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Abstract: In this paper we address the problem of detection and segmentation
of colonic polyps in endoscopic images obtained by a capsule device. Several pro-
cedures based on the geometric and image intensity features of the input medical
image, together with variational segmentation methods are proposed and analyzed.
The most successful procedure, and which has proven to efficiently detect and sin-
gle out the colonic polyps, relies on the curvature information of the images, which
are interpreted as the graphs of functions defined over the pixel domain. The pro-
cedure involves first a curvature based identification to the graph of the original
input image, and then a variational segmentation relying on this curvature identifi-
cation. The other procedures are ”image intensity” based segmentation techniques,
and lead to a good detection of the lumen and colonic mucosa. However, in the
majority of the cases, and as opposed to the first procedure, these ”image inten-
sity” based techniques do not single out the polyp, they rather include it as a part
of the colonic mucosa segmentation. Numerical experiments on wireless capsule
endoscopic images are undertaken for evaluation and validation of the proposed
approaches.

Keywords: Image segmentation, active contours, variational methods, level sets,
endoscopic images.
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1. Introduction and motivation
Wireless capsule endoscopy is a new imaging modality in gastroenterology,

which acquires digital photographs of the intestine tract using a swallowable
miniature camera device with LED flash lights [1, 8, 12, 15, 16, 17, 18]. The
capsule wirelessly transmits images of the gastrointestinal tract to a portable
recording device. The captured images are then analyzed by medical doctors
(gastroenterologists), who should locate and detect abnormal features or le-
sions, and carry out diagnostic assessments. A capsule can record more than
50,000 images, during its operation time, which spans a duration of 8 to 10
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hours. Hence, the process of examining each image sequence produced by
a capsule is an extremely time consuming process. Clearly an efficient and
accurate automatic detection procedure would relieve the diagnosticians of
the burden of analyzing a large number of images for each patient.

In this paper we focus on images produced by the PillCam Colon capsule
(see Figure 1). This device, released in 2006, was specifically developed
for colon visualization and also with the purpose of screening for colorectal
cancer, as an alternative to conventional colonoscopy. By imaging the colon
in a sequential way, the capsule images can help in early cancer detection.
The primary objective in this paper is to automatically detect and segment
polyps in images captured with this colon capsule.

The polyps to be detected in the images are characterized by physicians
according to human perception of their distinctive shapes, and also in some
cases, by their color and texture on these geometric objects. In effect, accord-
ing to medical information the geometry of colonic polyps can be classified
essentially in two types: pedunculate polyps, which are mushroom-like struc-
tures attached by a thin stalk to the colon mucosa, and sessile polyps, which
are like caps (mushroom structures with no stalk). Their color is in general
red, reddish or rose, and their texture can be very similar to a human brain.

In this paper we mainly explore the geometry features of colonic polyps
and derive a suitable procedure to detect and segment them. In particular
those with no peduncle appear to take locally convex shape which resembles
the cap of a mushroom. This geometrical identification of colonic polyps is
translated in terms of the Gaussian and mean curvatures of the graph of an
input (smoothed out) gray-scale image. From the two curvatures, we define a
new ”image” which attains relatively large positive values in possible polyps
locations and relative small values in other regions in a given image. Later
in the paper, we shall demonstrate that this procedure singles out correctly
the location of colonic polyps and leads to a good segmentation of the visible
portion of the polyps.

Since the images acquired by the PillCam capsule are basically photographs
of the colon interior with lighting source in the viewing direction, it is natural
to perform our geometric identification of polyps on surfaces that are recon-
structed from the capsule images. Indeed, we have attempted apply some
shape from shading algorithms (as described in [25, 28, 29]) to the original in-
put images in order to obtain surfaces which approximate the colon interior.
From these reconstructed surfaces, we applied our geometric identification.
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But from all images that we have tried, the reconstructed surfaces were very
similar to the original images, interpreted as the graph of a scalar function
of two variables (the pixel domain). Thus, finally, we decided to use the
curvature based identification to the graph of the original image.

In addition, we also examine the ”image intensity” properties of the input
image, and propose segmentation methods for capsule endoscopy images. We
apply variational segmentation methods, which rely on Chan and Vese model
[5], with the modifications described in [11] (see also [10] for a related work).
This choice is motivated by the good results we achieved with these methods,
for in vivo colonic aberrant crypt foci, in endoscopic images acquired with
a traditional endoscope (see [11]). To infer segmentation results from the
”image intensity”, we used a vector-valued variational segmentation model
involving the three color channels (R,G,B) or a four-phase variational seg-
mentation model (in one case, we also used a combination of the four-phase
segmentation of the image intensity with a two-phase segmentation of the
Gaussian curvature of the graph to the smoothed gray-scale input image).
These ”image intensity” approaches successfully detect the lumen and colonic
mucosa (in particular the four-phase model performs better than the vector-
valued model), but in the majority of the cases they do not isolate explicitly
and clearly the colonic polyps. They rather include it as a part of the colonic
mucosa segmentation.

Many recent studies have focused on detecting polyps on colonoscopy im-
ages (not capsule endoscopic images), as for example [7, 14, 30], and on ana-
lyzing capsule videos for other purposes, as for instance [2, 22]. Also several
shape based schemes were proposed to find polyps in virtual colonoscopy
or computed tomography colonography and have been addressed; see e.g.
[13, 21, 23, 26, 31]. These methods take the already reconstructed surface
representing the colon’s interior. In contrast, ours comes from a simple pho-
tographic device, susceptible of having a lot of noise and restriction from
lighting. Moreover, segmenting polyps from wireless capsule endoscopic im-
ages has not been considered so far, to the best of our knowledge, and none
of the variational segmentation procedures and methods proposed in this pa-
per was addressed for capsule endoscopic images. Neither have variational
segmentations involving gaussian and mean curvatures, of the graph to the
smoothed gray-scale input image, been reported in the literature. The results
presented in the numerical experiments section demonstrate the efficacy of
our proposed methods.
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(a) (b) (c)

Figure 1. (a)Wireless capsule endoscopic device: PillCam Colon capsule (size: 31×11 mm,
distributor: Given Imaging, Yoqneam, Israel). Examples of medical images obtained with the cap-
sule: (b) from RAPID 6 Atlas v3 of Given Imaging, and (c) from Department of Gastroenterology,
University Hospital of Coimbra.

The plan of this paper is as follows. After this introduction, section 2
describes the models and numerical approximations used in this paper: the
Gaussian and mean curvature computations in 2.1, and the variational seg-
mentation methods in 2.2. In section 3 the results for several wireless endo-
scopic images are reported, and detailed discussion is included with respect
to polyp segmentation and detection. Finally, section 4 concludes this paper,
summarizing the main results and outlining future work.

2. The models and approximations
In this section we introduce the definition of the Gaussian and mean cur-

vatures, explain how we compute them using a finite difference scheme, and
provide some examples to test the accuracy of these approximations, as well
as, their suitability for detecting colonic polyps in wireless capsule images.
Finally, we give a quick summary of the variational segmentation methods
applied in the paper.

2.1. Gaussian and mean curvatures. Let Ω be an open subset of R2,
(x, y) an arbitrary point in Ω, and u : Ω 7→ R a twice continuously differen-
tiable function. Then the Gaussian curvature K and the mean curvature H
of the surface S :=

{(
x, y, u(x, y)

)
: (x, y) ∈ Ω

}
are

K(x, y) :=
uxxuyy − u2

xy

(1 + u2
x + u2

y)
2
(x, y)

H(x, y) :=
(1 + uxx)

2uyy − 2uxuyuxy + (1 + uyy)
2uxx

2
√

(1 + u2
x + u2

y)
3

(x, y)
(1)
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where ux, uy and uxx, uyy, uxy are first and second order partial derivatives
of u with respect to x and y.

Our basic assumption is that a polyp can be identified as a convex pro-
trusion of a relatively small size on the colon surface. Thus, we expect that
the Gaussian curvature of a polyp surface to be relative higher than those
of other regions, which may be either flat or ridge-like (folds). However, the
Gaussian curvature does not distinguish concavity of the graph of u (pro-
trusion) from convexity (depression), so we need additional information for
such distinction. For this purpose, we decide to rely on the mean curvature
of the graph of u, and from it we create a cut-off function which filters out
the convex part of the graph. We propose to use the function

P := −Kmin(H, 0) (2)

to identify potential polyps in the given images. P would yield relatively large
positive values over polyps which match our assumptions. Figure 2 serves as
a proof of concept for our proposed method involving K, H and P defined
above for detecting polyps exhibiting a cap-like shape. It also illustrates the
accuracy of this finite difference approximation scheme. In the first columns,
four synthetic surfaces are depicted. In the second column, the Gaussian
curvatures of each of the surfaces are depicted. The third column shows the
corresponding values of the negative parts of the mean curvature. The last
columns depicts the values of P for each of the surfaces.

Finally, as in the typical settings of PDE base image processing, we regard
a given gray scale image as a grid function which samples the underlying
scene over a rectangular domain Ω. Thus, we work with functions defined
on Ω and then derive the corresponding formulas that can be applied to
the given images on the pixel domain. Let now (xi, yj) = (ih, jh), with
1 ≤ i, j ≤ M for some h > 0, be a Cartesian grid, defined in Ω. The
function u(x, y) correspond to the given image at continuum, and each pixel
in the given image corresponds to a point (xi, yj) = (ih, jh) on the grid.
ui,j is then the image intensity of u at (xi, yj). The surface S mentioned
above if thus the graph of the image function. We use the following standard
centered differencing to approximate the partial derivatives that appear in
the formulas for K and H:

ux|(xi,yj) ≈
ui+1,j − ui−1,j

2h
, uy |(xi,yj) ≈

ui,j+1 − ui,j−1

2h
,
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2. First column: Synthetic structures (emulating colonic folds and polyps). Second
column: Gaussian curvatures. Third column: −min(H, 0). Fourth column: P = −Kmin(H, 0).

and

uxx|(xi,yj) ≈
ui+1,j − 2ui,j + ui−1,j

h2
,

uyy |(xi,yj) ≈
ui,j+1 − 2ui,j + ui,j−1

h2
,

and

uxy |u(xi,yj)
≈ ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

4h2
.

for the second derivatives. Furthermore, periodic boundary condition is as-
sumed; i.e. uM+1,j = u1,j, u−1,j = uM,j, ui,M+1 = ui,1, and ui,−1 = ui,M .

2.2. Segmentation methods. Image segmentation is an image processing
method, which consists in the partition of a given image into disjoint regions,
representing distinct objects. Here we use 3 variational image segmentation
models, which rely on the Chan and Vese model [5] and two extensions of
it (the vector-valued and the multiphase segmentation models described in
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[4] and [27]), together with the modifications introduced in [11], with re-
spect to the model definitions and their numerical solutions. The former
includes two additional regularization terms. One is a Tikhonov like regu-
larization term, and the other term penalizes deviations of the slope of the
level set function from unity, and thus addresses the non-uniqueness of the
level set function for a given shape. The numerical scheme involves a finite
element discretization of the model weak variational formulation, followed by
a Levenberg-Marquardt Newton-type optimization method for determining
its solution. Our motivation, for this segmentation models choice, relies on
the good results we have obtained with it, for in vivo colonic aberrant crypt
foci, in endoscopic images, acquired with a traditional endoscope (see [11]).

We shortly describe now these variational models and refer on the par-
ticular numerical procedure for their solutions (a detailed description and
justification of this scheme can be found in [11]). We emphasize that all
the segmentation models described next are active contours without edges
models, formulated by means of level set functions (see [19, 20]).

Let Ω be a bounded open set of R2, I : Ω −→ Rn be a given image (if
n > 1 it is a vector-valued image). Each one of the models [5, 4, 27] is an
optimization problem of the form

min
(φ,c)

F (φ, c) (3)

where c is an unknown scalar vector representing the distinct regions in
the image to be segmented, and φ is the (scalar or vectorial) function that
represents the boundaries among these regions.

For the scalar model

F (φ, c) := λ+
∫

Ω |I − c
+|2H(φ) dx dy

+ λ−
∫

Ω |I − c
−|2 (1−H(φ)) dx dy

+ µ
∫

Ω δ(φ)|∇φ| dx dy + η
∫

ΩH(φ) dx dy

+ β
4

∫
Ω

(
|∇φ|2 − 1

)2
dx dy + α

2

∫
Ω |∇φ|

2 dx dy.

(4)

Here the given image I is a scalar function, the segmentation curve is repre-
sented by the zero level set of the scalar function φ : Ω −→ R and c = (c+, c−),
where c+ and c− are the averages of I, inside and outside, respectively, the
segmentation curve. The function H is the Heaviside function (H(z) := 1 if
z ≥ 0, H(z) := 0 if z < 0), and δ(z) := d

dzH(z) is the Dirac delta function
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in the sense of distributions. The parameters λ+ > 0, λ− > 0, µ ≥ 0 and
η ≥ 0 are fixed : λ+, λ− are scale parameters weighting the fitting terms, µ
is a regularizing parameter that penalizes the length of the boundaries (the
term

∫
Ω δ(φ(x, y))|∇φ(x, y)| dx dy =

∫
Ω |∇H

(
φ(x, y)

)
| dx dy just represents

the length of the zero level set of φ, see [19]) and η is a regularizing parameter
for the area inside the segmentation curve (this area is

∫
ΩH(φ(x, y)) dx dy).

Finally, β ≥ 0 and α ≥ 0 are two positive fixed parameters. The term
β
4

∫
Ω

(
|∇φ|2 − 1

)2
dx dy simply penalizes the deviation of the slope of the

level set function from unity, which gives a well-defined level-set function
(similarly to a signed distance function, which also attempts to maintain a
slope of 1). The term α

2

∫
Ω |∇φ|

2 dx dy is a Tikhonov like regularization (see
[11]). In particular, the unknown averages c+ and c− are functions of φ given
by

c+(φ) =

∫
Ω I H(φ) dx dy∫
ΩH(φ) dx dy

,

c−(φ) =

∫
Ω I
(
1−H(φ)

)
dx dy∫

Ω

(
1−H(φ)

)
dx dy

.

(5)

For the vector-valued model

F (φ, c) :=
∫

Ω
1
n

∑n
i=1 λ

+
i |Ii − c+

i |2H(φ) dx dy

+
∫

Ω
1
n

∑n
i=1 λ

−
i |Ii − c−i |2 (1−H(φ)) dx dy

+ µ
∫

Ω δ(φ)|∇φ| dx dy + η
∫

ΩH(φ) dx dy

+ β
4

∫
Ω

(
|∇φ|2 − 1

)2
dx dy + α

2

∫
Ω |∇φ|

2 dx dy.

(6)

Now the given image is a vector-valued function I = (Ii)
n
i=1, with I : Ω −→ R,

for i = 1, . . . , n. The vector representing the averages of the image compo-
nents (or channels) Ii is now c = (c+

i , c
−
i )ni=1, and (λ+

i )ni=1, (λ−i )ni=1 are the
weighting parameters. The functions φ, H, δ and parameters µ, η, β and α
have the same interpretation as before in (4).
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For the four phase model

F (φ, c) := λ11

∫
Ω |I − c11|2H(φ1)H(φ2) dx dy

+ λ10

∫
Ω |I − c10|2H(φ1)

(
1−H(φ2)

)
dx dy

+ λ01

∫
Ω |I − c01|2

(
1−H(φ1)

)
H(φ2) dx dy

+ λ00

∫
Ω |I − c00|2

(
1−H(φ1)

) (
1−H(φ2)

)
dx dy

+ µ1

∫
Ω δ(φ1)|∇φ1| dx dy + η1

∫
ΩH(φ1) dx dy

+ µ2

∫
Ω δ(φ2)|∇φ2| dx dy + η2

∫
ΩH(φ2) dx dy

+ β
4

∫
Ω

((
|∇φ1|2 − 1

)2
+ (|∇φ2|2 − 1

)2
)
dx dy

+ α
2

∫
Ω

(
|∇φ1|2 + |∇φ2|2

)
dx dy.

(7)

Here the given image I is again a scalar function. In contrast with the two
previous segmentation models, now φ is a vectorial function, φ = (φ1, φ2),
i.e. there are two segmentation curves, the zero level sets of φ1 and φ2,
which segment the image into four regions (inside both curves, inside one
and outside the other, and outside both curves). Therefore the vector c has
also four components, c = (c11, c10, c01, c00) and the corresponding weighting
parameters are now λ11, λ10, λ01 and λ00. The functions H, δ, have the same
interpretation as before, as well as, β, α and µj, ηj for j = 1, 2.

We remark that the vector-valued model (6) reduces to the scalar model
(4), when all the components Ii are equal. Moreover, the scalar model (4)
is also called a two-phase segmentation model (it segments the image into
two disjoint regions), when compared to model (7), which divides the image
into four different homogeneous regions. In addition, analogous formulas to
(5), for the average vector c components in (6) and (7), can be derived (see
[4, 27]).

In [3], it is shown that for each fixed c (and considering α = β = 0)
the minimization problem minφ F (φ, c) , which is a non-convex minimization
problem, can be equivalently reformulated as a convex unconstrained mini-
mization problem. Using this idea, the numerical scheme we use to approxi-
mate the solution of the vector-valued segmentation model (3) is a two-step
scheme, where in the first step the values of the unknown average region c
are computed by means of the segmentation function φ (see (5) for the scalar
segmentation model (4)) and in the second step the minimization of F (., c)
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is performed updating the level set function φ. The procedure for solving
this second step, involves a finite element discretization in space and then
a Levenberg-Maquardt Newton-type optimization method (see [11] for more
details: More exactly it is a combination of steepest descent, for robustness,
and Newton, for quadratic convergence, methods).

3. Numerical experiments
We report now the experiments and results for the endoscopic images. For

each image, which is a RGB image; i.e. I = (IR, IG, IB), we consider only
the region enclosed by the black background area (see Figure 1, (b) and (c)).
We have performed the following :

(1) (a) The image I was converted into a gray-scale image Igs.
(b) The image Igs was smoothed, by using the heat equation ∂u

∂t −
4u = 0 for 0 < t < T in a rectangular domain Ω with periodic
boundary conditions. The initial condition u(., 0) is set to the
gray scale image Igs. The function Igs is defined to be u(x, T ),
i.e. the smoothed image.

(c) The Gaussian curvature K and mean curvature H of Igs were
computed, as indicated in section 2.1, as well as, the product
P = −Kmin(H, 0).

(2) Then, the segmentation procedures below were performed, for seg-
menting the image I:
(a) The two-phase model (4) was applied to P .
(b) The vector-valued model (6) was applied directly to I.
(c) The four-phase model (7) for the smoothed image Igs was per-

formed.

Remark 3.1. We remark that other linear smoothing filters may be applied
to obtain Igs. However, since Total-Variation based filters have a tendency
to create flat regions away from edges in the image, so these type of filters
are not appropriate for our purposes – as the curvatures information will
be destructed by such filters. In our approach, the time T determines the
amount of smoothing which we apply to the given image. This is a parameter
which one may experiment with in practice, depending on the noise level and
the targeted polyps size relative to other features in the image.

For one image (see Figure 6) a combination of the four-phase model (7) for
Igs and the two-phase model (4) for K, were carried out. This combination
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was done in the following way: first the four-phase segmentation model for
Igs was performed. By analyzing the result we knew which was the curve,
say φ1, that segmented the polyp and the other, say φ2, that segmented the
mucosa and or the lumen. So to the former, φ1, we ”added” the two-phase
segmentation of K; this means we employed a four-phase segmentation for
Igs, where one curve was re-enforced with the two-phase segmentation of K
(we emphasize that a four-phase segmentation model is a coupling of two
segmentations, each one having two phases).

The computations in steps 1b and 1c were done with a square Cartesian
grid (corresponding exactly to the size of the input grayscale image Igs) and
MATLABr [24] was used for the numerical implementation. In addition,
for the segmentation models a finite element mesh with 1002 elements was
used to discretize the spatial domain. For the numerical implementation we
used Comsol Multiphysicsr [6] (a software for solving partial differential
equations using finite elements).

(a) (b) (c)

(d) (e) (f)

Figure 3. (a) Medical image (from RAPID 6 Atlas v3 of Given Imaging) showing a polyp,
colonic folds and the lumen. (b) Vector valued RGB segmentation (white contours) of the original
image I. (c) Four phase segmentation for Igs (white and blue contours). (d) Cropped smoothed
grayscale image Igs. (e) Function P computed from (d). (f) Two-phase segmentation (white
contour) of P superimposed to the medical image.

The Figure 3 provides in the first row the medical image (a) (containing
a roundish polyp), the corresponding smoothed grayscale image Igs in (d),
and the curvature function P in (e). The subfigures (b), (c) and (f) show
several segmentations superimposed on the medical image. (b) is the seg-
mentation with the vector valued model (6) using the three color channels
of the original image I. (c) shows the four-phase segmentation (see (7)) for
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 4. First row: Three medical images (Department of Gastroenterology, University
Hospital of Coimbra) with polyps (a), (b) and (c). Second row: Smoothed grayscale images Igs.
Third row: Function P computed from (d), (e) and (f). Fourth row: Two-phase segmentation
(white contours) of P superimposed to the medical image. Fifth row: Vector valued RGB segmen-
tations (white contours) of the original images I. Sixth row: Four phase segmentations for the
smoothed grayscale image Igs (white and blue contours).
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Igs. (f) illustrates the segmentation obtained with the two-phase model for
P . From this Figure 3, the four-phase segmentation of u is far superior to
the segmentations obtained with the vector-valued model, and the last seg-
mentation in (f), involving the curvature function P clearly detects the polyp
and segments its upper part.

The Figure 4 contains three medical images (a), (b) and (c) ((a) and (b)
belong to the same PillCam colon video). Each one shows a polyp, with a
roundish shape, and in (a) and (c) it is clearly attached to the colonic fold.
All the polyps are covered by liquid and the dark region corresponds either to
the lumen or trash liquid. The first column refers to medical image (a), the
second to (b) and the third do (c). This Figure 4 reports the segmentation
results (represented by the white contours in (j), (k), (l), (m), (n), (o) and the
white and blue contours in (p), (q), (r)), as well as, the smoothed grayscale
image Igs (see (d), (e) and (f)) and information about geometric features
(the curvature function P in (g), (h) and (i)). Again the polyp present in
each medical image is perfectly detected using the function P (see (j), (k)
and (l)).

The Figure 5 lists four medical images, in the first column, each one show-
ing a roundish poly, which is detected by the two-phase segmentation of the
curvature function P (white curve in (a), (e), (i), (m)). Each row contains
four images, which represent (from left to right): the original medical image
(cropped image for (i)) with the segmented polyp (white contours), the func-
tion P computed over the smoothed gray-scale image Igs, the vector valued
RGB segmentation of the original image I, the four phase segmentation of
Igs. As we can see, the vector valued RGB segmentation is already good,
but the four-phase segmentation of Igs is even better (it gives a correct seg-
mentation of the lumen (orifice of the colon), as well as, colonic mucosa and
polyp). However, the two-phase segmentation of the curvature function P ,
is even better because it accurately singles out the polyp in the image.

The Figure 6 shows a sessile poly in (a) (on the right). In the first row,
(b), (c) and (d) present, respectively, the smoothed gray-scale image Igs, the
smoothed Gaussian curvature K (obtained by using the heat equation as
described in 1b), and the function P . As it can be seen, this latter function
has almost no information about the poly, whereas K has some meaningful
and important information concerning the polyp location and shape. The
sub-figure (g) demonstrates the successful segmentation obtained with the
two-phase model, applied to the single smoothed Gaussian curvature K. Also
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 5. First column: four medical images (from RAPID 6 Atlas v3 of Given Imaging)
with the two-phase segmentations of function P superimposed (white contour detecting the polyp).
Second column: the function P. Third column: the vector valued RGB segmentations of the original
image I. Fourth column: the four phase segmentation of Igs.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. (a) Medical image (Department of Gastroenterology, University Hospital of
Coimbra) with a sessile polyp on the right side. (b) Smoothed gray-scale image Igs. (c) Smoothed
Gaussian curvature K. (d) Function P. (e) Vector valued RGB segmentation of the original image
I. (f) Four phase segmentation for the smoothed grayscale image Igs. (g) Two-phase segmentation
using the single smoothed Gaussian curvature K. (h) Four phase segmentation for Igs combined
with a two phase segmentation for K.
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(a) (b)

(c) (d)

Figure 7. Results of our method applied to images from PillCam Colon 2. First column
(a) and (c): smoothed gray-scale images Igs of the first and fourth medical images displayed in the
first row of Figure 3, page 1030, of [9]. Second column (b) and (d): Functions P computed from
(a) and (c) – the red regions indicate the polyps.

in sub-figure (h), which shows the result of the combined four-phase model for
Igs with the two-phase model for K, displays and acceptable segmentation,
that detects the polyp. The vector-valued model, using the RGB channels,
completely fails to detect the poly (see (e)), as well as, the four-phase model
for the smoothed gray-scale image Igs (see (f)).

We point out that for this image shown in Figure 6 (a), before smoothing
the Gaussian curvature K, we first defined a threshold s for K, and in the
points (x, y), where K(x, y) > s we redefined K(x, y) to be the average of the
values of K in a small neighborhood centered at the point (x, y). In effect,
and similarly to the synthetic structures exhibited in Figure 2, the Gaussian
curvature has big discontinuities, and sometimes in the colonic folds the
Gaussian curvature reaches very high values, interfering with the values of
the Gaussian curvature of the polyp itself.

The recent second-generation capsule endoscopy system, PillCam Colon 2
(released at the end of 2009), was developed for improving the PillCam Colon
system characteristics. Moreover, a multicenter performance evaluation [9]
shows the effectiveness of PillCam Colon 2 capsule on a spectrum of colonic
lesions. The images from the second-generation capsules exhibit better reso-
lution and less noise, and the geometric characters of the underlying surfaces
seem to be the same. Therefore, we expect that our proposed algorithm ap-
plies to the images acquired by these new capsules as well. In Figure 7 we
show the results of our method applied to two images (they are the first and
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fourth images displayed in the first row of Figure 3, page 1030, of [9]) taken
by this second generation capsule. As it can be seen, again the proposed cur-
vature based methodology works well, and give a good localization of polyps
(marked by the red regions) in sub-figures (b) and (d).

4. Comments and future work
In this paper automatic detection of colonic polyps in wireless capsule

endoscopic images has been carried out. This analysis has concentrated on
geometric and ”image intensity” features of the input medical image, together
with variational segmentation techniques. We demonstrated that geometrical
characterization of the polyps can lead to very effective identification from
the capsule images. This geometrical characterization can easily be computed
by simple formulas involving Gaussian and the mean curvature.

On the whole, the results indicate a good performance of these variational
schemes. For all the images the segmentation of a function depending either
on both the Gaussian and mean curvatures (see Figures 3, 4, 5, 7), or only the
Gaussian curvature (see Figure 6), was the only way to single out the polyp.
For some images (see Figures 3, 4, 5), the RGB segmentation of the original
image gave acceptable results (concerning the lumen (orifice of the colon)
and colonic mucosa), although inferior to the four-phase segmentation of the
smoothed gray-scale input image. It is also important to emphasize that
for some images (see for instance Figure 5) the four-phase segmentation gave
already a good segmentation of the polyp (though, in general, the polyp is not
singled out, it rather appears as part of the colonic mucosa segmentation).

For one image (see Figure 6) the segmentation of the Gaussian curvature,
was the only way to detect the polyp. Also, in this same image, the seg-
mentation of the Gaussian curvature when combined with the four-phase
segmentation of the smoothed gray-scale input image improved the result.
However, we point out here that the polyp in this image barely satisfies (at
least from the image) our assumptions on the geometries.

The main approach proposed in this paper, which relies on the segmenta-
tion of the curvature based function P , seems to correctly locate and detect
the colonic polyps (exhibiting a cap-like structure with no stalk) in wireless
capsule images. Though it does not lead to a complete segmentation, because
only the higher part of the polyp, is in general detected. However we believe
that the detection of the polyp is, by itself, a good result, and furthermore
this is a fully automatic process.
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In the future we intend to generalize the methodology described in this
paper to video images. In this case, very efficient multi-phase segmentation
algorithms may be needed. We plan to investigate if the fast algorithms of
[10] may be of use in this project. In addition we will also analyze, further,
the geometric information provided in the images, and try to overcome the
above mentioned issue related to a complete segmentation of the whole polyp.
Furthermore, we plan to conduct extensive experiments for a data-base set of
wireless endoscopic images, that we have at our disposal in the Department
of Gastroenterology, of the University Hospital of Coimbra.
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