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Abstract: Basing ourselves on the concept of double central extension from cat-
egorical Galois theory, we study a notion of commutator which is defined relative
to a Birkhoff subcategory B of a semi-abelian category A. This commutator cha-
racterises Janelidze and Kelly’s B-central extensions; when the subcategory B is
determined by the abelian objects in A, it coincides with Huq’s commutator; and
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tator introduced by the first author.
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1. Introduction
The aim of this article is to fill in the question mark in the diagram

?

ooooooooooo

OOOOOOOOOOOOO

Janelidze & Kelly Huq

Everaert

ooooooooo

OOOOOOOO

Froehlich Higgins

which relates several non-equivalent concepts of commuting normal subob-
jects, here named after the authors who introduced them. This diagram is
meant to be read in the following manner.
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The bottom triangle restricts itself to theories which make sense for va-
rieties of Ω-groups, while the top triangle extends those theories to a cat-
egorical context. In the left hand side column we have theories which are
one-dimensional and relative; the theories in the right hand side column,
however, are two-dimensional and absolute, while the ones in the middle
column are two-dimensional and relative. So we are looking for a categori-
cal commutator theory which is both relative and two-dimensional. Let us
explain in more detail what this means for us.

1.1. The bottom triangle. Recall that a variety of Ω-groups [26] is a
variety in the sense of universal algebra which is pointed (i.e., it has exactly
one constant) and has amongst its operations and identities those of the
variety of groups. Apart from groups, the examples include the varieties of
abelian groups, of non-unital rings, of commutative algebras, of modules and
of Lie algebras, and also the categories of crossed modules and of precrossed
modules are known (essentially from [34]) to be equivalent to varieties of
Ω-groups.
In this context there are two classical approaches to commutator theory.

On the one hand, there is the Higgins commutator of normal subobjects [26]
which has as particular cases the ordinary commutators of groups, rings, etc.
It is two-dimensional in the sense that any two normal subobjects (i.e.,
ideals or kernels) N and M of an object A in a variety of Ω-groups A have
a commutator [N,M ]Ω, namely, the normal subobject of the join M ∨ N =
M ·N of M and N generated by the set

{w(mn)w(n)−1w(m)−1 | w is a term, m ∈ M and n ∈ N}.

Call an object A of A abelian when it can be endowed with the structure
of an internal abelian group (necessarily in a unique way). The subcategory
of A determined by the abelian objects is denoted by AbA. It is well known
(and easily verified) that when A is a variety of Ω-groups, an algebra A
is in AbA precisely when the product map A × A → A (sending a pair of
elements (a, a′) to its product aa′) is a homomorphism in the variety. From
this it follows immediately that the Higgins commutator characterises the
abelian objects: A is abelian if and only if [A,A]Ω = 0.
On the other hand there is the relative notion of central extension due

to Fröhlich [23] (see also Lue [35] and Furtado-Coelho [24]). This notion of



RELATIVE COMMUTATOR THEORY IN SEMI-ABELIAN CATEGORIES 3

central extension corresponds to a one-dimensional commutator. Here one
starts from a variety of Ω-groups A together with a chosen subvariety B of A.
The subvariety B is completely determined by a set of identities of terms

of the form w(x) = 1; the set of all corresponding terms w(x) is denoted by

WB = {w(x) | w(b) = 1, ∀B ∈ B, ∀b ∈ B},

and an object A of A belongs to B if and only if w(a) = 1 for all w ∈ WB
and all a ∈ A.
An extension f : A → B in A is a regular epimorphism, i.e., a surjective

homomorphism. LetK denote the kernel of f . The normal subobject [K,A]ΩB
of A generated by the set

{w(ka)w(a)−1 | w ∈ WB, k ∈ K and a ∈ A}

is called the relative commutator (with respect to B) of K and A.
(Note that Fröhlich uses the notation V1 for the relative commutator.) The
extension f is central (with respect to B) when [K,A]ΩB is zero. It is
easily seen that this relative commutator characterises objects of B as follows:
A belongs to B if and only if [A,A]ΩB is zero.
In the absolute case when the subvariety B consists of all abelian objects

in A, it was shown in [24] that the two commutators coincide,

[K,A]ΩAbA = [K,A]Ω.

(Note here that K ∨A = A.) The main advantage of the relative approach is
that one may consider many situations which are not covered by the Higgins
commutator. For instance, the notion of central extension of precrossed mo-
dules relative to the subvariety of crossed modules is of this type. The main
advantage of the Higgins commutator is that it is two-dimensional. So the
Higgins commutator is two-dimensional and absolute, the Fröhlich commuta-
tor is one-dimensional and relative, and in the one-dimensional absolute case
the two commutators coincide. What about the two-dimensional relative
case?
In his article [15] the first author of the present article aims at answering

precisely this question. He introduces a two-dimensional relative commutator
for varieties of Ω-groups which restricts to the Higgins commutator in the
absolute case and which characterises Fröhlich’s relative central extensions.
Given any pair of normal subobjects M and N of an object A of A, the
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commutator [M,N ]B is the normal subobject of M ∨N generated by the set

{w(mn)w(n)−1w(m)−1w(p) | w ∈ WB,m ∈ M,n ∈ N,p ∈ M ∧N}.
The examples give an indication of how good his definition is. For instance,
when considering the variety of precrossed modules together with the subva-
riety of crossed modules, the relative commutator obtained is the so-called
Peiffer commutator, which is exactly what one would expect.

1.2. The left hand side column. Basing themselves on ideas from cate-
gorical Galois theory [28, 4], in the article [31] Janelidze and Kelly introduce
a general notion of central extension, relative with respect to a Birkhoff sub-
category B of a (Barr) exact category A. This notion of relative central
extension is a generalisation of Fröhlich’s definition.
In what follows, we shall restrict ourselves to the case of semi-abelian ca-

tegories [32]: pointed, exact and protomodular with binary sums. So let A be
a semi-abelian category and B aBirkhoff subcategory ofA—full, reflective
and closed under subobjects and regular quotients; a Birkhoff subcategory
of a variety is nothing but a subvariety. Let I : A → B denote the reflector,
and η : 1A ⇒ I the unit of the adjunction. Recall from [31] that the closure
of B under subobjects and regular quotients is equivalent to the condition
that the commutative square

A
f

,2

ηA

��

B

ηB

��

IA
If

,2 IB

(A)

is a pushout of regular epimorphisms, for any regular epi f : A → B.
An extension inA is a regular epimorphism. Such an extension f : A → B

is called trivial (with respect to B) when the induced commutative square
(A) is a pullback. f is central (with respect to B) when it is locally trivial
in the sense that there exists a regular epimorphism p : E → B such that
the pullback p∗(f) : E ×B A → E of f along p is a trivial extension. Since,
in the present context, this implies that f ∗(f) is trivial, we have that f is
central if and only if it is normal: either one of the projections in the kernel
pair (R[f ], f0, f1) of f is a trivial extension. It is explained in the article [31]
why these central extensions reduce to Fröhlich’s when the category A is a
variety of Ω-groups.



RELATIVE COMMUTATOR THEORY IN SEMI-ABELIAN CATEGORIES 5

This notion of relative central extension induces a one-dimensional re-
lative commutator as follows [20, 19]. Let [−]B : A → A denote the radical
induced by B: the functor which maps an object A of A to the object [A]B
defined through the short exact sequence

0 ,2 [A]B
µA ,2 A

ηA ,2 IA ,2 0,

and a morphism a : A′ → A to its (co)restriction [a]B : [A
′]B → [A]B. Let

again f : A → B be an extension and let K be its kernel. By protomodula-
rity, f is B-central if and only if for the kernel pair (R[f ], f0, f1) of f , the
(co)restrictions

[f0]B, [f1]B : [R[f ]]B → [A]B

of the two projections are isomorphisms (see [11]). Hence the kernel [K,A]B
of [f0]B measures how far f is from being central: f is B-central if and only
if [K,A]B is zero.
The object [K,A]B may be considered as a normal subobject of A via the

composite

µA ◦ [f1]B ◦ ker [f0]B : [K,A]B → A;

the induced extension A/[K,A]B → B is the B-centralisation of f . We
interpret [K,A]B as a commutator of K with A, relative to the Birkhoff
subcategory B of A. When A is a variety of Ω-groups, [K,A]B coincides
with the relative commutator [K,A]ΩB, because they induce the same central
extensions. And as in the varietal case, an object A of A belongs to B if and
only if [A,A]B = 0, because the extension A → 0 is a split epimorphism, and
therefore central if and only if it is trivial [31].

1.3. The right hand side column. In his article [27], Huq introduces a cat-
egorical notion of commutator of coterminal morphisms which makes sense
in quite diverse algebraic settings. Using “old-style” axioms, he formulates
his results for those categories we would nowadays call semi-abelian [32]. Re-
cast in more modern terminology by Bourn, his definition takes the following
shape [9]. In a semi-abelian category, consider two coterminal morphisms,
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m : M → A and n : N → A, and the resulting square of solid arrows

M
⟨1M ,0⟩

z���
��

��
��

�

��

m

�$?
??

??
??

??

M ×N ,2 Q A.qlr

N
⟨0,1N ⟩

Zd????????? n

:D���������

LR

The colimit of this square consists of an objectQ together with four morphisms
with codomain Q as indicated in the diagram. The morphism q turns out to
be a normal epimorphism; its kernel is denoted

[m,n]H : [M,N ]H → A

and called the Huq commutator of m and n. It is convenient for us to
restrict its use to the situation when M and N are normal subobjects of A,
i.e., m and n are kernels. The commutator [M,N ]H becomes the ordinary
commutator of normal subgroups M and N in the case of groups, the ideal
generated byMN+NM in the case of rings, the Lie bracket in the case of Lie
algebras, and so on. More generally, when computed in the join M ∨N , we
know from [27] that in any variety of Ω-groups the Huq commutator [M,N ]H

coincides with the Higgins commutator [M,N ]Ω. Just as the Higgins com-
mutator, the Huq commutator characterises the Birkhoff subcategory AbA
of A of abelian objects in A. This is a consequence of the fact that, in a
semi-abelian category A, an object A admits at most one internal abelian
group structure, and such a structure is entirely determined by a morphism
m : A× A → A which satisfies m ◦ ⟨1A, 0⟩ = 1A = m ◦ ⟨0, 1A⟩ [27, 8].

1.4. The question mark. By now it is clear, we hope, that the purpose
of the present article is to introduce a categorical version of the relative
commutator for varieties of Ω-groups, in such a way that

(1) it characterises the B-central extensions of A,
(2) it coincides with the Huq commutator when B is AbA.

In [21] the present authors already introduced a relative concept of commu-
ting normal subobjects, based on categorical Galois theory and valid in the
context of semi-abelian categories. This notion was shown to be compatible
with the relative commutator for varieties of Ω-groups. What we still have
to do now is
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· explain how this induces a two-dimensional commutator;
· prove that this commutator satisfies (1) and (2) above;
· explore the commutator’s basic properties.

One may ask whether it is worth the effort at all to leave the context of Ω-
groups and study a relative commutator from a categorical perspective. We
claim that the categorical approach not only provides us with a conceptual
explanation of the definitions (in terms of Galois theory) but also with inte-
resting new examples. For instance, in the case of loops vs. groups considered
in [21], the commutator becomes an associator, and it effectively measures
how well two normal subloops of a loop associate with each other.

1.5. Definition of the commutator. Let us now briefly sketch how the
relative commutator [−,−]B is defined. Let A again be a semi-abelian cate-
gory and B a Birkhoff subcategory of A. M and N will be normal subobjects
of an object A of A. RM and RN are the equivalence relations on the join
M ∨N (taken in the lattice of normal subobjects of A) corresponding to M
and N , and

RM�RN

r1 ,2

r0
,2

p1
��

p0
��

RN

����
RM

,2
,2 M ∨N

is the largest double equivalence relation on RM and RN : the object RM�RN

“consists of” all quadruples (x, y, z, t) ∈ M ∨N where (x, z), (y, t) ∈ RM and
(x, y), (z, t) ∈ RN .
The commutator of M and N is the meet

[M,N ]B = K[[p0]B] ∧K[[r0]B]

of the kernels of the morphisms [p0]B and [r0]B in the following diagram,
obtained by applying the functor [−]B to the diagram above.

[RM�RN ]B
[r1]B ,2

[r0]B

,2

[p1]B
��

[p0]B
��

[RN ]B

����

[RM ]B
,2
,2 [M ∨N ]B

(B)

It may be considered as a normal subobject of M ∨N .
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1.6. Interpretation in terms of double central extensions. We have
to explain why [M,N ]B is defined the way it is. The reason comes from
categorical Galois theory, in particular the theory of higher central extensions.
Just like the concept of central extension which is defined with respect to the
adjunction

A
I ,2
⊥ B,
⊃

lr (C)

one may consider double central extensions which are defined with respect
to the reflection of extensions to central extensions—the adjunction

ExtA
I1 ,2
⊥ CExtBA
⊃

lr (D)

where ExtA is the category of extensions and commutative squares between
them, and CExtBA its full subcategory determined by those extensions which
are central. The reflector I1 takes an extension f : A → B with kernel K and
maps it to the central extension

I1f : A/[K,A]B → B.

This may be repeated ad infinitum, so that notions of n-fold central exten-
sion are obtained, but for the present purposes the second step is sufficient.
Double central extensions, first introduced by Janelidze for groups [29], are
an important tool in semi-abelian (co)homology [19, 30, 39], and turn out
to be precisely what is needed to understand how the relative commutator
works. We refer the reader to the articles [19, 16] for more details on higher
central extensions.
As we explain below, the commutator [M,N ]B is zero if and only if any

(hence, all) of the four commutative squares in the diagram (B) is a pullback.
Galois theory shows that this condition is equivalent to the square

M ∨N
qM ,2

qN
��

M∨N
M

��
M∨N
N

,2 0

(E)

being a double central extension. (Here qM denotes the cokernel of the normal
monomorphism M → M ∨ N .) When this happens, we say that M and N
commute (with respect to B).
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Accordingly, given any two normal subobjects M and N of an object A,
the commutator [M,N ]B is the smallest normal subobject J of M ∨N such
that M/J and N/J commute; it is the normal subobject which must be
divided out of M ∨N to turn the double extension (E) into a double central
extension.

1.7. Structure of the text. In the following sections we shall explain why
the commutator has the properties (1) and (2) mentioned above. With this
purpose in mind, the text is structured as follows. In Section 2 we provide the
necessary background for understanding the definition of the commutator:
semi-abelian categories, normal subobjects, double extensions and double
central extensions. Its basic technical properties and the proof of (1) are
given in Section 3. In Section 4 we prove (2): the commutator [−,−]B
coincides with the Huq commutator in case B is AbA. Finally, Section 5
brings up some further remarks and unanswered questions.

2. Preliminaries
We recall some basic definitions and results which we shall need in the

following sections.

2.1. Semi-abelian categories. A category is regular when it is finitely
complete with coequalisers of kernel pairs and with pullback-stable regular
epimorphisms [1]. In a regular category, any morphism f may be factored
as a regular epimorphism followed by a monomorphism (called the image of
f), and this image factorisation is unique up to isomorphism. Given a mo-
nomorphism m : M → A and a regular epimorphism f : A → B, the direct
image f(m) : fM → B of m along f is the image of the composite f ◦m.
When a category is pointed and regular, protomodularity can be defined

via the following property [5, 7]: given any commutative diagram

K[f ′]
ker f ′

,2

k
��

A′ f ′
,2

a

��

B′

b
��

K[f ]
ker f

,2 A
f

,2 B

(F)

such that f and f ′ are regular epimorphisms, k is an isomorphism if and only
if the right hand square b◦f ′ = f ◦a is a pullback. (Here, we use the notation
ker f : K[f ] → A for the kernel of f .) A homological category is pointed,
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regular and protomodular [3]. In such a category, a regular epimorphism is
always the cokernel of its kernel, and there is the following notion of short
exact sequence. A short exact sequence is any sequence

K
k ,2 A

f
,2 B

with k = ker f and f a regular epimorphism. We denote this situation by

0 ,2 K
k ,2 A

f
,2 B ,2 0.

The following property holds.

Lemma 2.2. [7] Consider a morphism of short exact sequences such as (F)
above. The left hand side square ker f ◦ k = a ◦ ker f ′ is a pullback if and
only if b is a mono.

A (Barr) exact category is regular and such that every internal equiva-
lence relation is a kernel pair [1]. A homological category is exact if and only
if the direct image of a normal monomorphism along a regular epimorphism
is again a normal monomorphism. A semi-abelian category is homological
and exact with binary coproducts [32].
A regular pushout square is a commutative square

X
c ,2

d
��

C

g

��

D
f

,2 Z

(G)

such that all its maps and the comparison map ⟨d, c⟩ : X → D ×Z C to the
pullback of f with g are regular epimorphisms. In a semi-abelian category,
every pushout of a regular epimorphism along a regular epimorphism is a
regular pushout [14], and the following dual to Lemma 2.2 holds:

Lemma 2.3. [11] Given a morphism of short exact sequences such as (F)
above with a and b regular epi, the right hand side square f ◦ a = b ◦ f ′ is a
(regular) pushout if and only if k is a regular epimorphism.

2.4. Normal subobjects. A normal subobject N of an object A of a
semi-abelian category is a subobject represented by a normal monomorphism
n : N → A. Let M and N be two normal subobjects of A with representing
normal monomorphisms m and n. Taking into account Lemma 2.2 and the
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0

��

0

��

0

��

0 ,2 M ∧N

(i)

,2

��

N

n

��

,2 N
M∧N

��

,2 0

0 ,2 M m
,2

��

A ,2

��
(ii)

A
M

��

,2 0

0 ,2 M
M∧N

,2

��

A
N

,2

��

A
M∨N

��

,2 0

0 0 0

Figure 1. The 3× 3 diagram induced by M , N normal in A

stability of normal monomorphisms under regular images, we may always
form the 3× 3 diagram in Figure 1 (in which all rows and columns are short
exact sequences). The meet M ∧N and the join M ∨N of the subobjects M
and N are taken in the lattice of normal subobjects of A. We see that
M ∧N is computed as the pullback (i) and M ∨N is obtained through the
pushout (ii), as the kernel of the composite morphism A → A/(M ∨N). Of
course, M∧N coincides with the meet M∩N in the lattice of (all) subobjects
of A. One could also compute the join of M and N as (ordinary) subobjects
of A by taking the image M ∪ N of the morphism ⟨mn ⟩ : M +N → A. It is
known [2, 27] that both constructions yield the same result. We shall give
an alternative proof of this fact below, but first we prove a weaker property.
Let us fix some notation: we write j for the normal monomorphism repre-

senting M ∨N , and m′ : M → M ∨N and n′ : N → M ∨N for the induced
factorisations. Since m′ and n′ are normal monomorphisms, we may also
consider the join of M and N as normal subobjects of M ∨ N . We denote
it by M g N and write j′ : M g N → M ∨ N for the representing normal
monomorphism.

Lemma 2.5. The two joins M∨N and MgN coincide: j′ is an isomorphism.
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Proof : First of all note that the commutative square

M ∨N ,2

j

��

M∨N
M

��

A ,2 A
M

is a pullback by protomodularity, so that the right hand vertical morphism
is a monomorphism because, in a protomodular category, pullbacks reflect
monos [5]. (One could, alternatively, use Lemma 2.2 to prove that this
morphism is a monomorphism.) Now, the normal monomorphisms m′ and n′

induce a 3×3 diagram similar to Figure 1, and j induces a morphism between
the two 3× 3 diagrams, of which we consider only the last row:

0 ,2 N
M∧N

,2 M∨N
M

,2

��

M∨N
MgN

��

,2 0

0 ,2 N
M∧N

,2 A
M

,2 A
M∨N

,2 0

We have just explained why the middle vertical morphism is a monomorphism.
Hence, using the same arguments as above, we find that also the right hand
vertical morphisms is a mono. Since the composite

M ∨N → (M ∨N)/(M gN) → A/(M ∨N)

is zero, we find that (M ∨ N)/(M g N) = 0, i.e., the factorisation j′ is an
isomorphism.

Now, taking this lemma into account, when A = M ∨ N in the 3 × 3
diagram above, the object A/(M ∨ N) is zero, and we regain the Noether
isomorphisms [3]

N

M ∧N
∼=

M ∨N

M
and

M

M ∧N
∼=

M ∨N

N
. (H)

We are ready to prove the identity M ∨N = M ∪N .

Notation 2.6. Given a normal subobject J of M ∨N , the induced quotient
of M ∨N is denoted

qJ : M ∨N → (M ∨N)/J ;

we write RJ for the kernel pair of qJ .
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Proposition 2.7. [2, 27] If M and N are normal in A, then their join as
normal subobjects M ∨ N coincides with their join as subobjects M ∪ N .
Hence the morphism

⟨cokern, cokerm⟩ : A → (A/N)× (A/M)

is a regular epimorphism if and only if such is the morphism

⟨mn ⟩ : M +N → A.

Proof : If J is a subobject of M∨N containing M and N , then by Lemma 2.2
it induces a factorisation of the first of the isomorphisms (H) as a morphism
N/(M ∧N) → J/M followed by a monomorphism

j : J/M → (M ∨N)/M.

This j is also a split epimorphism; hence it is an isomorphism, and J is equal
to M ∨N .
Now M ∪ N is a subobject of M ∨ N , because the composite of the sum

⟨mn ⟩ : M +N → A with the quotient A → A/(M ∨N) is zero. Since M ∪N
contains M and N , the two joins coincide.
As to the latter statement, since in a semi-abelian category every pushout

is a regular pushout, the first condition holds if and only if A/(M ∨ N) is
zero; by definition, the second one holds when A is M ∪N .

Given a monomorphism m : M → A, the normal closure M
A
of M in A

always exists, and is computed as the kernel of the cokernel of m. It is the
smallest normal subobject of A that contains M .

2.8. Double (central) extensions. A double extension is a regular
pushout square (G). For instance, given any two normal subobjectsM andN
of an object A of A, the induced pushout square (E) is a double extension.
Recall from [19] that pullbacks of double extensions exist in ExtA and are
degree-wise pullbacks in A. Moreover, double extensions are pullback-stable.
The category of double extensions inA and commutative cubes between them
is denoted Ext2A.
Double central extensions are defined with respect to the adjunction (D)

in the same way as central extensions are defined with respect to the ad-
junction (C). More precisely, a double extension (G), considered as a map
(c, f) : d → g in the category ExtA, is trivial when the left hand commuta-
tive square below, induced by the unit of the adjunction (D), is a pullback
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in ExtA; this means that the right hand commutative square, in which the
vertical morphisms are the canonical quotient maps, is a pullback in A.

d
(c,f)

,2

��

g

��
I1d ,2I1g

X
c ,2

��

C

��
X

[K[d],X]B
,2 C
[K[g],C]B

The square (G) is a double central extension (with respect to B) when
its pullback along some double extension is a trivial double extension. It is a
double normal extension (with respect to B) when the first projection
of its kernel pair

R[c]
c0 ,2

r
��

X

d
��

R[f ]
f0

,2 D

is a trivial double extension. (Alternatively, one could use the square of
second projections.) By protomodularity, this amounts to the (one-dimen-
sional, relative) commutators [K[r], R[c]]B and [K[d], X]B being isomorphic.
Similar to the one-dimensional case, double central extensions and double
normal extensions coincide.

2.9.Higher extensions. In what follows we shall also need three-fold exten-
sions, so let us recall the definition of n-fold extension for arbitrary n. Given
n ≥ 0, denote by ArrnA the category of n-dimensional arrows in A. (Zero-
dimensional arrows—as well as zero-dimensional extensions—are just objects
of A.) A (one-fold) extension is a regular epimorphism in A. For n ≥ 1,
an (n+1)-fold extension is a commutative square (G) in Arrn−1A (an arrow
in ArrnA) such that all its maps and the comparison map ⟨d, c⟩ : X → D ×Z C
to the pullback of f with g are n-fold extensions. Thus for n = 2 we regain
the notion of double extension.
Basic results on higher-dimensional extensions and central extensions may

be found in [19] and [16]. Let us just recall here that, for any n ≥ 0, a split
epimorphism of n-fold extensions is always an (n+ 1)-fold extension, and it
is an (n + 1)-fold central extension if and only if it is a trivial (n + 1)-fold
extension.
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Higher-dimensional central extensions are important in homology where
they appear in the higher Hopf formulae, and in cohomology where (in the
absolute case, and in low dimensions) they are classified by the cohomology
groups [25, 39].

3. Definition and basic properties
In this section we recall the categorical definition of the relative commu-

tator from the introduction and we explore its basic properties: compatibi-
lity with the central extensions introduced by Janelidze and Kelly (Proposi-
tion 3.2), basic stability properties (Theorem 3.9) and the case of Ω-groups
(Proposition 3.10).
In what follows, A will be a semi-abelian category and B a Birkhoff sub-

category of A.

Definition 3.1. Let M and N be normal subobjects of an object A of A.
We say that M and N commute (with respect to B) when the double
extension

M ∨N
qM ,2

qN
��

M∨N
M

��
M∨N
N

,2 0

(I)

is central (with respect to B).

Is is immediately clear that this notion of commuting subobjects characte-
rises the B-central extensions of A and the objects of B:

Proposition 3.2. An extension f : A → B in A is B-central if and only if
the object A and the kernel K of f commute. An object A of A lies in B if
and only if A commutes with itself.

Proof : The first result holds because the double extension

A
qA ,2

f=qK
��

0

B ,2 0,

being a split epimorphism of extensions, is central if and only if it is trivial,
which happens precisely when f is a central extension. The second result
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follows from the first, since A is in B if and only if the split epimorphism
A → 0 is a B-central extension.

Lemma 3.3. [21, Proposition 2.9] Let M and N be normal subobjects of an
object A. M and N commute if and only if any of the four commutative
squares in the diagram

[RM�RN ]B
[r1]B ,2

[r0]B

,2

[p1]B
��

[p0]B
��

[RN ]B

[π1]B
��

[π0]B
��

[RM ]B
[ρ1]B ,2

[ρ0]B

,2 [M ∨N ]B

(J)

is a pullback.

Definition 3.4. Let M and N be normal subobjects of an object A. Let
[RM ]B ×[M∨N ]B [RN ]B denote the pullback of the morphisms [π0]B and [ρ0]B
from Diagram (J). The commutator [M,N ]B is the kernel of the morphism

⟨[p0]B, [r0]B⟩ : [RM�RN ]B → [RM ]B ×[M∨N ]B [RN ]B,

considered as a normal subobject of M ∨N .

Remark 3.5. Two normal subobjects M and N of an object A commute if
and only if [M,N ]B is zero. Indeed, the morphism ⟨[p0]B, [r0]B⟩ is a regular
(hence, normal) epimorphism because the square [π0]B ◦ [r0]B = [ρ0]B ◦ [p0]B
is a double extension as a split epimorphism of split epimorphisms. Hence
its kernel is zero if and only if it is an isomorphism—which, by Lemma 3.3,
means that M and N commute.

Remark 3.6. The kernel of ⟨[p0]B, [r0]B⟩ may indeed be considered as a nor-
mal subobject of M ∨N , namely, through the composition of

ker ⟨[p0]B, [r0]B⟩ : K[⟨[p0]B, [r0]B⟩] → [RM�RN ]B

with

ρ1 ◦ p1 ◦ µRM�RN
: [RM�RN ]B → M ∨N.

First of all, this composite is a monomorphism, because

µRM�RN
◦ ker ⟨[p0]B, [r0]B⟩ = ker ⟨p0, r0⟩ ◦ µK[⟨[p0]B,[r0]B⟩]

and both µK[⟨[p0]B,[r0]B⟩] and ρ1 ◦ p1 ◦ ker ⟨p0, r0⟩ are monomorphisms.
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Now µRM�RN
◦ker ⟨[p0]B, [r0]B⟩ is a normal monomorphism as a meet of two

normal monomorphisms. This follows from Lemma 2.2, since the induced
morphism

[RM ]B ×[M∨N ]B [RN ]B → RM ×M∨N RN

is a monomorphism. Hence

ρ1 ◦ p1 ◦ µRM�RN
◦ ker ⟨[p0]B, [r0]B⟩

is normal, being the direct image of this latter normal monomorphism along
the regular epimorphism ρ1 ◦ p1.

Remark 3.7. On the other hand, there is no reason why [M,N ]B should be
a normal subobject of A. A counterexample is given in [36].

Remark 3.8. The commutator [M,N ]B is nothing but L2 of the double
extension (I) as considered in the article [19].

Theorem 3.9. Let M , N , L (resp. M ′, N ′) be normal subobjects of an
object A (resp. A′). Let J be a normal subobject of M ∨ N . The following
hold:

(1) [0, N ]B = 0;
(2) [M,N ]B = [N,M ]B;
(3) [M,N ]B ≤ M ∧N ;
(4) if N ≤ L then [M,N ]B ≤ [M,L]B as subobjects of A;
(5) qJ [M,N ]B ≤ [qJM, qJN ]B;
(6) [M ×M ′, N ×N ′]B = [M,N ]B × [M ′, N ′]B;
(7) qJ [M,N ]B = [qJM, qJN ]B as soon as either J ≤ M ∧N or M ≤ N ;
(8) [M,N ]B is the smallest normal subobject J of M ∨N such that qJM

and qJN commute.

Proof : The first property holds because, for any object N , the square

N

qN

��

q0
N

��
0 0

is a double central extension with respect to B. Property (2) follows from
the symmetry of Diagram (J); see [16] for a detailed explanation. (3) follows
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from the definition of [M,N ]B. To see this, consider the diagram

K[[r0]B]

k1
��

k0
��

ker [r0]B,2 [RM�RN ]B
[r1]B ,2

[r0]B

,2

[p1]B
��

[p0]B
��

[RN ]B

[π1]B
��

[π0]B
��

K[[ρ0]B]
ker [ρ0]B ,2

l
��

[RM ]B
[ρ1]B ,2

[ρ0]B

,2

µRM

��

[M ∨N ]B

µM∨N

��

M
ker ρ0

,2 RM

ρ1 ,2

ρ0
,2 M ∨N.

Since [M,N ]B, being the kernel of ⟨[p0]B, [r0]B⟩, may be computed as the meet
of the kernels of [p0]B and [r0]B, it is also the kernel of k0. Hence, considered
as a subobject of M ∨N via Remark 3.6, it is a subobject of M through the
morphism l ◦ k1. Likewise, [M,N ]B is contained in N .
The fourth property follows from the functoriality of the construction

of [−,−]B. So does the fifth. To see that the relative commutator preserves
binary products, it suffices to note that the one-dimensional commutator [−]B
preserves them, and that joins commute with products. The former property
is well known. It is a consequence of the fact that the reflector I : A → B
preserves pullbacks of split epimorphisms along split epimorphisms (because
the components of the unit are extensions) together with the fact that a split
epimorphism of split epimorphisms in ExtA is always a three-fold extension.
The latter property holds because the product of two regular pushouts is
a regular pushout: products of pullbacks are pullbacks, products of regular
epis are regular epis.
To prove (7), first of all recall that the square (A) induced by the unit η

is a pushout of regular epimorphisms for any regular epimorphism f , by the
Birkhoff condition. Hence, by Lemma 2.3, the zero-dimensional commuta-
tor [−]B : A → A preserves extensions. Now, let J be a normal subobject
of M ∧N . Since in the induced diagram of short exact sequences

0 ,2 M
m ,2

��

M ∨N
qM ,2

��

M∨N
M

pM
��

,2 0

0 ,2 M
J

,2 M
J ∨ N

J
,2
M
J ∨N

J
M
J

,2 0
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the left hand vertical map is an epimorphism, the right hand square is a
pushout. Since, moreover, we have (M/J) ∨ (N/J) = (M ∨ N)/J (as the
join is stable under regular image), it follows that

M
J ∨ N

J
M
J

∼=
M ∨N

M
,

i.e., pM is an isomorphism. Hence in the left hand side commutative cube

M
J ∨ N

J
,2

��

M
J ∨N

J
M
J

��

M ∨N ,2

��

:D��������
M∨N
M

��

pM

:D�����

M
J ∨N

J
N
J

,2 0

M∨N
N

,2

pN :D

0

����������

����������

RM
J

�RN
J

,2
,2

����

RM
J

����

RM�RN
,2
,2

����

:D�������

RM

����

:D�������

RN
J

,2
,2 M
J ∨ N

J

RN
,2
,2

:D

M ∨N

:D��������

the morphism pM and, by symmetry, also pN , are isomorphisms. This implies
that the cube is a three-fold extension—and, as a consequence, so are all
the commutative cubes in the right hand side diagram, being pullbacks of
three-fold extensions. This is still true if we apply the functor [−]B to the
right hand side diagram, since [−]B preserves extensions and because a split
epimorphism of extensions is a double extension, and a split epimorphism
of double extensions a three-fold extension. The identity in (7) now follows.
If M ≤ N , then the left hand cube above is clearly a three-fold extension
and the result follows as in the previous case.
Properties (3) and (7) together imply that q[M,N ]BM and q[M,N ]BN com-

mute. Using (5) it is now easily seen that [M,N ]B is minimal amongst all J
with [qJM, qJN ]B = 0.

It was shown in [21] that two normal subobjects of an Ω-group commute in
the sense of [15] if and only if they commute in the sense of our Definition 3.1.
Since both notions of relative commutator satisfy the same universal property
(see Theorem 3.9 (8)), we find:
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Proposition 3.10. Let A be a variety of Ω-groups and B a subvariety of A.
Given any two normal subobjects M and N of an object A of A, we have
[M,N ]ΩB

∼= [M,N ]B. In particular, the commutator [M,N ]ΩB is zero if and
only if the double extension (I) is central.

Remark 3.11. This already gives us the examples worked out in [15]: pre-
crossed modules vs. crossed modules, where the relative commutator is the
Peiffer commutator, for instance. An example which is not a consequence
of this theorem—loops vs. groups, where the relative commutator is an
associator—was considered in the article [21]. Another example which falls
outside the scope of [15] is the case of compact Hausdorff topological groups
vs. profinite groups. Here, the relative commutator [M,N ]B is the connected
component of the intersectionM∩N , as follows from results in [17]. More ge-
nerally, in any situation where the reflector I : A → B is protoadditive [18, 17]
(for instance, when A is abelian), one has the identity [M,N ]B = [M ∩N ]B
for any object A of A and any pair of normal subobjects M and N of A.
The “absolute” case of abelianisation is treated in the following section.

Remark 3.12. It suffices to consider the case B = 0 (where 0 is the category
with one object and one arrow) to see that the equality in Statement (5) of
Theorem 3.9 does not hold in general. The case B = 0 shows, furthermore,
that unlike the Smith/Pedicchio commutator—cf. Lemma 4.2—the commu-
tator [−,−]B need not preserve binary joins.

4. The absolute case: abelianisation
In the case of Ω-groups, the relative commutator [−,−]ΩB in A reduces to

the Higgins commutator when B is the Birkhoff subcategory AbA of all abe-
lian objects of A. Likewise, when A is an arbitrary semi-abelian category and
B is AbA, the relative [−,−]B is nothing but the Huq commutator. To show
this we take a detour via the Smith/Pedicchio commutator of equivalence
relations. First, in Lemma 4.4, we prove that the equivalence relation corres-
ponding to the commutator of two normal subobjects is exactly the commu-
tator of the equivalence relations corresponding to those normal subobjects.
Then we prove Proposition 4.7 which states that the Huq commutator of a
pair of normal subobjects M and N of an object A is the normalisation of
the Smith/Pedicchio commutator of the corresponding equivalence relations,
when M ∨ N = A. Combining both results, we obtain Theorem 4.8: given
any two normal subobjects M and N of A, their Huq commutator [M,N ]H,
computed in M ∨N , coincides with [M,N ]AbA.
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4.1. The commutator of equivalence relations. In his book [41], Smith
introduced a commutator of equivalence relations in the context of Mal’tsev
varieties. It was extended to a purely categorical setting by Pedicchio [37]
and may be presented in a manner which is similar to the definition of the
Huq commutator of normal subobjects [3, 13].
Let A be an object of a semi-abelian category A. The largest equivalence

relation on A is denoted by ∇A = (A × A, π0, π1) and the smallest one
by ∆A = (A, 1A, 1A).
Two equivalence relations R = (R, r0, r1) and S = (S, s0, s1) on A are said

to centralise each other when they admit a centralising double relation

C
,2
,2

����

S

����

R
,2
,2 A,

(K)

i.e., a (unique) double equivalence relation C on R and S such that any of
the four commutative squares in (K) is a pullback. (Then all of the squares
in (K) are pullbacks.) R and S centralise each other if and only if there
exists a partial Mal’tsev operation on R and S, a morphism p : R×A S → A
which satisfies p(α, α, γ) = γ and p(α, γ, γ) = α.
The commutator [R, S]S of R and S is the universal equivalence relation

on A which, when divided out, makes them centralise each other. Consider
the pullback

R×A S

pR

��

pS ,2
S

s0

��

iS
lr

R
r1 ,2

iR

LR

Alr

LR

of r1 and s0; then [R,S]S is the kernel pair R[q] of the morphism q in the
diagram

R
iR

z���
��

��
��

�

��

r0

�$?
??

??
??

??

R×A S ,2 Q Aqlr

S

iS

Zd????????? s0

:D���������

LR
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where the dotted arrows denote the colimit of the outer square. The direct
images qR and qS of R and S along the regular epimorphism q centralise
each other; hence R and S do so if and only if [R, S]S = ∆A.
The following properties of this commutator will be useful for us.

Lemma 4.2. [3, 12, 37] Let R, S, S ′ be equivalence relations on an object A
and f : A → B a regular epimorphism. The following hold:

(1) [∆A, S]
S = ∆A;

(2) [R, S]S = [S,R]S;
(3) [R, S]S ≤ R ∧ S;
(4) if S ≤ S ′ then [R, S]S ≤ [R, S ′]S;
(5) [R, S ∨ S ′]S = [R, S]S ∨ [R,S ′]S;
(6) if [R, S]S = ∆A then [fR, fS]S = ∆B.

The double central extensions with respect to the Birkhoff subcategory AbA
of abelian objects in a semi-abelian category A have been characterised in
terms of this commutator of equivalence relations as follows.

Lemma 4.3. [39, 22] A double extension (G) in a semi-abelian category A
satisfies

[R[d], R[c]]S = ∆A = [R[d] ∧R[c],∇A]
S

if and only if it is central with respect to AbA.

This immediately implies that [−,−]AbA corresponds to [−,−]S.

Lemma 4.4. Given any two normal subobjects M and N of A,

[RM , RN ]
S = R[M,N ]AbA.

Proof : By definition, M and N commute when the square (I) is a double cen-
tral extension with respect to AbA. According to Lemma 4.3, this happens
if and only if

[RM , RN ]
S = ∆M∨N = [RM ∧RN ,∇M∨N ]

S. (L)

Using ∇M∨N = RM ∨RN we see that

[RM ∧RN ,∇M∨N ]
S = [RM ∧RN , RM ]S ∨ [RM ∧RN , RN ]

S ≤ [RM , RN ]
S

and the second equality in (L) follows from the first. Hence [M,N ]AbA is
zero if and only if [RM , RN ]

S = ∆M∨N . The commutator [RM , RN ]
S now

coincides with R[M,N ]AbA because these two equivalence relations satisfy the
same universal property.
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Notation 4.5 (cf. Notation 2.6). Given a normal subobject M of an ob-
ject A, the induced quotient of A is denoted

qAM : A → A/M ;

we write RA
M for the kernel pair of qAM .

4.6. The Huq commutator. It is well known that in general, the Huq
commutator does not correspond to the commutator of equivalence relations:
the relation RA

[M,N ]H need not be isomorphic to [RA
M , RA

N ]
S for arbitrary normal

subobjects M and N of an object A—a counterexample is given in [10] for
digroups, a variety of Ω-groups. There are essentially two ways to remedy
this situation. On the one hand, the context may be strengthened to that
of Moore categories by imposing the strong protomodularity axiom [3, 38];
but then the theory no longer applies to all varieties of Ω-groups. On the
other hand, it is known that the induced notions of centrality coincide in
any semi-abelian category (see [25, Proposition 2.2]). That is to say, RA

[M,N ]H

is isomorphic to [RA
M , RA

N ]
S when N is equal to A. In fact, according to

an unpublished result by M. Gran and the first author (presented here as
Proposition 4.7 below) this assumption is too strong: as we shall see, the
commutators coincide as soon as A = M ∨N .
Two coterminal morphisms m : M → A and n : N → A commute when

there exists a (necessarily unique) morphism φm,n : M ×N → A such that

m = φm,n ◦ ⟨1M , 0⟩ and n = φm,n ◦ ⟨0, 1N⟩.
It is clear that m and n commute if and only if their Huq commutator
[m,n]H : [M,N ]H → A is zero, see Subsection 1.3.

Proposition 4.7. Given any two normal subobjects M and N of A with
M ∨N = A we have R[M,N ]H = [RM , RN ]

S.

Proof : We show that the representing normal monomorphismsm and n of M
and N commute if and only if the equivalence relations RM and RN centra-
lise each other; the result then follows, because the commutators [−,−]H

and [−,−]S satisfy the same universal property. One implication is Propo-
sition 3.2 in [13] which states that m and n commute whenever [RM , RN ]

S

is ∆A. Indeed, if p : RM ×A RN → A is a partial Mal’tsev operation on RM

and RN , then its restriction to M ×N is the needed φm,n.
To prove the other implication, suppose that φm,n : M ×N → A exists.

By assumption, the morphism ⟨mn ⟩ : M +N → A, and hence also φm,n, is
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a regular epimorphism. This implies that RM = φm,n(φ
−1
m,nRM) and RN =

φm,n(φ
−1
m,nRN). Since the images of two equivalence relations which centralise

each other still centralise each other (by (6) in Lemma 4.2), it suffices to
show that so do φ−1

m,nRM and φ−1
m,nRN . Now these relations turn out to be

particularly simple. Via Lemma 2.2, the Noether isomorphism N/(M∧N) ∼=
(M ∨N)/M implies that the left hand side square in the diagram with exact
rows

0 ,2 M × (M ∧N)

��

,2 M ×N

φm,n

��

,2 N
M∧N

∼=
��

,2 0

0 ,2 M ,2 M ∨N ,2 M∨N
M

,2 0

is a pullback, so φ−1
m,nRM = ∇M ×RN

M∧N . Similarly, φ−1
m,nRN = RM

M∧N ×∇N .
Since

[M ∧N,M ]H = 0 = [M ∧N,N ]H,

Proposition 2.2 in [25] may be used to see that [∇M , RM
M∧N ]

S = ∆M and
[RN

M∧N ,∇N ]
S = ∆N so that [φ−1

m,nRM , φ−1
m,nRN ]

S = ∆M×N—which finishes
the proof.

Combining Lemma 4.4 with Proposition 4.7, we obtain

Theorem 4.8. Given any two normal subobjects M and N of A, their Huq
commutator [M,N ]H, computed in M ∨N , coincides with [M,N ]AbA.

Remark 4.9. Given any monomorphism i : A → B, two coterminal morphisms
m : M → A and n : N → A commute if and only if i◦m and i◦n commute—
both in Huq’s sense and relative with respect to any B. This implies that
the concept of “commuting subobjects” is independent of the surrounding
object A. As a consequence,

[M,N ]AbA
A
= [M,N ]H.

5. Further remarks
5.1. Finding the right context. We have defined the relative commutator
in the framework of semi-abelian categories. However, looking at the diagram
in the introduction, this is not entirely satisfactory, because:

· Central extensions were defined in [31] in the context of exact catego-
ries A, relative to a choice of admissible Birkhoff subcategory; and it
was shown that if A is Mal’tsev (every reflexive relation internal in A
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is an equivalence relation) then any Birkhoff subcategory is admissible.
More recently, V. Rossi proved in [40] the admissibility of Birkhoff sub-
categories in a context which includes every regular Mal’tsev category
that is “almost exact” in the sense that every regular epimorphism is
an effective descent morphism.

· The Huq commutator can be considered in as general a context as that
of finitely cocomplete unital categories; in particular, in any finitely
cocomplete pointed Mal’tsev category [9].

This suggests to consider the following question: is it possible to define the
relative commutator in a more general context than that of semi-abelian cate-
gories, say, in finitely cocomplete, pointed, regular, “almost exact” Mal’tsev
categories? This is an open problem, but let us remark here that there ap-
pear to be, mainly, two obstacles that prevent this to be possible, and let us
comment on either of these.
Double central extensions, on which concept the notion of relative commu-

tator depends, were defined in [19] in the semi-abelian context. The main
reason for this was that the construction of the left adjoint to the inclusion
functor CExtBA → ExtA given in [19] is only valid if A is semi-abelian (and B
is a Birkhoff subcategory of A). There is no a priori reason, though, why
the left adjoint ExtA → CExtBA could not exist (and have good properties)
when the category A is not semi-abelian. In fact, when A is a finitely cocom-
plete exact Mal’tsev category and B is the Birkhoff subcategory of abelian
objects, this left adjoint is known to exist, allowing for a concept of double
central extension, and the characterisation of Lemma 4.3 above remains valid
(see [22]).
In an exact Mal’tsev category any pushout of regular epimorphisms is a

regular pushout [14], and we have used this property to conclude the crucial
fact that the square (E) is always a double extension. Furthermore, we know
from [14] that in every regular, but not exact, Mal’tsev category there exist
pushout squares of regular epimorphisms that are not double extensions.
This seems to indicate that exactness is unavoidable in defining a relative
commutator. However, we can say the following.
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First of all recall from [6] that a finitely complete category A is Mal’tsev
if and only if for any square of split epimorphisms

X

d
��

c
,2 C

g

��

lr

D
f

,2

LR

Z
lr

LR

which “reasonably” commutes (in the sense that it represents a split epi-
morphism in the category of split epimorphisms, with given splitting, in A),
the factorisation ⟨d, c⟩ : X → D×Z C to the pullback of f with g is a strong
epimorphism. A finitely complete pointed category A is called unital if
the same property holds, but only in the case where Z is the zero object.
Equivalently, A is unital if for any two objects C and D the “product in-
jections” ⟨0, 1C⟩ : C → D × C and ⟨1D, 0⟩ : D → D × C are jointly strongly
epimorphic [6, 8]. A third characterisation of unital categories is given by
the following proposition.

Proposition 5.2. If A is a finitely complete pointed category, then the first
condition implies the second:

(1) A is unital;
(2) for any pair of strong epimorphisms c and d

D X
dlr c ,2 C

such that the kernels ker d and ker c are jointly strongly epimorphic,
the induced morphism to the product ⟨d, c⟩ : X → D × C is a strong
epimorphism.

If, moreover, A has finite coproducts, then the two conditions are equivalent.

Proof : Assume that A is unital and that d and c are as in (2). First of
all note that a morphism is a strong epimorphism if it is jointly strongly
epimorphic with a zero morphism. Since ker d and ker c are jointly strongly
epimorphic, and d is a strong epimorphism, this implies that the composite
d ◦ ker c is strongly epimorphic. Similarly, c ◦ ker d is a strong epimorphism.
Since A is unital, the product injections ⟨0, 1C⟩ and ⟨1D, 0⟩ are jointly stron-
gly epimorphic, hence, by the above, so are ⟨0, 1C⟩ ◦ c ◦ ker d = ⟨d, c⟩ ◦ ker d
and ⟨1D, 0⟩ ◦ c ◦ ker c = ⟨d, c⟩ ◦ ker c. Hence ⟨d, c⟩ is a strong epimorphism.
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Conversely, for any two objects D and C of A, applying condition (2) to
the “coproduct projections”

D D + C
⟨ 1D
0

⟩
lr

⟨ 0
1C

⟩
,2 C

gives us that the product injections ⟨1D, 0⟩ and ⟨0, 1C⟩ are jointly strongly
epimorphic. Hence A is unital.

Now suppose that A is finitely cocomplete, regular and unital. Then,
in particular, any two subobjects M and N of an object A in A admit a
union M ∪N , and the above proposition implies that the square

M ∪N
qM ,2

qN
��

M∪N
M

��
M∪N
N

,2 0

(M)

is a double extension (here qM and qN are the cokernels of the inclusions
in M∪N of M and N , respectively). This indicates that it might be possible,
after all, to consider the relative commutator in a non-exact context, but we
would need to have an appropriate notion of double central extension. In
that case, we could say that M and N commute if and only if the double
extension (M) is central.

5.3. Stability under regular images. We proved in Theorem 3.9 that

p[M,N ]B = [pM, pN ]B (N)

for any regular epimorphism p : A → B and normal subobjects M and N
of A such that either K[p] ≤ M ∧N or M ≤ N . As noted in Remark 3.12,
this identity need not hold for arbitrary p, M and N . However, we know
from [27] that (N) does hold for arbitrary p, M and N if B = AbA, and the
same is true, for instance, for the Peiffer commutator of precrossed modules
or the associator of loops (considered in [21]).
This suggests to look for necessary and sufficient conditions on the Birkhoff

subcategory B for [−,−]B to be stable under regular images, i.e., for the
identity (N) to hold for any regular epimorphism p : A → B and any normal
subobjects M and N of A. We do not have a satisfactory answer to this
question, although a characterisation of such B in the case of Ω-groups was
given in [15], in terms of the identities that define the subvariety B.
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Let us just recall here the following necessary condition, again taken from
the article [15]: we need the subcategory AbA of abelian objects of A to be
contained in B. Indeed, if we assume that the relative commutator [−,−]B
is stable under regular images, and that A is an abelian object with “multi-
plication” π : A× A → A, then

[A,A]B =
[
π
(
A× 0

)
, π

(
0× A

)]
B
= π

([
A× 0, 0× A

]
B

)
⊆ π

((
A× 0

)
∧
(
0× A

))
= 0.

However, the converse is not true. The condition B ⊇ AbA does not imply
the stability under regular images of [−,−]B; a counterexample was given
in [15].
A similar question may be asked with respect to preservation of joins, see

Remark 3.12.

5.4. Higher dimensions. In this article, we considered what we have cal-
led zero-dimensional, one-dimensional and two-dimensional relative commu-
tators, but what about higher dimensions? Keeping in mind examples such
as the associator of loops, this does not seem to be an unreasonable question
to ask. Let us write [L,M,N ]B for a three-dimensional relative commutator
defined on triples of normal subobjects L, M , N of an object A of A, with
respect to a Birkhoff subcategory B of A. Then, for instance, if A is the
variety of loops and B is the subvariety of groups, we would like that

[L,M,N ]B = [L,M,N ],

where on the right hand side is the associator of loops considered in [21].
It is not clear to us what would be the appropriate definition of n-dimen-

sional relative commutator (for n ≥ 3), or whether it is even possible to
obtain a convenient theory.
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Institut de recherche en mathématique et physique, Université catholique de Louvain,
Chemin du Cyclotron 2, 1348 Louvain-la-Neuve, Belgium
Centre for Mathematics of the University of Coimbra, 3001-454 Coimbra, Portugal

E-mail address: tvdlinde@mat.uc.pt


