P \ ∂D), four each of valencies 4 and 5.
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If g ≥ 1 and k ≥ 0, with k ≥ 1 if g = 1, we take 2(g − 1) copies of
P and k copies of A. By making suitable pairwise identifications of their
6(g−1)+2k boundary components, with vertices of valency 4 matched with
those of valency 5, one can construct a compact orientable map Mg,k and
genus g. This map is without boundary, and its vertices all have valency 7;
in addition to its 28(g − 1) + 18k faces of valency 3 it has 2k of valency 1
(two on each copy of A), so it corresponds to a subgroup Mg,k of signature
(g; 3(2k)) and index 84(g−1)+56k in ∆. In particular, if g ≥ 2 then by taking
k = 0 we obtain a uniform map Mg,0, corresponding to a surface group of
genus g and index 84(g − 1) in ∆.

The construction for g = 0 is similar, but we now use k copies of A and
two of D, where k ≥ 0, to obtain a spherical map of type {3, 7} with 18k + 8
faces of valency 3 and 2k + 4 of valency 1, corresponding to a subgroup of
signature (0; 3(2k+4)) and index 56k + 28 in ∆.
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