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Abstract: In this paper a variational segmentation model is proposed. It is a
generalization of the Chan and Vese model, for the scalar and vector-valued cases.
It incorporates extra terms, depending on the image gradient, and aims at approx-
imating the smoothed image gradient norm, inside and outside the segmentation
curve, by mean constant values. As a result, a flexible model is obtained. It seg-
ments, more accurately, any object displaying many oscillations in its interior. In
effect, an external contour of the object, as a whole, is achieved, together with inter-
nal contours, inside the object. The existence of solution to this model is addressed
and proved. For determining the approximate solution a Levenberg-Marquardt
Newton-type optimization method is applied to the finite element discretization of
the model. Experiments on synthetic images and in vivo medical endoscopic images
(displaying aberrant colonic crypt foci) illustrate the efficacy of this model. More-
over, comparisons with the Chan and Vese segmentations show the advantage of
the proposed model in terms of accuracy.
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1. Introduction and motivation
Image segmentation is a principal issue in image processing. It aims at

partitioning an image into a finite number of disjoint objects, and at identi-
fying the boundaries separating them. It is a subject of extreme importance
in computer vision. Recently, there has been a growing interest on automatic
segmentation of medical images.

There are many types of segmentation methods, and some of the most ef-
fective are variational or PDE (partial differential equation) based methods
(see for instance [3, 8, 18]). Among these we refer in particular the active con-
tour/snake model (see [14]) and the geodesic/geometric active contour models
(see [5, 15, 17]), which are enhancements of the previous model. These are
all based on techniques of curve evolution and use an edge-detector function,
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depending on the gradient of the given image, to stop the evolving curve on
the boundary of the object to be segmented. Another fundamental approach
is the variational model defined by the Mumford-Shah’s functional [19]. In
particular, the Chan and Vese model (for the scalar or vector-valued cases
[9, 7]) is a simplified version of this Mumford-Shah’s functional, that is for-
mulated in a level set framework [20, 21]. This model is also included in
the so-called class of active contours without edges model, in contrast with
the above mentioned snake or geodesic/geometric active contours, because it
does not contain any edge detector and neither is the gradient of the image
incorporated in the model. For the case of a scalar image, the Chan and
Vese model (see [9]) seeks to approximate an image by a function taking
only two values, representing the mean intensity inside and outside the seg-
mented region (for a vector-valued image it approximates each component
of the image in a similar way, see [7]). Like this, a binary segmentation is
achieved: the image is partitioned into two regions (the detected objects and
the background) and the segmentation curve is the boundary between these
two regions.

In [4] a modified version of the Chan and Vese model [9] is introduced.
Based on a redefinition of [9], as a global convex minimization problem (see
[6]), in [4] this redefinition is modified (with the motivation of a fast computa-
tion of a global minimum) to incorporate information from an edge detector.
More precisely, this modification includes a weighted total variation term,
whose weight function can be chosen to be an edge detector, depending on
the image gradient. In this way, as mentioned in [13], ”... the model is more
likely to favor segmentation along curves where the edge detector function is
minimal”.

In this paper we propose a generalization of the Chan and Vese model
(for the scalar and vector-valued cases [9, 7]), by adding to the minimization
functional extra terms, that depend on the image gradient (see (1), (2) and
(5), in section 2). By doing this we incorporate more information about
the input image in the segmentation model, and consequently we expect
an enhancement of the model. Unlike the above mentioned paper [4], the
new extra terms are not edge-detectors, but rather fitting terms that intend
to approximate the smoothed image gradient norm, inside and outside the
segmentation curve, by mean constant values. The goal is to create a model
able to segment, more accurately, any object displaying many oscillations
in its interior. In effect in our experiments, either synthetic or endoscopic
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images (see section 5), an external contour of this type object, as a whole, is
achieved, together with internal contours, inside the object.

It is worth mentioning, that for the particular medical endoscopic images
presented in this paper, containing in vivo colonic aberrant crypt foci, the
physician requirements were also the main inducement for defining this seg-
mentation model. In effect, from the medical point of view the main goal
is to achieve a segmentation able to detect the macro (external) contour of
each aberrant focus (each focus is a set of several crypts, which are more
darkly stained than normal crypts, see [22]), as well as, if possible, the micro
(internal) contours inside the focus. These interior contours should segment
the crypt’s orifices, whose shapes are important to recover, for medical re-
search and possible diagnostic assessments (according to endoscopic criteria,
see for instance [1, 22, 23], the shapes of the crypt’s openings are classified
in three main types: type I for round, oval or semi-circular lumens, type II
for asteroidal or slit-like lumens, and type III for compressed and ill-defined
lumens).

In the literature we found out a related paper, [25], where the square of the
gradient norm of a smoother version of an image is considered as the input
datum for the Chan and Vese model [9]. In addition, applications to some
bone computed tomography (CT) images are described. We remark however
that for the endoscopic medical images presented in our paper, using only the
gradient norm channels as input data, did not produce good segmentation
results (see Figures 4 (e) and 5 (e)).

This paper is organized as follows. After this introduction, the following
section 2 details the proposed model and its generalization to vector-valued
images. Then, in section 3 we prove the existence of minimizers, by refor-
mulating the model and using properties of bounded variation spaces. A
global minimization result is also stated (it results directly from an analo-
gous global minimizer result for the Chan and Vese model, demonstrated
in [6]). Section 4 briefly describes the numerical approximation employed
(a Levenberg-Marquardt Newton-type optimization method applied to the
model finite element discretization, as in [11]). Section 5 reports the results
of the experiments conducted on synthetic images and medical endoscopic
images. Comparisons with the Chan and Vese segmentations highlight the
better performance of the new proposed model. Finally some conclusions
and future work.
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2. Description of the model
Let Ω be a bounded open set of R2, I : Ω −→ R a scalar function repre-

senting a given image, |∇I|s a smoothed version of its gradient norm, and
C a curve in Ω, symbolizing the segmentation curve of the region in Ω to
segment.

We define the variational segmentation functional

F (c, d, C) := µLength (C) + ηArea (insideC)+

λin
∫

inside (C)
|I − cin|2 dx+ λout

∫
outside (C)

|I − cout|2 dx+

λin
∫

inside (C)

∣∣|∇I|s − din∣∣2 dx+ λout
∫

outside (C)

∣∣|∇I|s − dout∣∣2 dx. (1)

Here c := (cin, cout) and d := (din, dout) are the unknown averages of I and
|∇I|s, respectively, inside (for the subscript in) and outside (for the subscript
out) the unknown segmentation curve C; µ and η are two nonnegative fixed
regularizing parameters (µ and η penalize the length of the boundaries of
C and the area inside C, respectively) ; λin, λout, λin, λout are nonnegative
fixed parameters weighting the fitting terms (they are scale parameters, in
the sense the bigger they are the more details will be captured). In the sequel
we also denote λ := (λin, λout) and λ := (λin, λout).

Let now the curve C ⊂ Ω be represented by the 0-level set of a Lipschitz
function φ : Ω→ R, which means

C := {x ∈ Ω : φ(x) = 0}
inside (C) := {x ∈ Ω : φ(x) > 0}
outside (C) := {x ∈ Ω : φ(x) < 0}.

Then the level set formulation of (1) is

F (c, d, φ) := µ
∫

Ω
δ(φ)|∇φ| dx+ η

∫
Ω
H(φ) dx+

λin
∫

Ω
|I − cin|2H(φ) dx+ λout

∫
Ω
|I − cout|2

(
1−H(φ)

)
dx+

λin
∫

Ω

∣∣|∇I|s − din∣∣2H(φ) dx+ λout
∫

Ω

∣∣|∇I|s − dout∣∣2 (1−H(φ)
)
dx,

(2)

where H is the Heaviside function (H(z) := 1 if z ≥ 0, H(z) := 0 if z < 0),
and δ(z) := d

dzH(z) is the Dirac delta function in the sense of distributions.
We address the problem

min
(c,d,φ)

F (c, d, φ). (3)

We remark that when λin = 0 = λout, then (3) coincides with the Chan and
Vese model [9].
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By fixing φ and minimizing with respect to the unknown averages cin, cout,
din, dout, separately, it is found that these are functions of φ and verify

cin(φ) =
∫
Ω I H(φ) dx∫
Ω H(φ) dx

, cout(φ) =
∫
Ω I
(

1−H(φ)
)
dx∫

Ω

(
1−H(φ)

)
dx

din(φ) =
∫
Ω |∇I|

sH(φ) dx∫
ΩH(φ) dx

, dout(φ) =
∫
Ω |∇I|

s
(

1−H(φ)
)
dx∫

Ω

(
1−H(φ)

)
dx

.

(4)

A straightforward generalization of the functional (2) to vector-valued im-
ages with n components, i.e. I = (I1, . . . , In) : Ω −→ Rn, is (compare with
the model defined in [7])

F (c, d, φ) := µ
∫

Ω
δ(φ)|∇φ| dx+ η

∫
Ω
H(φ) dx+

1
n

∑n
i=1

( ∫
Ω
λiin|Ii − ciin|2H(φ) dx+

∫
Ω
λiout|Ii − ciout|2

(
1−H(φ)

)
dx
)

+

1
n

∑n
i=1

( ∫
Ω
λ
i

in

∣∣|∇Ii|s − diin∣∣2H(φ) dx+
∫

Ω
λ
i

out

∣∣|∇Ii|s − diout∣∣2 (1−H(φ)
)
dx
)
,

(5)

where c := (cin, cout) and d := (din, dout) are now defined by cin := (ciin)
n
i=1,

din := (diin)
n
i=1, cout := (ciout)

n
i=1, dout := (diout)

n
i=1, and λiin, λ

i
out λ

i

in, λ
i

out

are again nonnegative fixed fitting term parameters, for i = 1, . . . , n. We

also denote λ := (λi)ni=1 with λi := (λiin, λ
i
out), and λ := (λ

i
)ni=1 with λ

i
:=

(λ
i

in, λ
i

out).
In the sequel we consider as well the following modified objective functional,

either for (2) or (5), with two extra regularizing terms (see [11], where the
same regularization is proposed)

Fαβ(c, d, φ) := F (c, d, φ) +
β

4

∫
Ω

(
|∇φ|2 − 1

)2
dx+

α

2

∫
Ω

|∇φ|2 dx, (6)

where β ≥ 0 and α ≥ 0 are two small positive fixed parameters. The term
β
4

∫
Ω

(
|∇φ|2−1

)2
dx simply penalizes the deviation of the slope of the level set

function from unity, which gives a well-defined level-set function (similarly
to a signed distance function, which also attempts to maintain a slope of 1).
The term α

2

∫
Ω |∇φ|

2dx is a Tikhonov like regularization.

3. Existence of solution
In this section we first prove there exists a solution to the minimization

problem (3), when the objective functional is defined by (2) for the scalar
case, by (5) for the vector-valued case or by (6) for the regularized case (either
scalar or vector-valued). We remark, however, that this proof also applies
directly to the Chan and Vese model (as suggested, but not demonstrated,
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in [9], p.269), since (2), (5) or (6) reduce to the Chan and Vese functional, by
choosing the λ parameters in the gradient norm terms, and the regularizing
parameters, α and β, equal to zero. Secondly, we show that, when the
objective functional is defined either by (2) or (5), the segmentation problem
can be reformulated as a similar problem which has a global minimizer (the
proof relies on analogous arguments to those employed in [6], for the Chan
and Vese model).

For the first claim we need to recall a definition and some properties of
functions with bounded variation (see below definition 3.1 and theorems 3.1,
3.2, 3.3: cf. [2, 12], for example, for a detailed explanation of these concepts).

Definition 3.1. Let Ω ⊂ Rn be an open set and f ∈ L1(Ω) (in this paper
n = 2). Define ∫

Ω

|Df | := sup
φ∈Φ

{∫
Ω

f divφ dx

}
where Φ =

{
φ ∈ C1

0(Ω,R2) : |φ(x)| ≤ 1 in Ω
}

. A function f ∈ L1(Ω) is
said to have bounded variation in Ω, if

∫
Ω
|Df | < +∞. In particular, if

f ∈ W 1,1(Ω), then
∫
Ω
|Df | =

∫
Ω
|∇f(x)|dx, where ∇f is the gradient of f in

the sense of distributions. BV (Ω) is the space of all functions in L1(Ω) with
bounded variation. Under the norm ‖f‖BV (Ω) = ‖f‖L1(Ω) +

∫
Ω |Df |, BV (Ω)

is a Banach space.

Theorem 3.1. ([2], p.402) If f ∈ BV (Ω), then for a.e. t ∈ R, the level
set Et := {x ∈ Ω : f(x) > t} has finite perimeter, i.e., its characteristic
function χEt

∈ BV (Ω) (Note: by definition a Borel subset E of Rn is called
a set of finite perimeter, when its characteristic function χE ∈ BV (Ω)).

Theorem 3.2. ([2], p.378) Let Ω be a 1-regular open bounded subset of Rn.
Then for all p, 1 ≤ p < n

n−1, the embedding BV (Ω) ⊂ Lp(Ω) is compact.

Theorem 3.3. ([2], p.372) Let (fk)k∈N be a sequence in BV (Ω) strongly
converging to some f ∈ L1(Ω) and satisfying supk∈N

∫
Ω |Dfk| < +∞. Then,

f ∈ BV (Ω),
∫

Ω |Df | ≤ lim infk→+∞
∫

Ω |Dfk|, and fk weakly converges to f
in BV (Ω).

We now make use of the above properties to reformulate problem (3).
Let ω denote the set corresponding to the region inside (C), which means
ω := {x ∈ Ω : φ(x) > 0}. Then using χω, the characteristic function of ω
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(χω(x) = 1, if x ∈ ω, and χω(x) = 0, if x /∈ ω), and due to definition 3.1 and
theorem 3.1 we reformulate the functional (2) as

F (χω) := µ
∫

Ω
|∇χω| dx+ η

∫
Ω
χω dx+

λin
∫

Ω
|I − cin(χω)|2 χω dx+ λout

∫
Ω
|I − cout(χω)|2

(
1− χω

)
dx+

λin
∫

Ω

∣∣|∇I|s − din(χω)
∣∣2 χω dx+ λout

∫
Ω

∣∣|∇I|s − dout(χω)
∣∣2 (1− χω) dx,

(7)

with (compare to (4))

cin(χω) =
∫
Ω I χω dx∫
Ω χω dx

, cout(χω) =
∫
Ω I
(

1−χω
)
dx∫

Ω

(
1−χω

)
dx

din(χω) =
∫
Ω |∇I|

s χω dx∫
Ω χω dx

, dout(χω) =
∫
Ω |∇I|

s
(

1−χω
)
dx∫

Ω

(
1−χω

)
dx

.

(8)

In addition, the minimization problem (3) is redefined as

min
χω∈BV (Ω)

F (χω). (9)

We remark that a similar reformulation to (7) holds true for the functionals
(5) and (6).

Proposition 3.1. There exists a solution to the minimization problem (9),
where the objective functional is a redefinition of (2) (or of (5) or (6)), by
means of characteristic functions.

Proof : The proof is presented only for the objective functional (2) (the gen-
eralization to the functionals (5) and (6) is straightforward, so it is omitted).

Set m := infχω∈BV (Ω) F (χω). If m = +∞, there is nothing to prove. So,
let’s suppose that m < +∞. Let {χωk

}∞k=1 be a minimizing sequence for F ,
i.e.

F (χωk)
k→∞−−−−→ m.

Then, from (7)

F (χωk) ≥ µ

∫
Ω

|∇χωk |dx,

and consequently

sup
k∈N

∫
Ω

|∇χωk |dx < +∞. (10)

But, because χωk
∈ W 1,1

0 (Ω) and Ω is bounded we can apply Poincaré
inequality to obtain

‖χωk‖L1(Ω) ≤ C‖∇χωk‖L1(Ω) = C

∫
Ω

|Dχωk | ≤ C̃ (11)
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where C and C̃ are constants independent of ωk. Thus, from (10) and (11)
we conclude that

sup
k∈N
‖χωk‖BV (Ω) < +∞.

Then {χωk
}∞k=1 is bounded in BV (Ω) and due to theorem 3.2, there is a sub-

sequence of {χωk
}∞k=1, that we also denote by {χωk

}∞k=1, strongly convergent
to an element f ∈ L1(Ω). Since χωk

is either 1 or 0, f is either 1 or 0 a.e. in
Ω. Therefore we may view f as the characteristic function, χE, of a set E.
But then, by theorem 3.3, f ∈ BV (Ω) and

∫
Ω |Df | ≤ lim infk→+∞

∫
Ω |Dfk|.

This latter inequality leads to

F (χE) ≤ lim inf
k→∞

F (χωk) = m. (12)

In effect, we have that

lim
k→∞

F (χωk) = F (χE), with F (χωk) := F (χωk)− µ
∫

Ω

|∇χωk | dx.

because {χωk
}∞k=1 strongly converges to χE in L1(Ω). Since χE ∈ BV (Ω),

we conclude, from (12), F (χE) = m and this ends the proof.

Proposition 3.2. For any fixed c = (cin, cout), d = (din, dout), the problem
minφ F (c, d, φ) with F defined by (2) or (5) (which is a nonconvex mini-
mization problem), can be reformulated as the following convex constrained
problem

min
0≤φ≤1

G(c, d, φ), (13)

where the objective functional G is

G(c, d, φ) := µ
∫

Ω
|∇φ| dx+ η

∫
Ω
φ dx+

λin
∫

Ω
|I − cin|2 φ dx− λout

∫
Ω
|I − cout|2 φ dx+

λin
∫

Ω

∣∣|∇I|s − din∣∣2 φ dx− λout ∫Ω

∣∣|∇I|s − dout∣∣2 φ dx,
(14)

for (2), and for (5)

G(c, d, φ) := µ
∫

Ω
|∇φ| dx+ η

∫
Ω
φ dx+

1
n

∑n
i=1

(
λiin
∫

Ω
|Ii − ciin|2 φ dx− λout

∫
Ω
|Ii − ciout|2 φ dx

)
+

1
n

∑n
i=1

(
λ
i

in

∫
Ω

∣∣|∇Ii|s − diin∣∣2 φ dx− λiout ∫Ω

∣∣|∇Ii|s − diout∣∣2 φ dx)
(15)

for (5). Then, the segmented region to be recovered is defined by the set
{x ∈ Ω : φ(x) ≥ s} for a.e. s ∈ [0, 1].

In addition, problem (13) has the same set of minimizers as the convex
unconstrained minimization problem

min
φ

(
G(c, d, φ) +

∫
Ω

θ p(φ) dx
)

(16)
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where p(ξ) := max{0, 2|ξ − 0.5| − 1}, provided that θ > 1
2‖ψ‖L∞(Ω) and

‖ψ‖L∞(Ω) < +∞, where

ψ := η + λin|I − cin|2 − λout|I − cout|2 + λin|
∣∣|∇I|s − din∣∣2 + λout

∣∣|∇I|s − dout∣∣2,
for (2) and

ψ := η + 1
n

∑n
i=1

(
λiin|Ii − ciin|2 − λiout|Ii − ciout|2 + λ

i

in|
∣∣|∇Ii|s − diin∣∣2 + λ

i

out

∣∣|∇Ii|s − diout∣∣2),
for (5).

Proof : The proof follows the same arguments as in [6], thus we omit it.
We just give the key observation for justifying the formulation (13)-(14).
Variations of the functional (2), with respect to the level set function φ, lead
to the steady state equation

∂φ
∂t

= H ′ε(φ)
(
µ div

(
∇φ
|∇φ|

)
− η − λin|I − cin|2 + λout|I − cout|2

)
+ H ′ε(φ)

(
−λin

∣∣|∇I|s − din∣∣2 + λout
∣∣∇I|s − dout∣∣2) , (17)

where in (2) the Heaviside function has been replaced by a noncompact
supported, smooth approximation Hε, and H ′ε is its derivative (in [9] the
choice is Hε(z) := 1

π

(
arctan(zε) + 1

2ε

)
), and H ′ε(z) = ε

π(ε2+z2)). As a result, the

steady state solution of (17) coincides with the steady state solution of

∂φ
∂t

= µ div
(
∇φ
|∇φ|

)
− η − λin|I − cin|2 + λout|I − cout|2

−λin
∣∣|∇I|s − din∣∣2 + λout

∣∣∇I|s − dout∣∣2. (18)

The conclusion follows by remarking that (18) is the gradient descent scheme
for minimizing the functional G in (14).

Moreover, we remark that the unconstrained convex minimization problem
(16) can be regularized, by adding to the objective functional G the terms
indicated in (6), that is, we replace in (16) G by Gαβ where

Gαβ(c, d, φ) := G(c, d, φ) +
β

4

∫
Ω

(
|∇φ|2 − 1

)2
dx+

α

2

∫
Ω

|∇φ|2 dx, (19)

with β ≥ 0 and α ≥ 0 two fixed parameters.

4. Numerical solution
For determining the approximate solution to the variational segmentation

problem (3), proposed in this paper, we use its reformulation indicated in
Proposition 3.2, and, in some cases, with the regularized objective functional
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(19), i.e. we consider the problem

min
φ

(
Gαβ(c, d, φ) +

∫
Ω

θ p(φ) dx
)

(20)

with α ≥ 0, β ≥ 0.
The methodology is a two-step scheme. In the first step the values of the

unknown averages c = (cin, cout) and d = (din, dout) are computed by means of
the segmentation function φ (see (5) for the scalar segmentation model (2)).
In the second step, and using these averages, the minimization of Gαβ(c, d, .)
is performed updating the level set function φ. The stopping criterium is a
pre-defined number of iterations.

The procedure for solving this second step, involves a finite element dis-
cretization in space and then a Levenberg-Marquardt Newton-type optimiza-
tion method (see [11] for more details). More exactly it is a combination of
steepest descent (for robustness) and Newton (for quadratic convergence)
methods.

A short description of the global scheme is presented below:

Outer loop: 1-: Initialize with given (c0, d0) averages and a curve φ0.
Outer loop: 2-: For each n ≥ 0 and (cn, dn) fixed, perform the Inner

loop, i.e., solve the optimization problem

φn+1 = min
φ

(
Gαβ(c, d, φ) +

∫
Ω

θ p(φ) dx
)
,

using a Levenberg-Marquardt Newton-type optimization method with
a variable step length in its gradient descent part (see [11]).

Outer loop: 3-: Update the averages to obtain (cn+1, dn+1) using φn+1.
For the case of a scalar image (compare with (4))

cn+1
in =

∫
Ω I Hε(φ

n+1) dx∫
ΩHε(φ

n+1) dx
, cn+1

out =
∫
Ω I
(

1−Hε(φn+1)
)
dx∫

Ω

(
1−Hε(φn+1)

)
dx

dn+1
in =

∫
Ω |∇I|

sHε(φn+1) dx∫
ΩHε(φ

n+1) dx
, dn+1

out =
∫
Ω |∇I|

s
(

1−Hε(φn+1)
)
dx∫

Ω

(
1−Hε(φn+1)

)
dx

,

(21)

where Hε is the regularization of the Heaviside function H (as already
mentioned, before, after (17), H is replaced by Hε in (2)). Similar
formulas hold for the vector-valued case (with I replaced by Ii).

Outer loop: 4-: Stop when the optimality condition for φ is smaller
than ε1, in the inner loop, and the difference of two consecutive av-
erages is smaller than ε2, in the outer loop (ε1 and ε2 are two small
positive prescribed values).
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5. Numerical experiments
We describe now the results obtained both in synthetic and endoscopic

images. The spatial domain is Ω = [−1, 1]2 and is discretized with N 2 finite
elements (N is indicated for each image, it depends on the image size). The
implementation is done in Comsol Multiphysicsr [10].

For smoothing the gradient norm |∇I|, we solve the diffusion equation

z −D∆z = |∇I|, (22)

with D the diffusion coefficient (its value is indicated for each image). So
the smoothed |∇I|s is the solution z of this equation. When I = (Ii)

n
i=1 is

a vector-valued function we smooth the gradient norm of each component of
I, i.e. |∇Ii|.

For all the experiments, ε = 0.1 (in the regularized Heaviside function Hε

defined after (17)), the regularizing parameter η = 0, and in the penalty
term (16), θ = 1, and p is is replaced by a regularized penalty pb (we choose

pb(z) = z2

2b , for z ≤ 0, pb(z) = 0, for 0 < z < 1, and pb(z) = z2

2b −
z
b −

1
2b ,

for z ≥ 1, with b = 0.1). The parameter µ is always equal to 220/250 for
the medical Figures 3, 4, 5, equal to 3 in Figure 1, and to 0.1 in Figure
2. The regularizing parameters α and β are equal to 10−9 and 10−5 for
all the figures (for the gray-scale synthetic image on Figure 1 the values
α = 10−9 and β = 10−7 are also used in subfigures (i) and (j)). For the
weighting parameters λ and λ, as well for the initial averages c0 = (c0

in, c
0
out)

and d0 = (d0
in, d

0
out), their values are indicated for each image. For RGB

images, the order of the components of these parameters and averages, are
the red (uperscript 1), green (uperscript 2) and blue channel (uperscript 3).
In all the figures the initial contour is a seed of circles.

We observed that, in all the experiments, for the objects displaying many
oscillations, the internal contours are obtained with the Chan and Vese model
(so, without any gradient norm fitting terms), while the segmentation of the
outer boundary of the whole object is achieved with the proposed model, with
the extra gradient norm terms (isolated or combined with the other fitting
terms). In addition, we also remarked that when α and β are not zero less
details are captured, and the model tends to produce a macro segmentation,
i.e., a segmentation of the outer boundary of the object, to be detected,
without the inner contours.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1. Synthetic image (a). Smoothed gradient norm (c). Segmentations
(red contours superimposed to the image) without the gradient norm terms in (b)
and with the proposed model in (d) to (l). First row: (b) λ = (1, 1), λ = (0, 0),
α = 0 = β. (c) D = 10−2. (d) λ = (0, 0), λ = (50, 50), α = 0 = β. Second
row, α = 0 = β: (e) λ = (1, 1), λ = (55, 55). (f) λ = (1, 1), λ = (70, 70). (g)
λ = (.65, .65), λ = (75, 75). (h) λ = (.65, .65), λ = (150, 150). Third row α 6= 0 6= β
and λ = (1, 1): (i) α = 10−9, β = 10−7, λ = (55, 55). (j) α = 10−9, β = 10−7,
λ = (70, 70). (k) α = 10−9, β = 10−5, λ = (75, 75). (l) α = 10−9, β = 10−5,
λ = (250, 250). For all the segmentations, N = 502, c0 = (c0

in, c
0
out) = (160,−50),

d0 = (d0
in, d

0
out) = (70, 30); iterations: 4 outer loop and 11 inner loop.

5.1. Synthetic images. The Figure 1 displays the results for a gray-scale
synthetic image (with 200× 200 pixels), defined by the scalar function

I(x, y) := 250 sin(exp 3(1− x2 − y2)πx) cos(exp 3(1− x2 − y2)πy), (x, y) ∈ [−1, 1]2.

As it can be seen in Figure 1 (b), the single Chan and Vese model does a
complete accurate segmentation with the contours detecting all the regions
with high values (white in the picture). On the other hand, in (d), which
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2. Synthetic RGB circles (a). Smoothed gradient norms for the red (b),
green (c) and blue (d) channels. Segmentations (white contours over the original
image) without the gradient norm terms in (e), (f), (i), (j) and with the proposed
model in (g), (h), (k), (l). First row: (b), (c) and (d) D = 10−4. Second row,
α = 0 = β, λi = (1, 1): (e) and (f) λi = (0, 0). (g) and (h) λi = (6, 6). (e), (g) with
4×3 and (f), (h) with 4×7, outer×inner iterations. Third row, α = 10−9, β = 10−5,
λi = (1, 1). (i) and (j) λi = (0, 0). (k) and (l), λ1 = λ

2 = (1, 1), λ3 = (5, 3). (i), (k)
with 4×3 and (j), (l) with 4×7, outer× inner iterations. For all the segmentations,
N = 1902, c0

in = (50, 40, 110), c0
out = (2, 0, 150), d0

in = (35, 30, 50), d0
out = (0, 0, 0).

displays the segmentation with only the gradient norm terms, it is evident
the macro feature of the gradient norm terms. Moreover, if we look from
the left to the right on rows 2 and 3, it is evident the macro influence of
the gradient terms (the fitting terms λ’s are increasing in that direction from
left to right). In addition, if we compare (b) and (e) it is also clear the
macro effect of the gradient norm terms: in (e) clearly the contour involves
the central part of the image, but it does not segment each tiny (white) dot
individually as in (b), it rather segments this central bulk region as a whole,
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perfectly, and also it detects some large holes in it, corresponding to lower
intensity values (black in the picture). Also, comparing again rows 2 and 3,
in the former the regularizing parameters α and β are zero and in the latter
not, and it is clear, that these parameters also contribute to reducing the
length of the segmentation curve, and thus some details can be missed. This
effect of α and β is also verified for the other images described in this section.

The Figure 2 shows a synthetic RGB image in (a), with three circles
(200×200 pixels). We observe, that the single Chan and Vese model, without
the regularizing terms α, β (see (e) and (f)) does an accurate internal segmen-
tation, inside each circle (we recall we are applying the Levenberg-Marquardt
Newton-type optimization method, mentioned in section 4). However it does
not generate the macro contour in the external boundary of each circle, even
if we increase the iterations. But taking α, β nonzero (see (i) and (j)) it
segments the outer boundary of each circle in (j), after 4 outer and 7 inner
iterations, and the interior contours tend to disappear (also with more it-
erations these decrease and then disappear). In subfigures (k) and (l) with

took λ
3

bigger than λ
1
, λ

2
, because the gradient norm of the blue channel

contains more information as it can be seen in (d). With the proposed model,
we obtain a good and fast macro segmentation (in 4 outer and 3 inner itera-
tions), for all the tests, and in some cases (see (g) and (h)) small tiny interior
segmentations are also achieved. More inner contours are possible with the

proposed model, together with the macro contour, for suitable choices of λ
i

in,

λ
i

out, α and β.

5.2. Endoscopic images. In this section we present the segmentation
results for three medical images (from the Department of Gastroenterol-
ogy, University Hospital of Coimbra, Portugal), showing aberrant crypt foci
(ACF). They are all RGB images, for which we have applied the vector-
valued segmentation model described in (5).

The Figure 3 (a) contains two foci: the two dark and roundish regions on
the top left and bottom right. Inside each focus the small holes represent the
aberrant crypt orifices. The image (a) has 300×300 pixels. By comparing the
segmentations of the first row (without the gradient norm terms) with the
second row (with the proposed model), in this latter the results are clearly
far superior. In effect, in the first row (without the gradient norm terms), we
tried to capture accurately the external boundaries of the two foci (by varying
the values of λiin and λiout), but we did not succeed. In contrast, in the second
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3. Medical image (a) displaying two ACF. Smoothed gradient norm
for the green channel (e). Segmentations (white contours overlapping the origi-
nal image), without the gradient norm terms in (b), (c), (d), (k), (l) and with
the proposed model in (f), (g), (h), (i), (j). First row, α = 10−9, β = 10−5,
(λiin, λ

i
out) = (0, 0) and (λiin, λ

i
out) equal to (3, 3) in (b), (4, 3) in (c), and (5, 5) in

(d). Second row, α = 10−9, β = 10−5, (λiin, λ
i
out) = (3, 3) and (λiin, λ

i
out) equal to

(150, 150) in (f), to (175, 150) in (g), to (160, 160) in (h). (e) D = 10−2. Third row,
α = β = 0: (i) (λiin, λ

i
out) = (3, 3) and (λiin, λ

i
out) = (200, 140). (j) (λiin, λ

i
out) = (3, 3)

and (λiin, λ
i
out) = (190, 140). (k) (λiin, λ

i
out) = (3, 3) and (λiin, λ

i
out) = (0, 0). (l)

(λiin, λ
i
out) = (5, 3) and (λiin, λ

i
out) = (0, 0). For all the segmentations, N = 1902,

c0
in = (90, 80, 160), c0

out = (130, 100, 200), d0
in = (20, 15, 10), d0

out = (10, 8, 5); itera-
tions: 4 outer loop and 11 inner loop.

row, the two external boundaries are easily detected by using the proposed
model, with the gradient norm terms. In the third row, the regularizing
parameters α and β are zero. Obviously there are more details, but again
(i), (j) (obtained with the proposed model) are better segmentations than
(k), (l) (obtained without the gradient norm terms).
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 4. Medical endoscopic image(a) displaying one ACF. In (b) and (c) the
smoothed gradient norms, for the red channel, with different diffusion coefficients.
Segmentations (white contours superimposed to the original image) without the
gradient norm terms in (d), (h), (i), with the proposed model in (f), (g), (j), (k),
and only with the gradient norm terms in (e). First row: (b) D = 10−2 and (c)
D = 10−3. Second row, α = 10−9, β = 10−5: (e) (λiin, λ

i
out) = (0, 0), (λiin, λ

i
out) =

(120, 120), D = 10−2. (d), (f) and (g), (λiin, λ
i
out) = (3, 3) and (λiin, λ

i
out) equal to

(0, 0) in (d), to (120, 120) in (f) (with D = 10−2), and to (300, 300) in (g) (with
D = 10−3). Third row, α = β = 0: (h) and (i), (λiin, λ

i
out) = (0, 0) and (λiin, λ

i
out)

equal to (3, 3) in (h), and to (3, 1) in (i). (j) and (k) D = 10−3, (λiin, λ
i
out) =

(3, 3), and (λiin, λ
i
out) equal to (150, 150) for (j), and to (300, 150) for (k). For all

the segmentations, N = 2002, c0
in = (90, 150, 200), c0

out = (130, 100, 150), d0
in =

(10, 9, 10), d0
out = (15, 3, 5); iterations: 4 outer loop and 11 inner loop.

The medical Figure 4 (a) shows another aberrant crypt focus, with oval
shape, located in the middle of the image. The image in (a) has 300 ×
300 pixels. In subfigures (f) and (g) we show the difference caused in the
segmentations, by using different diffusion coefficients, for smoothing the
gradient norms of the given image. It appears that (g), obtained with a bigger
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(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

Figure 5. Medical endoscopic image (a). Smoothed gradient norms for the red
channel with different diffusion coefficients in (b) and (c). Segmentations (white
contours over the medical image) without the gradient norm terms in (d), (h), with
the proposed model in (f), (g), (i), (j), and with only the gradient norm terms
in (e). First row: (b) D = 10−3 and (c) D = 10−4. Second row, α = 10−9,
β = 10−5: (d) (λiin, λ

i
out) = (3, 3), (λiin, λ

i
out) = (0, 0). (f) (with D = 10−3) and

(g) (with D = 10−4), (λiin, λ
i
out) = (3, 3), (λiin, λ

i
out) = (150, 150). (e) D = 10−3,

(λiin, λ
i
out) = (0, 0) , (λiin, λ

i
out) = (150, 150). Third row, α = β = 0: (h) (λiin, λ

i
out) =

(3, 3), (λiin, λ
i
out) = (0, 0). (i) and (j) D = 10−3, (λiin, λ

i
out) = (3, 3), and (λiin, λ

i
out)

equal to (150, 150) for (i), and to (10, 200) for (j). For all the segmentations, N =
1902, c0

in = (90, 80, 160), c0
out = (130, 100, 200), d0

in = (20, 15, 10), d0
out = (10, 8, 5);

iterations: 4 outer loop and 11 inner loop.

diffusion coefficient, is better than (f). By comparing the segmentations of
the second row (all with α = 10−9 and β = 10−5), again (f) and (g) obtained
with the proposed model is better than the segmentation in (d), without the
gradient norm terms. In (e), where only the gradient norm terms are used,
the segmentation does not produce a very good result; though it is in good
agreement with the input data (the gradient norm of the red channel of the
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input data is shown in (b)). In the third row, the regularizing parameters α
and β are zero, (h) and (i) are obtained without the gradient norm terms, and
(j), (k) with the proposed model. In (i) the fitting parameters verify λiin >

λiout and in (k) also λ
i

in > λ
i

out, causing the segmentation to be reinforced
inside the focus. But by comparing (i) and (k), it is clear (k), which includes
the gradient norm terms, is superior.

The medical Figure 5 (a) contains another aberrant crypt focus (the large
semi-circular region at the bottom) and possible other aberrant crypts (the
dark regions going down from the top to the beginning of the focus). The
image in (a) has 200 × 200 pixels. This last medical Figure 5 demonstrates
once again that the segmentation with the proposed model in (f), (g), (i),
(j) is better by comparison with the segmentations in (d), (h), where the
gradient norm terms are not used. We remark that (e) (obtained with only
the gradient norm terms) give a good segmentation of the gradient norm
image, which is the input data (its red channel is displayed in (b)); the same
type of result is obtained in Figure 4 (e).

6. Conclusions and future work
A variational segmentation model is proposed. It is a generalization of

the Chan and Vese model (for both the scalar and vector-valued cases), that
incorporates additional fitting terms involving the image gradient norm. As
a consequence, an overall macro-micro segmentation model is obtained as
demonstrated in the results for synthetic and endoscopic medical images.
Moreover, on the whole, these results also show the superiority of the seg-
mentation with the proposed model compared to the segmentation performed
with the single Chan and Vese model. This was expected since the proposed
model embodies much more information from the input image than the single
Chan and Vese model.

In addition, theoretical existence results, as well as, the existence of global
minimizers (for both the scalar and vector-valued cases) are proven, for the
model.

As far as the numerical approximation is concerned, we use a Levenberg-
Marquardt Newton-type optimization method, applied to the finite element
discretization of the model, as we already did in [11], which has proven to
give good results. Other choices are possible, as for instance a split Bregman
algorithm as suggested in the recent paper [13].
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In the literature there are many extensions of the original Chan and Vese
model [9] (as for instance, and just to mention a few, the multiphase model
[24], which aims at segmenting images with more than two regions, and [16]
which uses local, instead of global, binary fitting terms, thus allowing the
possibility of segmenting images with intensity inhomogeneity and multiple
means of pixel intensity). Thus, and in light of the model proposed in this
paper, straightforward enhancements of these extensions could be achieved
by considering extra image gradient norm terms, as we did here in this paper.
In the future we intend to address these issues.
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