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ANISOTROPIC ELLIPTIC PROBLEMS

WITH NATURAL GROWTH TERMS

AGNESE DI CASTRO

Abstract: In this paper we prove existence and regularity of solutions for nonlin-
ear anisotropic elliptic equations of the type

−
N∑
i=1

∂

∂xi

[∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2 ∂u

∂xi

]
+ g(x, u,∇u) = f

in a bounded, smooth, domain Ω, in RN , with homogeneous Dirichlet boundary
conditions. The right hand side f is assumed to belong to some Lebesgue space and
the function g is a nonlinear lower order term.
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1. Introduction
In this work we study the existence and the regularity of solutions for the

following nonlinear anisotropic elliptic problem
−

N∑
i=1

∂

∂xi

[∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

]
+ g(x, u,∇u) = f in Ω,

u = 0 on ∂Ω,

(1)

where Ω is a bounded, smooth domain in RN , f is a given function belonging
to some Lebesgue space. Concerning the exponents pi, we assume 1 < p1 ≤
... ≤ pN and p < N , where p is the harmonic mean of pi, that is

1

p
=

1

N

N∑
i=1

1

pi
. (2)

Furthermore, g is a nonlinear term having natural growth with respect to
the gradient, which satisfies the sign condition, i. e. g(x, σ, ξ)σ ≥ 0. This
assumption allows us to obtain a priori estimates from the equation; if it
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2 A. DI CASTRO

is not satisfied, the problem may not even have a solution. Indeed in the
isotropic case, i.e. pi = 2 for any i, if we consider u, a bounded solution of
problem −∆u = |∇u|2 + α in Ω,

u = 0 on ∂Ω.

with α > 0, then u ≥ 0 and it easily follows that v = eu − 1 is bounded,
positive and solves −∆v = α(1 + v) in Ω,

v = 0 on ∂Ω.
(3)

But it is well known that the previous problem has no positive solution for
α sufficiently large.
Problems as (1) are very interesting because they naturally appear if we

write the Euler-Lagrange equations of suitable functionals of the Calculus of
Variations. As a matter of fact, if we consider the following functional

J(v) =
N∑
i=1

1

pi

∫
Ω

a(x, v)

∣∣∣∣ ∂v∂xi
∣∣∣∣pi − ∫

Ω

fv, (4)

where a is a bounded, smooth function, the Euler-Lagrange equation is

−
N∑
i=1

∂

∂xi

[
a(x, u)

∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

]
+

N∑
i=1

a′(x, u)

∣∣∣∣ ∂u∂xi
∣∣∣∣pi = f,

and in the left hand side a sum of lower order terms appears. We also
note that, obviously, problem (1), with g ≡

∑N
i=1 gi, does not correspond to

the Euler-Lagrange equation of functionals like (4). Indeed if a(x, u) ≡ 1
then a′(x, u) ≡ 0 and so we do not find (1). Therefore we will not use
techniques of Calculus of Variations to solve this type of problem. We will
build approximating problems, we will derive a priori estimates from the
equations and then we will use compactness results for anisotropic Sobolev
spaces to pass to the limit in the approximating problems.
In the isotropic case, i.e. pi = 2 or pi = p for all i, this kind of problem has

been studied by many authors. With no hope of being thorough, we mention
some papers regarding the study of these problems [4], [5], [6], [7], [9], [11],
[12] and [14] (see also the references therein). While, in the anisotropic case,
problems with natural growth terms are not still deeply studied. We recall
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some recent papers dealing with similar problems [1], [2], [3], [19], [20], [28].
Problems as (6) in the following, without lower order terms, have already
been investigated. We only remember some of these: [8], [10], [16], [18], [22],
[23], [27], [29].
This paper is organized as follows. In Section 2 we give some definitions

and we recall some useful results concerning the anisotropic Sobolev spaces
where it is natural to look for the solutions to problem (1). In Section 3 we
study problems as (1), with zero lower order terms, that is g depending only
on x and u. If we only assume g satisfying the sign condition and f ∈ L1(Ω)
then we show the existence of at least one distributional solution for (1),

belonging to the anisotropic Sobolev space W
1,(qi)
0 (Ω) for every

1 ≤ qi <
N(p− 1)

p(N − 1)
pi

and
p(N − 1)

N(p− 1)
< pi <

p(N − 1)

N − p
, ∀ i = 1, ..., N, (5)

as in the monotone case, that is
−

N∑
i=1

∂

∂xi

[∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

]
= f in Ω,

u = 0 on ∂Ω,

(6)

see [8], [15], [16]. Moreover if we assume a growth condition with respect
to |u| on g, i.e. g(x, σ)sgn(σ) ≥ |σ|s, for some s > s(N, p), we improve the
regularity of u. To fix the ideas we consider as model problem the following

−
N∑
i=1

∂

∂xi

[∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

]
+ |u|s−1u = f in Ω,

u = 0 on ∂Ω.

(7)

In Section 4 we consider a general nonlinearity

g ≡ g(x, u,∇u) =
N∑
i=1

gi(x, u,∇u).

with natural growth with respect to the gradient (i.e. |gi(x, σ, ξ)| ≤ b(|σ|)|ξi|pi
for any i). With respect to |u| we do not assume any growth restrictions but
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we assume the sign condition (i.e. gi(x, σ, ξ)sgn(σ) ≥ 0). The right hand

side f of (1) is assumed to belong either to [W
1,(pi)
0 (Ω)]∗ (∗ denotes the dual

space) or to L1(Ω). In the latest case we have to assume a sort of coercivity
condition on g, i.e. |gi(x, σ, ξ)| ≥ γ|ξi|pi for any i and |σ| sufficiently large,
in order to prove the existence of weak solutions, that is solutions with finite

energy in the space W
1,(pi)
0 (Ω). The role of the coercivity condition is to give

an a priori estimate in the energy space W
1,(pi)
0 (Ω). So the term with natural

growth brings an extra regularity to the solutions for the problem (6) with
L1-data. Moreover in this case we do not need to make further assumptions
on pi (see (5)), apart from p < N .
We can take as a model problem the following

−
N∑
i=1

∂

∂xi

[∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2

∂u

∂xi

]
+ u

N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣pi = f on Ω,

u = 0 on ∂Ω.

(8)

2. Preliminary results
This Section is dedicated to give some definitions and to recall some pre-

liminary results useful in the following pages.
We start remembering the functional analytic framework in which we look

for solutions to problems as (1). Let Ω be a bounded, smooth domain of RN ,
N ≥ 3, 1 < p1 ≤ p2 ≤ ... ≤ pN . The anisotropic Sobolev spaces are defined
as follow

W
1,(pi)
0 (Ω) =

{
v ∈ W 1,1

0 (Ω) :
∂v

∂xi
∈ Lpi(Ω)

}
. (9)

W
1,(pi)
0 (Ω) can also be defined as the closure of C∞

0 (Ω) with respect to the
norm

∥v∥
W

1,(pi)
0 (Ω)

=
N∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥
Lpi(Ω)

. (10)

In [21], [24], [26], [30] the theory of these spaces is developed and in particular
the corresponding Sobolev embedding theorems are studied. Let

p∗ =
Np

N − p
, for p < N and

1

p
=

1

N

N∑
i=1

1

pi
. (11)
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In [30] it is proved that if p < N , then

W
1,(pi)
0 (Ω) ↪→ Lr(Ω), ∀ r ∈ [1, p∗]. (12)

This embedding is continuous and also compact if r < p∗. The following
Sobolev type inequality is also proved: there exists a positive constant C,
depending only on Ω such that

∥v∥Lr(Ω) ≤ C

N∏
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥ 1

N

Lpi(Ω)

, ∀ r ∈ [1, p∗], (13)

for any v ∈ C1
0(Ω). By density, (13) also holds for any v ∈ W

1,(pi)
0 (Ω).

Inequality (13) also implies that

∥v∥Lr(Ω) ≤ C
N∑
i=1

∥∥∥∥ ∂v∂xi
∥∥∥∥
Lpi(Ω)

, ∀ r ∈ [1, p∗]. (14)

Subsequently in [21] it is proved that the critical exponent depends on the

kind of anisotropy. If the pi are not Òtoo far apartÓ (i.e. the anisotropy

is concentrated) the critical exponent is p∗, as in [30], that is the ÒusualÓ
critical exponent related to the harmonic mean p of the pi. While if the pi
are Òtoo spread outÓ it coincides with the maximum of the pi, i.e. pN .

In the following, we will consider the composition of functions inW
1,(pi)
0 (Ω)

with some useful auxiliary functions of real variable: the truncation function
at level k > 0, Tk, that is

Tk(s) =

k sgn(s) if |s| > k,

s if |s| ≤ k
(15)

and

Gk(s) = s− Tk(s), with k ≥ 0. (16)

We remember also a Poincaré type inequality, valid for all v ∈ W
1,(pi)
0 (Ω):

∥v∥Lr(Ω) ≤ C(|Ω|) r
∥∥∥∥ ∂v∂xi

∥∥∥∥
Lr(Ω)

, ∀ r ≥ 1, ∀ i = 1, ..., N, (17)

see [21].
In the following, we will write C to denote positive constants, possibly

different, depending on the data, that is they will be fixed in the assumptions
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we will make, as the dimension N , the set Ω, the exponents pi, etc. but in
any case the constants are always meant to not depend on n.
Moreover, in the following, we will denote

∂i :=
∂

∂xi
, i = 1, ..., N.

3. Problems with zero lower order terms
In this section we consider problem (1) with g(x, u,∇u) ≡ g(x, u) that

satisfies

(G1): g(x, σ) : Ω× R → R is measurable in x ∈ Ω for any fixed σ ∈ R
and continuous in σ for a.e. x ∈ Ω.

(G2): There exists s > 0 such that for all σ and a.e. x ∈ Ω

g(x, σ)sgn(σ) ≥ |σ|s.

(G3): For all t > 0 the function

Ft(x) = sup
|σ|≤t

|g(x, σ)|

belongs to L1(Ω).

Definition 3.1. We say that u is a distributional solution for problem (1) if
u ∈ W 1,1

0 (Ω), g(x, u) ∈ L1(Ω), and u satisfies the following inequality

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iϕ+

∫
Ω

g(x, u)ϕ =

∫
Ω

fϕ (18)

for all ϕ ∈ C∞
0 (Ω).

Theorem 3.2. Let f ∈ L1(Ω), g be a function satisfying the conditions
(G1)-(G3), pi and s (that appears in (G2)) be such that

p(N − 1)

N(p− 1)
< pi <

p(N − 1)

N − p
, s >

N(p− 1)

N − p
. (19)

Then there exists a distributional solution u to the problem (1), belonging to

W
1,(qi)
0 (Ω) for every

1 ≤ qi <
spi
s+ 1

. (20)
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Remark 3.3. We note that the assumption from below on pi, is usual when
we search for distributional solutions to problems, as (1) or (6), with L1-data.
It corresponds to the well known isotropic condition

p > 2− 1

N
,

see [6], necessary to have all the terms that appear in Definition 3.1 in L1(Ω).
The assumption from above is needed to pass to the limit in the approximat-
ing problems and it is always satisfied if pi = p for any i. This assumption
implies that

pN <
p(N − 1)

N − p
= p∗ − p

N − p

and so pN can not be greater than p∗, the critical exponent for the Sobolev
embedding theorems, as in (11). Moreover it can be removed if we look for
entropy solutions (see [15] and [16]), which will not be studied in this paper.

Remark 3.4. We underline that to prove existence of a distributional solu-
tion for problem (1), assumption (G2) can be substituted by a weaker one,
that is

(G2’): g(x, σ)sgn(σ) ≥ 0 for all σ ∈ R, a.e. x ∈ Ω.

In fact it easy to prove that (G2) implies (G2’) but the contrary is false. If
we only assume (G2’), we obtain the existence of a distributional solution

u, but u only belongs to W
1,(qi)
0 (Ω) for all

1 ≤ qi <
N(p− 1)

p(N − 1)
pi.

We note that

spi
s+ 1

>
N(p− 1)

p(N − 1)
pi ⇔ s >

N(p− 1)

N − p
,

as we are assuming. So we obtain a better result than the case g(x, σ) ≡ 0,
as in (6). Obviously, a function identically equal to zero does not satisfy
assumption (G2).

Proof of Theorem 3.2: First of all we prove the existence of u ∈ W
1,(qi)
0 (Ω),

1 ≤ qi <
N(p− 1)

p(N − 1)
pi,
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a distributional solution for the problem (1), when g satisfies (G1), (G2’),
(G3). For this part we strictly follow [7], in which the authors studied the
isotropic case.
Approximating problems. We define for n ∈ N, gn(x, σ) = Tn(g(x, σ))

for any (x, σ) ∈ Ω × R, Tn as in (15). It easy to see that the assumptions
on g, (G1), (G2’) and (G3), also hold for gn for any n ∈ N. Moreover let
fn = Tn(f), for any n ∈ N, with

∥fn∥L1(Ω) ≤ ∥f∥L1(Ω). (21)

By a simple modification of Leray-Lions theorem (see [25]) it is possible to
obtain a weak solution un of (1) with g = gn and f = fn, that is a function

un ∈ W
1,(pi)
0 (Ω), that satisfies

N∑
i=1

∫
Ω

|∂iun|pi−2∂iun∂iv +

∫
Ω

gn(x, un)v =

∫
Ω

fnv, ∀ v ∈ W
1,(pi)
0 (Ω). (22)

A priori estimate. We prove

(a):
∫
{|un|>t} |gn(x, un)| ≤

∫
{|un|>t} |fn|, forall n and t ∈ R+.

(b): The sequence {un} is relatively compact in W
1,(qi)
0 (Ω) with

1 ≤ qi <
N(p− 1)

p(N − 1)
pi, ∀ i = 1, ..., N.

The proof of (a) is classical. We consider a sequence of real smooth increasing
functions {ψh(s)} that converges to the function ψt(s) = Tt(s)/t, we choose
ψh(un) as test function in (22) and we arrive, dropping nonnegative terms,
to ∫

Ω

gn(x, un)ψh(un) ≤
∫
Ω

fnψh(un).

Letting h goes to infinity we obtain (a). To prove (b) we proceed as for
problem (6), see [16], with f = hn = fn−gn. We note that if we choose t = 0
in (a) we get

∥gn(·, un)∥L1(Ω) ≤ ∥fn∥L1(Ω),

so that ∫
Ω

|hn| ≤ 2∥fn∥L1(Ω) ≤ C,

by (21), and hn ∈ [W
1,(pi)
0 (Ω)]∗ ∩ L1(Ω). Hence we obtain (b).
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Passing to the limit. By (b) we have

un → u in W
1,(qi)
0 (Ω), ∀ 1 ≤ qi <

N(p− 1)

p(N − 1)
pi, (23)

un → u, a.e. (24)

|∂iun|pi−2∂iun → |∂iu|pi−2∂iu, in Lri(Ω), ∀ 1 ≤ ri <
N(p− 1)

p(N − 1)
p′i (25)

We note that

1 <
N(p− 1)

p(N − 1)
p′i, ⇔ pi <

(N − 1)p

N − p
∀ i = 1, ..., N.

By (24) we have

gn(·, un) → g(·, u), a.e.. (26)

Now we need to prove that gn(·, un) converges to g(·, u) in L1(Ω). Since (26)
is true, in view of Vitali theorem, it is sufficient to show that gn(·, un) is
equiintegrable on Ω. For any measurable E ⊂ Ω and for any t ∈ R+, we get∫

E

|gn(x, un)| =
∫
E∩{|un|>t}

|gn(x, un)|+
∫
E∩{|un|≤t}

|gn(x, un)| ≤ C,

using (a), (G3), the equiintegrability on Ω of the sequence fn and the fact
that the measure of the set {x ∈ Ω : |un(x)| > t} goes to zero uniformly
respect to n when t goes to infinity. So we can pass to the limit in the
approximating problems and we obtain a distributional solution u, belonging

to W
1,(qi)
0 (Ω), for all

1 ≤ qi <
N(p− 1)

p(N − 1)
pi and

p(N − 1)

N(p− 1)
< pi <

p(N − 1)

N − p
,

as desired.
Improved regularity. By the previous part of the proof we have∫

Ω

|g(x, u)| ≤ C (27)

and ∫
Bk

|∂iu|pi ≤ C, ∀ k ∈ N and ∀ i = 1, ..., N (28)
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where Bk = {x ∈ Ω : k ≤ |u(x)| < k + 1}. Let m > 0, that we will choose
later; we have∫

Ω

|∂iu|pi
(1 + |u|)m+1

=
∞∑
k=0

∫
Bk

|∂iu|pi
(1 + |u|)m+1

≤ C
∞∑
k=0

1

(k + 1)m+1
< C(m), (29)

by (28), the definition of Bk and the convergence of the series that appears
above.
Moreover by (27) and (G2) we deduce∫

Ω

|u|s ≤ C. (30)

Now, let 1 ≤ qi < pi for any i, by Young inequality, we get

|∂iu|qi ≤
|∂iu|pi

(1 + |u|)m+1
+ (1 + |u|)

(m+1)qi
pi−qi .

Integrating on Ω the previous expression and using (29), (30) and the second
assumption in (19), we obtain∫

Ω

|∂iu|qi ≤ C, ∀ i = 1, ..., N.

We underline that

(m+ 1)qi
pi − qi

< s, ∀ i = 1, ..., N

if we choose

0 < m <
s(pi − qi)

qi
− 1

and this is possible because we are assuming that

qi <
spi
s+ 1

∀ i = 1, ..., N.

So we obtain the result.

4. Problems with lower order terms having natural growth
In this Section we prove the existence of a solution for (1) with

g(x, u,∇u) =
N∑
i=1

gi(x, u,∇u),

where gi satisfies for any i = 1, ..., N
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(G1’): gi(x, σ, ξ) : Ω × R × RN → R is measurable in Ω, for any fixed
σ ∈ R and ξ ∈ RN and continuous in σ and ξ for a.e. x ∈ Ω.

(G2’): For almost every x ∈ Ω, for all σ ∈ R and ξ ∈ RN

gi(x, σ, ξ)sgn(σ) ≥ 0.

(G3’): For almost every x ∈ Ω, for all s ∈ R and ξ ∈ RN

|gi(x, σ, ξ)| ≤ b(|σ|)|ξi|pi,

where b : R → R+ is a continuous, nondecreasing function such that
b(σ) > γ > 0 for |σ| sufficiently large.

Definition 4.1. We say that u is a weak solution for problem (1) if u ∈
W

1,(pi)
0 (Ω), gi(x, u,∇u) ∈ L1(Ω), for any i = 1, ..., N and u satisfies the

following inequality

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iφ+
N∑
i=1

∫
Ω

gi(x, u,∇u)φ =

∫
Ω

fφ (31)

for all φ ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω).

Theorem 4.2. Let f ∈ [W
1,(pi)
0 (Ω)]∗ (or in L(p∗)′(Ω)) and let gi be N func-

tions satisfying the conditions (G1’)-(G3’). Then there exists a weak solu-
tion u for problem (1).

Proof : As in the previous section, we divide the proof in three parts.
Approximating problems. We consider the sequence of approximating

equations−
∑N

i=1 ∂i[|∂iun|pi−2∂iun] +
∑N

i=1 g
n
i (x, un,∇un) = fn in Ω,

un ∈W
1,(pi)
0 (Ω) ∩ L∞(Ω), gni (x, un,∇un) ∈ L1(Ω), ∀ i.

(32)

where

gni (x, σ, ξ) =
gi(x, σ, ξ)

1 + 1
n |gi(x, σ, ξ)|

, ∀ i = 1, ..., N and ∀ n ∈ N (33)

and {fn} a sequence of L∞-functions such that fn → f in [W
1,(pi)
0 (Ω)]∗ (or in

L(p∗)′(Ω)). We remark that for all i = 1, ..., N

gni (x, σ, ξ)sgn(σ) ≥ 0, |gni (x, σ, ξ)| ≤ |gi(x, σ, ξ)| and |gni (x, σ, ξ)| ≤ n.
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Since gni is bounded for all i, for any fixed n ∈ N, (32) has at least one weak
solution un by a simple modification of the result of J. Leray and J.L. Lions.
Moreover by assumption of fn, un ∈ L∞(Ω) (cf. [10], [16] and [29]).
A priori estimates. We take un as test function in the weak formulation

of (32), we obtain

N∑
i=1

∫
Ω

|∂iun|pi +
N∑
i=1

∫
Ω

gni (x, un,∇un)un ≤
∫
Ω

|fnun| ≤

≤
(∫

Ω

|fn|(p
∗)′
) 1

(p∗)′
(∫

Ω

|un|p
∗
) 1

p∗

≤ C
N∑
i=1

∥∂iun∥Lpi(Ω)

by Hölder end Sobolev inequalities. This implies, using the sign condition
on gni , that

∥un∥W 1,(pi)
0 (Ω)

≤ C, (34)

and consequently∫
Ω

gni (x, un,∇un)un ≤ C, ∀ i = 1, ..., N. (35)

Passing to the limit. By the previous estimates we have that there exists

u ∈ W
1,(pi)
0 (Ω) and a subsequence (still denoted by {un}) such that

un → u weakly in W
1,(pi)
0 (Ω) (36)

and

un → u a.e. (37)

This result is not sufficient to pass to the limit in the approximating prob-
lems. Indeed, we also need to prove that ∂iun → ∂iu a.e. for all i and
gni (x, un,∇un) → gi(x, u,∇u) strongly in L1(Ω) for any i. We begin by prov-

ing that Tk(un) strongly converges to Tk(u) in W
1,(pi)
0 (Ω). We choose in the

weak formulation of (32) as a test function φn = ψ(Tk(un) − Tk(u)) where
ψ(s) = seλs

2

. It is simple to see that if λ ≥ (b(k)/2)2 the following inequality
holds for all s ∈ R

ψ′(s)− b(k)|ψ(s)| ≥ 1

2
. (38)

Thanks to the previous step we already know that

φn → 0 weakly in W
1,(pi)
0 (Ω)
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and ∗-weakly in L∞(Ω), so that we have

N∑
i=1

∫
Ω

|∂iun|pi−2∂iun∂iφn +
N∑
i=1

∫
Ω

gni (x, un,∇un)φn → 0. (39)

Since gni (x, un,∇un)φn ≥ 0 on the set {x ∈ Ω : |un(x)| ≥ k}, we obtain by
(39) that

N∑
i=1

∫
Ω

|∂iun|pi−2∂iun∂iφn +
N∑
i=1

∫
{|un|≤k}

gni (x, un,∇un)φn ≤ ω1(n), (40)

where ω1(n) is a sequence of real numbers which converges to zero as n
goes to infinity. In the following we will denote with ωi(n), i = 1, 2, ... such
sequences. For the first term in the left hand side of (40), we have, since
∂iφn = ψ′(Tk(un)− Tk(u))∂i(Tk(un)− Tk(u)) and by easy calculations,

N∑
i=1

∫
Ω

|∂iun|pi−2∂iun∂φn ≥ (41)

≥
N∑
i=1

∫
Ω

[|∂iTk(un)|pi−2∂iTk(un)− |∂iTk(u)|pi−2∂iTk(u)]×

×∂i(Tk(un)− Tk(u))ψ
′(Tk(un)− Tk(u)) + ω2(n).

On the other hand, by assumption (G3’),∣∣∣∣∣
N∑
i=1

∫
{|un|≤k}

gni (x, un,∇un)φn

∣∣∣∣∣ ≤ (42)

≤ b(k)
N∑
i=1

∫
Ω

[|∂iTk(un)|pi−2∂iTk(un)− |∂iTk(u)|pi−2∂iTk(u)]×

×∂i(Tk(un)− Tk(u))|φn|+ ω3(n).

Putting together (40), (41) and (42), we obtain

N∑
i=1

∫
Ω

[|∂iTk(un)|pi−2∂iTk(un)− |∂iTk(u)|pi−2∂iTk(u)]×

×∂i(Tk(un)− Tk(u))[ψ
′(un)− b(k)|φ(un)|] ≤ ω3(n).

Suppose now that pi ≥ 2 for some i. Then

[|∂iTk(un)|pi−2∂iTk(un)− |∂iTk(u)|pi−2∂iTk(u)]×
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×∂i(Tk(un)− Tk(u)) ≥ C|∂i(Tk(un)− Tk(u))|pi,
using (38), we obtain

N∑
i=1

∫
Ω

|∂i(Tk(un)− Tk(u))|pi ≤ 2C ω3(n)

that implies

Tk(un) → Tk(u) strongly in W
1,(pi)
0 (Ω). (43)

We arrive to the same result also if 1 < pi < 2, for some i, by a slight
modification and using the following inequality

[|∂iTk(un)|pi−2∂iTk(un)− |∂iTk(u)|pi−2∂iTk(u)]×

×∂i(Tk(un)− Tk(u)) ≥ C
|∂i(Tk(un)− Tk(u))|2

(|∂iTk(un)|+ |∂iTk(u)|)2−pi
.

The strong convergence of Tk(un) implies that for some subsequence, that we
still denote by un,

∂iun → ∂iu a.e. ∀ i = 1, ..., N (44)

and so

∇un → ∇u a.e.. (45)

It yields, since gi is a continuous function in σ and ξ for a.e. x ∈ Ω,

gni (x, un,∇un) → gi(x, u,∇u) a.e.. (46)

Now we prove that gni (x, un,∇un) is uniformly equiintegrable for i = 1, ..., N .
For any measurable E of Ω and for any m ∈ R+, we have∫

E

|gni (x, un,∇un)| ≤

≤
∫
E∩{|un|≤m}

b(m)|∂iTm(un)|pi +
∫
E∩{|un|>m}

|gni (x, un,∇un)|, (47)

for fixed m and for i = 1, ..., N . The first term that appears in the right hand
side of (47) is small uniformly in n and in E, since ∂iTm(un) strongly con-
verges to ∂iTm(u) in L

pi(Ω) for all i. Also the second term is small uniformly
in n and in E, since it can be estimated as follows∫

E∩{|un|>m}
|gni (x, un,∇un)| ≤

∫
{|un|>m}

|gni (x, un,∇un)| ≤
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≤
∫
{|un|>m}

1

|un|
un g

n
i (x, un,∇un) ≤

1

m

∫
{|un|>m}

un g
n
i (x, un,∇un) ≤

C2

m
,

thanks to (35). This completes the uniform equintegrability of gni for any i.
So thanks to (46) we get

gni (x, un,∇un) → gi(x, u,∇u), strongly in L1(Ω), ∀ i = 1, ..., N.

Using the strong L1-convergence of gi and the fact that

|∂iun|pi−2∂iun → |∂iu|pi−2∂iu weakly in Lp′i(Ω), ∀ i = 1, ..., N,

it is simple to pass to the limit in (32).

Theorem 4.3. Let f ∈ L1(Ω), and let gi be N functions satisfying the con-
ditions (G1’)-(G3’) and

(G4’): there exists γ > 0 such that

|gi(x, σ, ξ)| ≥ γ|ξi|pi, for |σ| sufficiently large.

Then there exists a weak solution u for problem (1).

Remark 4.4. We observe that the solution to (1) is a solution of finite energy

(u ∈ W
1,(pi)
0 (Ω)) even if f ∈ L1(Ω) and without assumptions (5) on pi. This

seems strange at first glance, because if f ∈ L1(Ω) the solution u of (6) is

known to only belong to W
1,(qi)
0 (Ω) for all 1 ≤ qi <

N(p−1)
p(N−1) pi. This improved

regularity of u is due to (G4’). In other words the sense of the result that we
will prove is that the term with natural growth, satisfying (G4’), brings an
extra regularity to the solutions for the problem (1) with L1-data, yielding

the existence of solutions inW
1,(pi)
0 (Ω), without further assumptions on pi, as

in (5). The role of (G4’) is to give an a priori estimate in the energy space

W
1,(pi)
0 (Ω), which allows us to deal with the lower order terms with natural

growth.

Proof of Theorem 4.3: As before we divide the proof in three steps.
Approximating problems. We consider the sequence of the approxi-

mating problems−
∑N

i=1 ∂i[|∂iun|pi−2∂iun] +
∑N

i=1 gi(x, un,∇un) = fn in Ω,

un ∈ W
1,(pi)
0 (Ω) gi(x, un,∇un) ∈ L1(Ω) ∀ i = 1, ..., N,

(48)
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where {fn} is a sequence of L∞-functions such that fn → f in L1(Ω). The
solutions of these problems exist by Theorem 4.2.
A priori estimates. In this case, the use in the weak formulation of (48)

of the test function Tk(un) yields for any k > 0

N∑
i=1

∫
Ω

|∂iTk(un)|+
N∑
i=1

∫
Ω

gi(x, un,∇un)Tk(un) ≤ k∥f∥L1(Ω),

that implies, thanks to the sign condition on gi,

N∑
i=1

∫
Ω

|∂iTk(un)|pi ≤ C k, (49)

and

k

∫
{|un|>k}

|gi(x, un,∇un)| ≤

≤
∫
{|un|>k}

|gi(x, un,∇un)|k +
∫
{|un|≤k}

gi(x, un,∇un)un =

=

∫
Ω

gi(x, un,∇un)Tk(un) ≤ C k, ∀ i = 1, ..., N. (50)

Now choosing k > k, where k is such that (G4’) holds, and combining (49),
(50) and (G4’) we again obtain

∥un∥W 1,(pi)
0 (Ω)

≤ C. (51)

Passing to the limit. By (51), there exists u ∈ W
1,(pi)
0 (Ω) and a sub-

sequence (still denoted by {un}) such that un weakly converges to u in

W
1,(pi)
0 (Ω) and a.e. The proof of the strong convergence of Tk(un) inW

1,(pi)
0 (Ω)

is the same as in Theorem 4.2. Now the strong convergence of Tk(un) implies
that for some subsequence

∂iun → ∂iu a.e. ∀ i = 1, ..., N (52)

and so

∇un → ∇u a.e., (53)

which implies

gi(x, un,∇un) → gi(x, u,∇u) a.e.. (54)
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Now we prove that gi(x, un,∇un) is uniformly equiintegrable for i = 1, ..., N .
For any measurable E of Ω and for any m ∈ R+. As before, we have∫

E

|gi(x, un,∇un)| ≤

≤
∫
E∩{|un|≤m}

b(m)|∂iTm(un)|pi +
∫
E∩{|un|>m}

|gi(x, un,∇un)|, (55)

for fixed m and for i = 1, ..., N . The first term of the expression above is
small uniformly in n and in E, recalling that ∂iTm(un) strongly converges
to ∂iTm(u) in Lpi(Ω) for all i. For the second term in this case we use
T1(Gm−1(un)) as test function in the weak formulation of the problem (48).
We obtain

N∑
i=1

∫
{|un|>m}

|gi(x, un,∇un)| ≤
∫
{|un|≥m−1}

|fn|

and hence

lim sup
n→+∞

∫
{|un|>m}

|gi(x, un,∇un)| ≤
∫
{|u|≥m−1}

|f |, ∀ i = 1, ..., N.

So also the second term, which appears in the right hand side of (55), is
small uniformly in n and in E when m is sufficiently large. Hence by (54)
we obtain

gi(x, un,∇un) → gi(x, u,∇u), strongly in L1(Ω), ∀ i = 1, ..., N,

and so it is simple to pass to the limit in (48). This fact concludes the
proof.

5. Some final remarks
First of all we want to observe what happens if we do not assume sign

conditions on the lower order terms. This result also appears in [17]. Here
we only report the statement of the Theorem. The proof is rather standard
and it strictly follows [12] (see also [5]).

Theorem 5.1. Let f ∈ Lm(Ω), m > p∗/(p∗−pN), p∗ > pN as in (11), µ0 > 0
and

i) bi(x, σ, ξ) : Ω×R×RN → R is measurable in Ω, for any fixed σ ∈ R and
ξ ∈ RN and continuous in σ and ξ for a.e. x ∈ Ω, for all i = 1, ..., N ;
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ii) there exists γ > 0, such that the following inequality is true for all
(σ, ξ) ∈ R× RN and a.e. x ∈ Ω

|bi(x, σ, ξ)| ≤ γ|ξi|pi, ∀ i = 1, ..., N. (56)

Then there exists a function u ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω), weak solution for the

following problem−
∑N

i=1 ∂i[|∂iu|pi−2∂iu] + µ0u =
∑N

i=1 bi(x, u,∇u) + f on Ω,

u = 0 on ∂Ω,
(57)

namely

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iφ+ µ0

∫
Ω

uφ =
N∑
i=1

∫
Ω

bi(x, u,∇u)φ+

∫
Ω

fφ (58)

for all φ ∈ W
1,(pi)
0 (Ω) ∩ L∞(Ω).

We underline that in this case it is impossible to use the Leray-Lions Theo-
rem, as in the previous section, because the functions bi are not bounded and
we do not have any information on their sign; therefore, to prove this result
we use approximation techniques and some regularity results presented in
[16]. Moreover the absence of the sign condition requires the addition of the
term on the left hand side of the equation in (57), µ0u. It is crucial in order
to prove an existence result. Indeed if µ0 = 0, already in the isotropic case
(i.e. pi = 2 for all i), the example of J. L. Kazdan and E. Kramer (quoted in
the Introduction, see (3)) shows that, even with bounded smooth data, no
bounded solution exists. In this case we have the existence of solutions to
(57) only if we assume that the norm of the data f is ”small”.
We highlight that it is also possible to take a unique function b instead of

a sum of bi in (57), if the following condition

|b(x, σ, ξ)| ≤ γ
N∑
i=1

|ξi|pi, ∀ i = 1, ..., N, (59)

is satisfied, ∀ (σ, ξ) ∈ R×RN , a.e. x ∈ Ω, and γ > 0. But the sum is however
more natural, when considering the relation between these problems and
some functionals of the Calculus of Variations, as said in the Introduction.
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We can consider, as a special example of (57), the Dirichlet problem:−
∑N

i=1 ∂i[|∂iu|pi−2∂iu] + µ0u = γ
∑N

i=1 |∂iu|pi + f on Ω,

u = 0 on ∂Ω.
(60)

Moreover, we remark that since we assume f ∈ Lm(Ω), with m > p∗/(p∗−
pN), we must also assume p∗ > pN . We think that this assumption is technical
and that it should be sufficient f ∈ Lm(Ω) with m > N/p, the condition to
have bounded solutions in the monotone case (6) (see [16] and [29]).

We note that in all of the previous problems, the anisotropic operator can
be substituted by a more general one, that is

A(u) = −div(a(x, u,∇u)),

where a(x, σ, ξ) = (ai(x, σ, ξ)) is vector valued function on Ω × R × RN ,
measurable in Ω, for any fixed σ ∈ R and ξ ∈ RN and continuous in σ and ξ
for a.e. x ∈ Ω, such that, for some constant β ≥ α > 0

N∑
i=1

ai(x, σ, ξ)ξi ≥ α
N∑
i=1

|ξi|pi,

|ai(x, σ, ξ)| ≤ β

(
N∑
j=1

|ξj|pj
)1−1/pi

, ∀ i = 1, .., N

and for a.e. x ∈ Ω and ∀ σ ∈ R, ξ, η ∈ RN , ξ ̸= η

N∑
i=1

(ai(x, σ, ξ)− ai(x, σ, η))(ξi − ηi) > 0.
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[7] L. Boccardo, T. Gallouët, Strongly nonlinear elliptic equations having natural growth terms
and L1 data, Nonlinear Anal. T.M.A. 19 (1992), 573–579.
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