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Abstract: This paper analyzes the behavior of solutions for anisotropic problems
of (pi)-Laplacian type as the exponents go to infinity. We show that solutions
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1. Introduction
Let Ω be a bounded, smooth and convex domain in RN , f ∈ C(Ω) a given

function and consider the problem
−

N∑
i=1

∂

∂xi

[∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

]
= f in Ω,

u = 0 on ∂Ω,

(1)

where the exponents satisfy the condition N < pi, for all i = 1, · · · , N .
We are interested in the study of the behavior of solutions of (1) as the

exponents go to infinity. The results and arguments we will present are valid
in arbitrary dimensions (see the last section) but we restrict the analysis to
the two-dimensional setting for the sake of simplicity.

We start with some motivation for our study. The limit of the solutions to

−∆pu = −div(|Du|p−2Du) = f (2)

as p goes to infinity, when f ≡ 0 and u = g on ∂Ω, has been extensively
studied in the literature (see [2], [3], [5], [7]) and leads naturally to the
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infinity-Laplacian

∆∞u =
N∑

i,j=1

∂u

∂xi

∂u

∂xj

∂2u

∂xi∂xj
.

Infinity harmonic functions, solutions in the viscosity sense of −∆∞u = 0,
solve the optimal Lipschitz extension problem (cf. [1], [2], [16], [17]) and are
related to several applications, for instance optimal transportation, image
processing and tug-of-war games (see e.g. [10], [12], [13], [24]). When f > 0
and u = 0 on ∂Ω, the limit of (2) as p → +∞ has been analyzed in [5].
The solutions up converge uniformly to u∞(x) = dist(x, ∂Ω), which solves
the eikonal equation, |Du∞| = 1, in the viscosity sense.

In more recent years, problems related to PDEs involving variable expo-
nents (like (2) with p = p(x)) have been deeply investigated, the interest
stemming from applications to elasticity and the modeling of electrorheolog-
ical fluids. The limit as p(x)→∞ in Ω, or in some subdomain, is treated in
[21], [22], [26] and [27].

If pi = p, for every i, the operator that appears in (1) is the pseudo p-
Laplacian

−∆̃pu = −
N∑
i=1

∂

∂xi

[∣∣∣∣ ∂u∂xi
∣∣∣∣p−2

∂u

∂xi

]
.

For −∆̃pu = f , the limit as p → +∞ was considered in [4], [15]. For f = 0
and u = g 6= 0 on ∂Ω, the limit equation is

−∆̃∞u = −
∑

i∈I(Du)

∣∣∣∣ ∂u∂xi
∣∣∣∣2 ∂2u

∂x2
i

= 0, (3)

where I(ξ) = {1 ≤ i ≤ N : |ξi| = maxj |ξj|}. The operator is known as the
pseudo infinity-Laplacian. In [15], also the case f > 0 and u = 0 on ∂Ω is
discussed.

It is then natural to look for the limit problem of (1), where the anisotropic
(pi)-Laplacian weighs the partial derivatives with different powers. We as-
sume in this paper (in the two-dimensional setting) that there exist sequences
p1,n → +∞ and p2,n → +∞, with p2,n ≥ p1,n > 2, and show that the sequence
(un) of solutions of (1), with p1 = p1,n and p2 = p2,n, converges uniformly to
some function u∞. Moreover, we either determine u∞ or identify the limit
problem it solves. The case f ≡ 0 is contained in [25], where the anisotropic
(p, q)-Laplacian is studied.
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In the following we will denote

∂i :=
∂

∂xi
and ∂ii :=

∂2

∂x2
i

, i = 1, 2.

We next present the main results of this paper, starting with the conver-
gence result. Let un be the solution to (1), with p1 = p1,n and p2 = p2,n.

Theorem 1.1. Let f ∈ C(Ω). There exists a subsequence of solutions (un)
that converges to some nontrivial function u∞ in Cβ(Ω), for some 0 < β < 1.
Moreover, the limit u∞ belongs to W 1,∞

0 (Ω), verifies

max{‖∂1u∞‖L∞(Ω), ‖∂2u∞‖L∞(Ω)} ≤ 1,

and is a maximizer of the following variational problem

max
K

∫
Ω
fv dx, (4)

where K =
{
v ∈ W 1,∞

0 (Ω) : max{‖∂1v‖L∞(Ω), ‖∂2v‖L∞(Ω)} ≤ 1
}
.

Remark 1.2. We remark that the convergence result, unlike the next The-
orem, also holds if the datum f only belongs to Lq(Ω), with q > 1.

In the next theorem we determine the equation verified by the limit u∞.

Theorem 1.3. Let f ∈ C(Ω). A function u∞ obtained as the uniform limit
of a subsequence of (un) verifies u∞ = 0 on ∂Ω and is a viscosity solution of
the following system of PDEs

G∞(Du∞, D
2u∞) = 0, in Ω \ supp f,

max{|∂1u∞|, |∂2u∞|} = 1, in {f > 0},
−max{|∂1u∞|, |∂2u∞|} = −1, in {f < 0},
G∞(Du∞, D

2u∞) ≥ 0, in Ω ∩ ∂{f > 0} \ ∂{f < 0},
G∞(Du∞, D

2u∞) ≤ 0, in Ω ∩ ∂{f < 0} \ ∂{f > 0},
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with

G∞(Du∞, D
2u∞) =



−θ ∂11u∞|∂1u∞|2, if |∂1u∞|θ > |∂2u∞|,

−∂22u∞|∂2u∞|2, if |∂1u∞|θ < |∂2u∞|,

−θ ∂11u∞|∂1u∞|2

−∂22u∞|∂2u∞|2, if |∂1u∞|θ = |∂2u∞|,

(5)

where
θ = lim

n→+∞

p1,n

p2,n
∈ (0, 1].

This paper is organized as follows: in Section 2 we introduce some defini-
tions and preliminary results. Section 3 is devoted to analyzing the conver-
gence result, while Section 4 deals with the identification of the limit problem.
Finally, in the last section, we consider the extension to higher dimensions.

2. Definitions and preliminary results
It is well-known (see [20], and also [6] and [9]) that, for any pair of real

numbers p1 ≤ p2 and for any f ∈ C(Ω), there exists a unique weak solution
of problem (1), that is a function u ∈ W 1,p1,p2

0 (Ω) such that∫
Ω
|∂1u|p1−2∂1u∂1v +

∫
Ω
|∂2u|p2−2∂2u∂2v =

∫
Ω
fv, ∀ v ∈ W 1,p1,p2

0 (Ω),

where W 1,p1,p2

0 (Ω) denotes the closure of C∞0 (Ω) with respect to the norm

‖u‖1,p1,p2
:= ‖∂1u‖Lp1(Ω) + ‖∂2u‖Lp2(Ω)

or, equivalently,

W 1,p1,p2

0 (Ω) =
{
u ∈ W 1,p1

0 (Ω) : ∂iu ∈ Lpi(Ω), i = 1, 2
}
.

The same result holds under less stringent assumptions on the regularity of
the given function f . We also recall that, since p1 > 2,

W 1,p1,p2

0 (Ω) ↪→ C0(Ω)

and such embedding is compact (see [23], [28] and [29]). We note that the
weak solution of (1) can be obtained as the minimizer of the functional

J(v) =
1

p1

∫
Ω
|∂1v|p1 +

1

p2

∫
Ω
|∂2v|p2 −

∫
Ω
fv
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in W 1,p1,p2

0 (Ω).
Let us now recall the definition of viscosity solution to a nonlinear problem

of the form

F (x,Du,D2u) = 0 in Ω (6)

with a boundary condition

u = 0 on ∂Ω, (7)

being F a continuous function

F : Ω× R2 × S(2)→ R,

with Ω an open set of R2 and S(2) denoting the set of symmetric matrices
S = {si,j}1≤i,j≤2 in R2×2.

Definition 2.1. A lower semicontinuous function u defined in Ω is a viscosity
supersolution of (6) and (7) (or equivalently a viscosity solution of F ≥ 0 in
Ω and u ≥ 0 on ∂Ω) if u ≥ 0 on ∂Ω and, for every φ ∈ C2(Ω) such that u−φ
has a strict minimum at the point x0 ∈ Ω, with u(x0) = φ(x0), we have

F (x0, Dφ(x0), D
2φ(x0)) ≥ 0.

An upper semicontinuous function u is a viscosity subsolution of (6) and (7)
(or equivalently a viscosity solution of F ≤ 0 in Ω and u ≤ 0 on ∂Ω) if u ≤ 0
on ∂Ω and, for every ψ ∈ C2(Ω) such that u − ψ has a strict maximum at
the point x0 ∈ Ω, with u(x0) = ψ(x0), we have

F (x0, Dψ(x0), D
2ψ(x0)) ≤ 0.

Finally u is a viscosity solution of (6) and (7) if it is both a viscosity super-
solution and a viscosity subsolution.

We refer to [8] for more details about the general theory of viscosity solu-
tions, and to [17], [18] for viscosity solutions related to the ∞-Laplacian and
the p-Laplacian operators.

We recall the following proposition, stating that weak solutions of problem
(1) are also viscosity solutions. In this case, F is defined by

F (x, ξ, S) = −(p1 − 1)|ξ1|p1−2s11 − (p2 − 1)|ξ2|p2−2s22 − f(x).

The proof is obtained in a standard way (see for example [5], and also [21]).

Proposition 2.2. Let u be a continuous weak solution of (1). Then u is a
viscosity solution in the sense of Definition 2.1.
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We close this section by introducing the concept of viscosity solution when
the function given in (6) is not continuous and independent of x. More
precisely, we have a discontinuous function G : R2 × S(2)→ R and we wish
to define the notion of viscosity solution of

G(Du,D2u) = 0, in Ω. (8)

We define G∗ and G∗, the upper and the lower semicontinuous envelopes of
G, respectively, by

G∗(ξ, S) = lim sup
ε→0

{G(ξ′, S ′) : |ξ − ξ′|+ |S − S ′| < ε}, (9)

for ξ ∈ R2 and S ∈ S(2), and

G∗(ξ, S) = −(−G)∗(ξ, S). (10)

Obviously, if G is continuous, G = G∗ = G∗.

Definition 2.3. A lower semicontinuous function u defined in Ω is a viscosity
supersolution of (8) (or equivalently a viscosity solution of G ≥ 0) if for every
φ ∈ C2(Ω) such that u − φ has a strict minimum at the point x0 ∈ Ω, with
u(x0) = φ(x0), we have

G∗(Dφ(x0), D
2φ(x0)) ≥ 0.

An upper semicontinuous function u is a viscosity subsolution of (8) (or
equivalently a viscosity solution of G ≤ 0) if for every ψ ∈ C2(Ω) such that
u − ψ has a strict maximum at the point x0 ∈ Ω, with u(x0) = ψ(x0), we
have

G∗(Dψ(x0), D
2ψ(x0)) ≤ 0.

Finally u is a viscosity solution of (8) if it is both a viscosity supersolution
and a viscosity subsolution.

We underline that this Definition is needed in Section 4, when computing
the limit equation in the points where f vanishes. Indeed, in this case, the
function G∞ that appears in the limit problem, that u∞ solves in the viscosity
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sense (see Theorem 1.3), is

G∞(ξ, S) =



−θs11|ξ1|2 for |ξ1|θ > |ξ2|

−s22|ξ2|2 for |ξ1|θ < |ξ2|

−θs11|ξ1|2 − s22|ξ2|2 for |ξ1|θ = |ξ2|,

which is discontinuous. So we have to characterize its upper and lower semi-
continuous envelopes, (G∞)∗ and (G∞)∗. For the proof of the next lemma,
see [25] and also [15].

Lemma 2.4. The upper semicontinuous envelope of G∞ is given by

(G∞)∗(ξ, S) =



−θs11|ξ1|2 for |ξ1|θ > |ξ2|

−s22|ξ2|2 for |ξ1|θ < |ξ2|

max
{
− θs11|ξ1|2,−s22|ξ2|2,

−θs11|ξ1|2 − s22|ξ2|2
}

for |ξ1|θ = |ξ2|.

The lower semicontinuous envelope has the same expression except for the
max which is replaced by the min.

3. A priori estimates and convergence
In this section, we prove Theorem 1.1, i.e., that there exists a subsequence

of (un), the sequence of solutions to (1) with p1 = p1,n and p2 = p2,n, that
converges uniformly to some function u∞.

Proof of Theorem 1.1: The weak solution un of problem (1), with pi = pi,n
fixed, is the minimum of the functional

J(v) =
1

p1,n

∫
Ω
|∂1v|p1,n +

1

p2,n

∫
Ω
|∂2v|p2,n −

∫
Ω
fv

in W
1,p1,n,p2,n

0 (Ω). From J(un) ≤ J(0), we obtain

1

p1,n

∫
Ω
|∂1un|p1,n +

1

p2,n

∫
Ω
|∂2un|p2,n ≤

∫
Ω
fun
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and so
1

pi,n

∫
Ω
|∂iun|pi,n ≤

∫
Ω
fun, i = 1, 2.

Applying Hölder’s inequality to the right hand side of the previous inequality
and then a Poincaré type inequality (see [11]), we obtain

1

pi,n

∫
Ω
|∂iun|pi,n ≤ ‖f‖

L
p′
i,n(Ω)
‖un‖Lpi,n(Ω) ≤ C(|Ω|, f)pi,n‖∂iun‖Lpi,n(Ω),

for i = 1, 2. Simplifying, we arrive at

‖∂iun‖Lpi,n(Ω) ≤ (C(|Ω|, f)p2
i,n)

1
pi,n−1 , i = 1, 2.

Then, for any 1 < r < p1,n ≤ p2,n fixed,

‖∂iun‖Lr(Ω) ≤ ‖∂iun‖Lpi,n(Ω)|Ω|
pi,n−r

pi,nr ≤ (C(|Ω|, f)p2
i,n)

1
pi,n−1 |Ω|

pi,n−r

pi,nr , (11)

which means that (un) is uniformly bounded in W 1,r
0 (Ω), for any 1 < r < p1,n.

We may then select a subsequence, still indexed by n, such that

un ⇀ u∞ in W 1,r
0 (Ω),

for some u∞ ∈ W 1,r
0 (Ω). By the lower semicontinuity of the Lr(Ω)-norm, we

obtain

‖∂iu∞‖Lr(Ω) ≤ lim inf
n→+∞

‖∂iun‖Lr(Ω) ≤ lim inf
n→+∞

‖∂iun‖Lpi,n(Ω)|Ω|
pi,n−r

pi,nr

≤ lim inf
n→+∞

(C(|Ω|, f)p2
i,n)

1
pi,n−1 |Ω|

pi,n−r

pi,nr = |Ω|
1
r . (12)

This inequality holds for any sequence {rh}h∈N ↗ +∞. Indeed, such a
sequence being fixed, we may select, by diagonalization, a subsequence of
(un) such that

un ⇀ u∞ in W 1,rh
0 (Ω), ∀ h ∈ N.

Writing (12) for all rh and letting rh → +∞ gives

‖∂iu∞‖L∞(Ω) ≤ 1,

for i = 1, 2, and so

max
{
‖∂1u∞‖L∞(Ω), ‖∂2u∞‖L∞(Ω)

}
≤ 1.

Moreover, by the compact Sobolev embedding,

un → u∞ in Cβ(Ω), 0 < β < 1. (13)
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Next, we show that u∞ maximizes (4) and so u∞ is nontrivial. We have, for
n fixed,

1

p1,n

∫
Ω
|∂1un|p1,n +

1

p2,n

∫
Ω
|∂2un|p2,n −

∫
Ω
fun ≤

|Ω|
p1,n

+
|Ω|
p2,n
−
∫

Ω
fv,

for any v ∈ K. Passing to the limit in the previous expression, we obtain,
using (13), that ∫

Ω
fv ≤

∫
Ω
fu∞,

for any function v ∈ K.

4. Identifying the limit u∞
In this section, we first derive some properties of the function u∞, which

will be useful to determine the limit problem it satisfies. To this end, we first
show that the limit u∞ is not only the maximizer of (4) in Ω, but also in any
subset D ⊂ Ω.

Lemma 4.1. If u∞ is a maximizer of (4), then it is also a maximizer of

max
v∈K̃

∫
D

fv,

where D ⊂ Ω is open and smooth, and

K̃ =
{
v ∈ W 1,∞(D) : max{‖∂1v‖L∞(D), ‖∂2v‖L∞(D)} ≤ 1, v|∂D = u∞|∂D

}
.

Proof : Since u∞|D ∈ K̃, it follows that

max
v∈K̃

∫
D

fv ≥
∫
D

fu∞.

By contradiction, suppose that

max
v∈K̃

∫
D

fv >

∫
D

fu∞.

This implies that there exists v∗ ∈ K̃ such that
∫
D fv

∗ >
∫
D fu∞. But then,

if we define

u∗ =

{
v∗ in D
u∞ in Ω \D,

it holds that u∗ ∈ K and
∫

Ω fu
∗ >

∫
Ω fu∞, which contradicts (4).
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Now we consider the distance function to the boundary in the ∞-norm

dist∞(x, ∂Ω) = inf
y∈∂Ω
|x− y|∞, x ∈ Ω,

where

|x− y|∞ = max
i
|xi − yi|.

With the help of the previous lemma, we are ready to prove the following
property for the limit u∞ in {f > 0}.

Lemma 4.2. Let D be a convex set such that D ⊂ {f > 0}. For every
x ∈ D, we have that

u∞(x) = inf
y∈∂D
{u∞(y) + |x− y|∞}.

Proof : Since u∞ ∈ K and D is assumed to be convex,

u∞(x) ≤ u∞(y) + |x− y|∞, for every y ∈ ∂D.
Thus,

u∞(x) ≤ inf
y∈∂D
{u∞(y) + |x− y|∞}. (14)

Let us define

v(x) = inf
y∈∂D
{u∞(y) + |x− y|∞} in D.

Note that v ∈ K̃ since max{‖∂1v‖L∞(D), ‖∂2v‖L∞(D)} ≤ 1, and v|∂D ≡ u∞.
Then, by the previous lemma, we have∫

D

fv ≤
∫
D

fu∞. (15)

We recall that by (14) we have v ≥ u∞ in D. But now, since f > 0 in D,
from (15) we deduce that v = u∞ in D, as desired.

In a similar way, it is possible to prove the following property of u∞ in the
set {f < 0}.

Lemma 4.3. Let D be a convex set such that D ⊂ {f < 0}. For every
x ∈ D, we have that

u∞(x) = sup
y∈∂D
{u∞(y)− |x− y|∞}.

Now we have all the ingredients to identify the limit, i.e, to prove Theo-
rem 1.3.
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Proof of Theorem 1.3: It is clear that u∞ = 0 on ∂Ω, since un = 0 on ∂Ω for
any n.

Now, as usual, we consider a point x0 ∈ Ω. To prove that u∞ is a viscosity
supersolution, let φ be a function in C2(Ω) such that u∞(x0) = φ(x0) and
u∞−φ has a local minimum at x0. To show that u∞ is a viscosity subsolution,
let ψ be a function in C2(Ω) such that u∞(x0) = ψ(x0) and u∞ − ψ has a
local maximum at x0. Depending on the location of x0, that is the sign of
the function f at this point, we have different situations. So let us consider
each case separately.

1. Let x0 ∈ Ω\supp f . We have to show that u∞ is a viscosity supersolution
of G∞(Du∞, D

2u∞) = 0, G∞ defined in (5), in the sense of Definition 2.3.
So we need to prove that

(G∞)∗(Dφ(x0), D
2φ(x0)) ≥ 0,

with (G∞)∗ as in Lemma 2.4. Since un → u∞ uniformly, there is a sequence
xn → x0, xn ∈ Ω \ supp f , such that un − φ has a local minimum at xn, for
any n ∈ N. As un is a viscosity solution of (1) and f(xn) = 0 for any n, we
have

−(p1,n − 1)|∂1φ(xn)|p1,n−2∂11φ(xn)− (p2,n − 1)|∂2φ(xn)|p2,n−2∂22φ(xn) ≥ 0.

Assuming ∂2φ(x0) 6= 0, we divide by (p2,n − 1)|∂2φ(xn)|p2,n−4 to obtain

−p1,n − 1

p2,n − 1

|∂1φ(xn)|
p1,n−4

p2,n−4

|∂2φ(xn)|

p2,n−4

∂11φ(xn)|∂1φ(xn)|2

−∂22φ(xn)|∂2φ(xn)|2 ≥ 0.

(16)

We observe that, as n→ +∞,

∂22φ(xn)|∂2φ(xn)|2 → ∂22φ(x0)|∂2φ(x0)|2

and
p1,n − 1

p2,n − 1
∂11φ(xn)|∂1φ(xn)|2 → θ ∂11φ(x0)|∂1φ(x0)|2.

If |∂1φ(x0)|θ < |∂2φ(x0)|, then |∂1φ(xn)|
p1,n−4

p2,n−4

|∂2φ(xn)|

p2,n−4

→ 0,
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and we deduce from (16) that

−∂22φ(x0)|∂2φ(x0)|2 ≥ 0.

If |∂1φ(x0)|θ > |∂2φ(x0)| (note that in this case |∂1φ(x0)| 6= 0), |∂1φ(xn)|
p1,n−4

p2,n−4

|∂2φ(xn)|

p2,n−4

→ +∞,

and then, again from (16)

−θ ∂11φ(x0)|∂1φ(x0)|2 ≥ 0.

In the case |∂1φ(x0)|θ = |∂2φ(x0)|, we argue by contradiction supposing

−θ∂11φ(x0)|∂1φ(x0)|2 < 0 and − ∂22φ(x0)|∂2φ(x0)|2 < 0.

Note that these inequalities imply

−θ∂11φ(x0)|∂1φ(x0)|2 − ∂22φ(x0)|∂2φ(x0)|2 < 0,

and also that

∂1φ(x0) 6= 0 and ∂2φ(x0) 6= 0.

Suppose first that, for infinitely many n, we have

|∂1φ(xn)|p1,n−4

|∂2φ(xn)|p2,n−4 ≥ 1;

going back to (16), along a subsequence ni → +∞, we get a contradiction.
Also if

|∂1φ(xn)|p1,n−4

|∂2φ(xn)|p2,n−4 < 1,

we reach a contradiction (as before), using the fact that

|∂2φ(xn)|p2,n−4

|∂1φ(xn)|p1,n−4 > 1.

The fact that u∞ is a viscosity subsolution of G∞(Du∞, D
2u∞) can be proved

analogously.

2. Let x0 ∈ {f > 0}. There is a sequence xn → x0, xn ∈ {f > 0} such
that un − φ reaches a minimum at xn, for any n ∈ N. As un are viscosity
solutions of (1), it holds that

−(p1,n − 1)|∂1φ|p1,n−2∂11φ(xn)− (p2,n − 1)|∂2φ|p2,n−2∂22φ(xn) ≥ f(xn). (17)
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Taking the limit as n→∞, we conclude that

max{|∂1φ(x0)|, |∂2φ(x0)|} ≥ 1,

otherwise the left-hand side in (17) goes to zero, while f(x0) > 0. Next, to
prove u∞ is a subsolution, we consider x0 = (x0,1, x0,2) ∈ {f > 0} and we
take D the square with vertices x1

0,ε = (x0,1 + ε, x0,2), x
1
0,−ε = (x0,1 − ε, x0,2),

x2
0,ε = (x0,1, x0,2 +ε) and x2

0,−ε = (x0,1, x0,2−ε), which is contained in {f > 0}
for ε sufficiently small. By Lemma 4.2 and the definition of ψ, we know that

u∞(x0) = inf
y∈∂D
{u∞(y) + |x0 − y|∞} ≤ u∞(x1

0,−ε) + ε ≤ ψ(x1
0,−ε) + ε.

Taking into account that u∞(x0) = ψ(x0) and rearranging the previous ex-
pression, we get

ψ(x0)− ψ(x1
0,−ε)

ε
≤ 1.

Passing to the limit as ε→ 0 we get ∂1ψ(x0) ≤ 1. Arguing analogously with
the point x1

0,ε, we get ∂1ψ(x0) ≥ −1. So we have proved that |∂1ψ(x0)| ≤ 1.
The proof that |∂2ψ(x0)| ≤ 1 runs in the same way.

3. Let x0 be in {f < 0}. This case is analogous to the previous one, so we
omit the proof.

4. Let x0 be in Ω ∩ ∂{f > 0} \ ∂{f < 0}. In other words we have that
f(x0) = 0. Then there exists a sequence xn → x0 such that un − φ attains a
minimum in xn and f(xn) ≥ 0 for any n ∈ N. So we can argue as in the first
step of the proof to obtain

(G∞)∗(Du∞, D
2u∞) ≥ 0.

The subsolution case is analogous.

5. Let x0 be in Ω ∩ ∂{f < 0} \ ∂{f > 0}. This case is analogous to the
previous one, so we omit the proof.

Remark 4.4. We stress that for points in Ω∩∂{f > 0}∩∂{f < 0} the only
thing we can say is that

max{‖∂1u∞‖L∞(Ω),‖∂2u∞‖L∞(Ω)
} ≤ 1

since if x0 ∈ Ω ∩ ∂{f > 0} ∩ ∂{f < 0} then f(x0) = 0 but f(xn) can either
be greater than or less than zero.
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Remark 4.5. Note that the arguments used in part two of the previous proof
give an alternative proof of Proposition 5.1, Part II, of [5].

Remark 4.6. The proof of the first part of Theorem 1.3 is essentially con-
tained in [25], where the authors study the case in which f = 0 in Ω, that is
Ω \ supp f = Ω; they assume a non homogeneous Dirichlet boundary condi-
tion, i.e. u = g 6≡ 0 on ∂Ω and g ∈ Lip(∂Ω). Our proof extends equally to
the non homogeneous Dirichlet setting but, for simplicity, we only considered
the case un = 0 on ∂Ω.

Remark 4.7.

1. If f > 0 then u∞ = dist∞(·, ∂Ω) in Ω, as an immediate consequence of
Lemma 4.2 with D = Ω. Moreover, this is the unique possible limit,
since u∞ is a maximizer in (4), and dist∞(·, ∂Ω) ∈ K. Then∫

Ω
fdist∞(·, ∂Ω) dx ≤

∫
Ω
fu∞, ∀v ∈ K

and this inequality is strict unless u∞ = dist∞(·, ∂Ω). In addition,
dist∞(·, ∂Ω) is the unique solution to equation

max{|∂1u∞|, |∂2u∞|} = 1

in the viscosity sense, see [14].

2. If f ≥ 0, u∞ = dist∞(·, ∂Ω) in supp f , while it solves

G∞(Du∞, D
2u∞) = 0 (18)

in the interior of the set where f = 0. We have also uniqueness of the
limit u∞ in this case. If, in addition, the points in which dist∞(·, ∂Ω)
is not differentiable lay in supp f , then u∞ = dist∞(·, ∂Ω) in Ω, since
this function verifies (18), which has a unique solution.

3. If f < 0 or f ≤ 0 we obtain analogous results with the function
−dist∞(·, ∂Ω).

5. Higher dimensions
For completeness, we extend here the results of the previous sections to

dimension N ≥ 3. We recall that the exponents pi are such that there exist
sequences pi,n → +∞, for all i = 1, ..., N , with

lim
n→+∞

pj,n
pi,n

= θj,i ∈ (0,∞), j, i = 1, ..., N. (19)
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Note that θj,j = 1 and θj,i = 1/θi,j. All the results in Sections 2 and 3 can
be extended in a natural way. Indeed, the following theorem holds.

Theorem 5.1. There exists a unique weak solution un to (1), with pi = pi,n,
which is also a viscosity solution of the same problem. Moreover, there exists
a subsequence of (un) that converges uniformly to a function u∞ that satisfies

max
1≤i≤N

{‖∂iu∞‖L∞(Ω)} ≤ 1,

and maximizes the problem

max
K

∫
Ω
fv,

with

K =

{
v ∈ W 1,∞

0 (Ω), max
1≤i≤N

{‖∂iv‖L∞(Ω)} ≤ 1

}
.

It is also possible to identify the limit problem.

Theorem 5.2. Let f ∈ C(Ω). A function u∞, obtained as the uniform limit
of a subsequence of (un), verifies u∞ = 0 on ∂Ω and the following system of
PDEs, in the viscosity sense:

−
∑
i∈I

θi,j∂iiu∞|∂iu∞|2 = 0, in Ω \ supp f,

max
1≤i≤N

{|∂iu∞|} = 1, in {f > 0},

− max
1≤i≤N

{|∂iu∞|} = −1, in {f < 0},

−
∑
i∈I

θi,j∂iiu∞|∂iu∞|2 ≥ 0, in Ω ∩ ∂{f > 0} \ ∂{f < 0},

−
∑
i∈I

θi,j∂iiu∞|∂iu∞|2 ≤ 0, in Ω ∩ ∂{f < 0} \ ∂{f > 0},

for all j = 1, . . . , N , where

I =

{
1 ≤ i ≤ N : |∂iu∞| = max

1≤k≤N
|∂ku∞|θk,i

}
,

and the θj,i are given by (19).

We remark that we recover the results already known for the pseudo p-
Laplacian (see [4], [15] and references therein). In fact, when pi = p for any
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i, θj,i = 1 for any j, i, and the operator

−
∑
i∈I

θi,j∂iiu∞|∂iu∞|2

becomes the pseudo infinity-Laplacian given in (3).
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