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Introduction

In the classical spaces, a uniformity on X is approached, basically, by two
different (but equivalent) ways:

– one can take systems of special covers of X (reminiscent of the system
of covers of a metric space by the ε-balls) — the Tukey mode (see e.g.
[24, 11]),

– or one can consider systems of special “neighborhoods of the diagonal”
(entourages) in the product X × X (reminiscent of the ε-entourages
{(x, y) | ρ(x, y) < ε} in a metric space) — the Weil mode ([25]).

Both can be extended to the point-free spaces (locales). Thus we have a quite
extensive literature about the cover uniformities, starting with the pioneering
Isbell’s [12] (further see e.g. [1, 2, 3, 10, 22, 23], etc.). On the other hand
the entourage and kindred types of uniformities were thoroughly studied e.g.
in [19, 20, 21] and from another technical standpoint (a functional one in
nature, based on a certain kind of Galois connections — axialities — rather
than on entourages) e.g. in [8, 9] (for a discussion of the relation with the
entourage technique see [7]).
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2 J. PICADO AND A. PULTR

There is a fundamental difference in these two extensions of the classical
structures to the more general point-free context. While the cover descrip-
tion (see 1.2 below) is a straightforward generalization of the classical one
(covers are covers, star-refinement corresponds to the classical one), the en-
tourage definition is, rather, just an extension by analogy, or mimicking the
classical definition in the category of locales: the (binary) product of locales
(coproduct of frames L ⊕ L) does not quite correspond to the product of
spaces, and hence we can think of the entourages E ∈ L ⊕ L (see 1.4) only
guardedly as of models of open sets containing the diagonal.
Nevertheless, the two approaches are, again, equivalent (which should

come, in a way, as a bit of surprise).
Now while, as we have already said, there is abundant literature on both the

cover and the entourage uniformities, the relation between the two has been
somewhat neglected. The equivalence was proved by the first author in his
Thesis ([19]; cf. [20]) using a certain technical detour (specifically, Lemma
3.1 of [20] about the behaviour of the composition operator on down-sets
of L × L); but this seems to be about all. Thus, one does not have, to our
knowledge, a direct proof of the equivalence in the standard journal literature;
one of the aims of this paper is to fill in this gap.
Further, we concentrate on the uniform structure of localic groups (ana-

logues of topological groups in the point-free context). In the original article
about this subject ([13]) it was shown that similarly like in the classical case
one has natural cover uniformities induced by the group structure. In fact
one has equally (if not even more) natural entourage ones ([21]). We describe
them and show their relation to (of course, an equivalence with) the cover
ones; while doing this we also discuss the semigroup of open parts of a localic
group (which has not yet been presented in this detail). As an application
we present an extremely simple proof of the fact that the localic group ho-
momorphisms are uniform; it should be noted that this fact has so far, to our
knowledge, not been proved in the literature by the cover methods, and even
remaking our simple entourage proof to a cover one by translation seems to
be rather complex. We see it as another corroboration of the usefulness of
the entourage approach.

Only basic knowledge of classical topology and of category theory (as in
the less involved parts of [18]) is assumed. The necessary definitions and
facts concerning frames (locales) are presented in Preliminaries below.
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1. Preliminaries

1.1. Recall that a frame is a complete lattice satisfying the distributive law

(
∨

A) ∧ b =
∨
{a ∧ b | a ∈ A}

for all subsets A ⊆ L and all b ∈ L. A frame homomorphism h : L → M
preserves all joins (including the void one, the bottom 0) and all finite meets
(including the top 1). The resulting category will be denoted by

Frm.

A typical frame is the lattice Ω(X) of all open sets of a topological space X; if
f : X → Y is a continuous map then Ω(f) = (U 7→ f−1[U ]) : Ω(Y )→ Ω(X)
is a frame homomorphism. Thus one has a contravariant functor

Ω : Top→ Frm

(where Top is the category of topological spaces). Setting

Loc = Frmop

one obtains the category of locales. Then Ω becomes a contravariant functor
Top→ Loc; furthermore, restricted to the subcategory Sob of sober spaces
it is a full embedding. Thus one can think of locales as a generalization of
(sober) topological spaces. For more about frames see e.g. [14, 23].

1.2. Cover (Tukey) uniformities. A cover of a frame L is a subset U ⊆ L
such that

∨
U = 1. A cover U refines (or is a refinement of) a cover V if

∀u ∈ U ∃v ∈ V such that u ≤ v.

This is indicated by writing U ≤ V .
For covers U, V we have the largest common refinement in the preorder ≤,

U ∧ V = {u ∧ v | u ∈ U, v ∈ V }.

If U ⊆ L is a cover and a ∈ L we set

Ua =
∨
{u ∈ U | u ∧ a ̸= 0}

and for covers U, V define

UV = {Uv | v ∈ V }.
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Note that if U is a cover of L and if h : L → M is a frame homomorphism
then

h[U ]h(a) ≤ h(Ua) (1.2.1)

(if h(u) ∧ h(a) ̸= 0 then u ∧ a ̸= 0 and hence h(u) ≤ h(Ua) for u ∈ U).

Finally, for a set of covers U define a relation

b ▹U a ≡df there is a U ∈ U such that Ub ≤ a.

U is said to be admissible if

∀a ∈ L, a =
∨
{b | b ▹U a}.

A (cover-) uniformity on a frame L is an admissible non-empty system of
covers U such that

(U1) if U ∈ U and U ≤ V then V ∈ U ,
(U2) if U, V ∈ U then U ∧ V ∈ U ,
(U3) for every U ∈ U there is a V ∈ U such that V V ≤ U .

Note that if U is a uniformity then the relation ▹U interpolates, that is, if
a ▹U b then

there is a c such that a ▹U c ▹U b

(if Ua ≤ b take a V from (U3) and set c = V a; use the easy fact that
U(V x) ≤ (UV )x to obtain V c ≤ b).

1.3. Recall (see e.g. [14, 23]; it should be noted that the first construction of
frame coproducts appeared in [6]) that the coproduct L⊕M in Frm (product
in Loc) can be constructed as follows.
First take the Cartesian product L×M as a poset and

D(L×M) = {U ⊆ L×M | ↓U = U ̸= ∅}

(where ↓U = {(x, y) | (x, y) ≤ (a, b) ∈ U}, as usual), and call a U ∈ D(L×M)
saturated if

(1) for any subset A ⊆ L and any b ∈M , if A×{b} ⊆ U then (
∨

A, b) ∈ U ,
and

(2) for any a ∈ L and any subset B ⊆M , if {a}×B ⊆ U then (a,
∨

B) ∈
U .
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The set A resp. B can be void; hence, in particular, each saturated set
contains as a subset

n = {(0, b), (a, 0) | a ∈ L, b ∈M}.

It is easy to check that for each (a, b) ∈ L×M ,

a⊕ b =↓(a, b) ∪ n is saturated.

To finish the construction of a coproduct one takes

L⊕M = {U ∈ D(L×M) | U saturated}

with the coproduct injections

ιL = (a 7→ a⊕ 1) : L→ L⊕M, ιM = (b 7→ 1⊕ b) : M → L⊕M.

Note that we have

(1.3.1) for each saturated U ,

U =
∨
{a⊕ b | (a, b) ∈ U} =

∪
{a⊕ b | (a, b) ∈ U}, and

(1.3.2) if a⊕ b ≤ c⊕ d and b ̸= 0 then a ≤ c.

1.4. Entourage (Weil) uniformities. An entourage in L is an element
E ∈ L⊕ L such that

{u | u⊕ u ≤ E}
is a cover of L.
For entourages E,F of L set

E ◦ F =
∨
{a⊕ c | ∃b ̸= 0, a⊕ b ≤ E and b⊕ c ≤ F} =

=
∨
{a⊕ c | ∃b ̸= 0, (a, b) ∈ E and (b, c) ∈ F}.

(Caution: unions of saturated sets are not necessarily saturated and the join
above is typically bigger than the corresponding union.)
Further, for an entourage E set

E−1 = {(a, b) | (b, a) ∈ E}

(which is obviously an entourage again).

If E is an entourage (resp. E a set of entourages) write

b ▹E a if E ◦ (b⊕ b) ≤ a⊕ a, and b ▹E a if ∃E ∈ E , b ▹E a.
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A set of entourages E is said to be admissible if

∀a ∈ L, a =
∨
{b | b ▹E a}.

An entourage uniformity on a frame L is an admissible set of entourages E
such that

(E1) if E ∈ E and E ≤ F then F ∈ E ,
(E2) if E,F ∈ E then E ∩ F ∈ E ,
(E3) if E ∈ E then E−1 is in E , and
(E4) for every E ∈ E there is an F ∈ E such that F ◦ F ≤ E.

Note that obviously intersections of saturated elements are saturated; hence
the E ∩ F in (E2) makes sense.

1.5. If U resp. E is a cover- resp. entourage-uniformity on L one speaks of
(L,U) resp. (L, E) as a cover- resp. entourage-uniform frame. As a rule it is
obvious which of the two it is, and one speaks simply of a uniform frame.

1.5.1. Let (L,U), (M,V) be cover-uniform frames. A frame homomorphism
h : L→M is said to be uniform if

∀U ∈ U , h[U ] ∈ V .

1.5.2. Let (L, E), (M,F) be entourage-uniform frames. A frame homomor-
phism h : L→M is said to be uniform if

∀E ∈ E , (h⊕ h)(E) ∈ F

(where h ⊕ h is the frame homomorphism L ⊕ L → M ⊕ M defined by
(h⊕ h)ιi = ιih for i = 1, 2).

1.6. Bases of uniformities. A uniformity is often described by a basis
U ′ ⊆ U (E ′ ⊆ E), that is, a subset such that

U = {V | U ≤ V for a U ∈ U ′} resp. E = {F | E ≤ F for an E ∈ E ′}

(the ≤ in the former is the refinement preorder while in the latter it is the
order in the frame L⊕ L).
Note that an entourage uniformity has for instance the basis constituted by

the symmetric entourages, that is, entourages E such that E−1 = E: indeed,
for a general E consider the E−1 ∩ E ≤ E.
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1.6.1. One very often works, instead of with the whole uniformities with
their bases, usually very naturally described. Then the formulas for homo-
morphisms are modified to

∀U ∈ U ∃V ∈ V such that h[U ] ≥ V,

resp. ∀E ∈ E ∃F ∈ F such that (h⊕ h)(E) ≥ F.

2. Translations

2.1. In this section we will prove that the two concepts of uniformity from
1.2 and 1.4 are equivalent in the sense that there are natural translations of
one into the other, with satisfactory properties (for instance frame homomor-
phisms are uniform iff they are uniform when the uniformities are replaced
by the associated ones).
Recall from the Introduction that while the cover uniformities are genuine

generalization of the classical ones, the entourage ones are, rather, just an
analogy of the classical definition (since products of locales — coproducts of
frames – do not quite correspond to products of classical spaces). Hence the
fact of equivalence is somewhat deeper than it sounds.

2.2. The following will play a crucial role.

Lemma. Let U be a cover of L and let x ⊕ y ≤
∨
{u ⊕ u | u ∈ U}. Let

y ̸= 0. Then x ≤ Uy.

Proof. We have

x⊕ y =
∨
{(u ∧ x)⊕ (u ∧ y) | u ∈ U} =

=
∨
{(u ∧ x)⊕ (u ∧ y) | u ∈ U, u ∧ y ̸= 0} ≤ (Uy ∧ x)⊕ y.

Thus, if y ̸= 0, x ≤ x ∧ Uy, and finally x ≤ Uy. �

2.3. Lemma. If UE = {x | x⊕ x ≤ E} is a cover then E ≤ E ◦ E.

Proof. Let a⊕ b ≤ E and b ̸= 0. We have

b =
∨
{b ∧ u | u ∈ UE} =

∨
{b ∧ u | u ∈ UE, u ∧ b ̸= 0}.

Now we have, for b ∧ u ̸= 0, a ⊕ (b ∧ u) ≤ E and (b ∧ u) ⊕ (b ∧ u) ≤ E,
hence a ⊕ (b ∧ u) ≤ E ◦ E and hence a ⊕ b = a ⊕

∨
{b ∧ u | u ∈ UE} =∨

{a⊕ (b ∧ u) | u ∈ UE} ≤ E ◦ E. �
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2.4. For an entourage E define

Ẽ =
∨
{u⊕ u | u⊕ u ≤ E}.

2.4.1. Lemma. Let F be a symmetric entourage and let F ◦ F ≤ E. Then
for each a⊕ b ≤ F we have (a ∨ b)⊕ (a ∨ b) ≤ E

Consequently, if E is a uniformity then for each E ∈ E , Ẽ ∈ E.
Proof. Let a⊕ b ≤ F , so that also b⊕ a ≤ F and hence

a⊕ a, b⊕ b ≤ F ◦ F ≤ E;

by 2.3 also
a⊕ b, b⊕ a ≤ F ◦ F ≤ E.

Thus a⊕ (a ∨ b) ≤ E, b⊕ (a ∨ b) ≤ E and finally (a ∨ b)⊕ (a ∨ b) ≤ E and

we conclude that a⊕ b ≤ (a ∨ b)⊕ (a ∨ b) ≤ Ẽ. �

2.5. Translations. For a cover U define an entourage EU , and for an
entourage E define a cover UE as follows.

EU =
∨
{x⊕ x | x ∈ U},

UE = {x | x⊕ x ≤ E}.

2.5.1. Lemma. (a) U ≤ UEU
≤ UU .

(b) Ẽ = EUE
≤ E.

Proof. (a) If x⊕ x ≤ EU then for any u0 ∈ U such that u0 ∧ x ̸= 0 we have
by 2.2

x ≤ U(u0 ∧ x) ≤ Uu0.

Thus,
UEU

= {x | x⊕ x ≤ EU} ≤ UU.

On the other hand, trivially, U ≤ UEU
.

(b) We have, by the definitions, EUE
=

∨
{x⊕ x | x⊕ x ≤ E} = Ẽ. �

2.5.2. Lemma. (a) b ▹E a ⇒ UEb ≤ a.

(b) Ub ≤ a ⇒ b ▹EU
a.

Proof. (a) Let u ∈ UE and u∧ b ̸= 0. Then u⊕ (u∧ b) ≤ EU and (u∧ b)⊕ b ≤
b ⊕ b, and hence u ⊕ b ≤ E ◦ (b ⊕ b) ≤ a ⊕ a; thus, as b ̸= 0, u ≤ a and we
conclude that UEb ≤ a.
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(b) Let Ub ≤ a and let x⊕ y ≤ EU and y ⊕ z ≤ b⊕ b for some y ̸= 0. Then
x ⊕ y ≤

∨
{u ⊕ u | u ∈ U} and by 2.2, x ≤ Uy. Thus, x ⊕ z ≤ Uy ⊕ b ≤

Ub⊕ b ≤ a⊕ a. �

For an entourage uniformity E set UE = {V | V ≥ UE, E ∈ E} and for a
cover uniformity U define EU = {F | F ≥ EU , U ∈ U}.

2.5.3. Theorem. The correspondences E 7→ UE and U 7→ EU constitute
a one-one correspondence between the entourage uniformities and the cover
ones. More explicitly, EUE = E and UEU = U .
Proof. By 2.5.2, ▹U=▹EU (and ▹E=▹UE). Thus, if any of the associated
uniformities is admissible then the other is as well.
By 2.5.1 we have the formulas EUE = E and UEU = U .
Thus, it remains to be proved that the systems UE and EU are uniformities

(of their types). We will prove (U3) and (E4), the other facts are straight-
forward.
To prove (U3) we will show that if F is symmetric and (F ◦F )◦(F ◦F ) ≤ E

then UFUF ≤ UE. Set F1 = F ◦F . Fix a u ∈ UF and take an arbitrary v ∈ UF

such that u ∧ v ̸= 0. Then because of u ∧ v ̸= 0, v ⊕ u ∈ F1 = F ◦ F and
since F1 is saturated,

UFu⊕ u = (
∨
{v | v ∧ u ̸= 0})⊕ u ≤ F1.

Since F is symmetric, F1 is symmetric as well and hence by 2.4.1 UFu⊕UFu ≤
F1 ◦ F1 ≤ E, and UFu ∈ UE.
To prove (E4) we will show that EU ◦EU ≤ EUU . Take an x⊕y ≤ EU ◦EU ;

hence there is a y ̸= 0 such that x ⊕ y ≤ EU and y ⊕ z ≤ EU . Choose a
u ∈ U such that u ∧ y ̸= 0. Since x⊕ (u ∧ y) ≤ EU and (u∧ y)⊕ z ≤ EU we
obtain from 2.2 that x⊕ z ≤ Uu⊕ Uu ≤ EUU . �

2.6. Proposition. For the associated entourage and cover uniformities, the
concepts of a uniform homomorphism coincide.

Proof. I. Suppose that for each E ∈ E there exists an F ∈ F such that

(h⊕ h)(E) ≥ F. (∗)
Take U ∈ U and a V ∈ U such that V V ≤ U . By (∗) (and 1.4) there exists
in particular a W ∈ V such that

(h⊕ h)(EV ) ≥ EW .
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Take a w ∈ W . Then w ⊕ w ≤
∨
{h(v) ⊕ h(v) | v ∈ V } and hence, by

Lemma 2.2, if we take a v0 ∈ V such that y = w ∧ h(v0) ̸= 0 we obtain that
w ≤ h[V ]y ≤ h[V ]h(v0) ≤ h(V v0) ≤ h(u) for some u ∈ U . Thus, W ≤ h[U ].

II. Let for each U ∈ U there be a V ∈ V such that

h[U ] ≥ V.

Consider an E ∈ E . There is an F ∈ F such that h[UE] ≥ UF . Let v⊕v ≤ F .
Then v ∈ UF and hence there is a u ∈ UE such that v ≤ h(u). Then

v ⊕ v ≤ h(u)⊕ h(u) ≤ (h⊕ h)(u⊕ u) ≤ (h⊕ h)(E)

and hence (h⊕ h)(E) ≥ F̃ . Recall 2.4. �

3. Localic groups and the associated semigroups of open
parts

3.1. Recall that a group in a category C with products is a collection of data
(A,m, i, e) with

m : A× A→ A, i : A→ A, e : T → A morphisms in C

(T = A0 is the empty product, that is, the terminal object of C, the object
such that from every X ∈ C there is precisely one morphism tX : X → T )
such that

m(m× id) = m(id×m),

m(e× id) = m(id× e) = id, and

m(i× id)∆ = m(id× i)∆ = e tA.

Note that if C is the category of sets (where products are the Cartesian ones
and T = {∅} is the one-point set this is the classical group (A, ·, (−)−1, e)
and the identities above are the standard x(yz) = (xy)z, xe = ex = x and
xx−1 = x−1x = e; or e.g. in Top we have operations such that the maps
(x, y) 7→ xy and x 7→ x−1 are continuous (the classical topological group).
Since we will work with frames and frame homomorphisms rather than

with morphisms in Loc we will think of a localic group as a system (L, µ, ι, ε)
where

µ : L→ L⊕ L, γ : L→ L, ε : L→ 2 = {0, 1}
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are frame homomorphisms such that

(µ⊕ id)µ = (id⊕ µ)µ,

(ε⊕ id)µ = (id⊕ ε)µ = id, and

∇(γ ⊕ id)µ = ∇(id⊕ γ)µ = σLε

where σL : 2→ L sends 0 to 0 and 1 to 1, and ∇ is the codiagonal L⊕L→ L
defined by ∇ιi = id, i = 1, 2.

3.1.2. Note. A topological group does not always transform by the functor
Ω to a localic group, as one might expect. The map

Ω(m) : Ω(X)→ Ω(X ×X)

is not a homomorphism with the target Ω(X)⊕Ω(X) and in general cannot
be lifted to one. In special cases where Ω respects products (locally compact
groups, complete metric ones, etc.) it does. See [13].

3.2. By Kock’s theorem ([17]) the counterpart of each identity that can
be deduced in a classical equational class (variety) of algebras holds in the
associated category of algebras in C.
We will need the following identities (τ : L⊕ L→ L⊕ L is the homomor-

phism defined by τιi = ι3−1, i = 1, 2):

(3.2.1) γγ = id (corresponding to (x−1)−1 = x),
(3.2.2) εγ = ε (corresponding to e−1 = e),
(3.2.3) (γ ⊕ γ)µ = τµγ (corresponding to (xy)−1 = y−1x−1),
(3.2.4) and the fact that α = (id ⊕∇)(µ ⊕ γ) satisfies αα = id and αι1 = µ

(α corresponds to the mapping (x, y) 7→ (xy, y−1)).

Remark. Needless to say these identities can be deduced directly (by a
somewhat lengthy and tedious computation).

3.3. A frame L is not necessarily spatial, that is, isomorphic to an Ω(X).
The possible points are modeled by homomorphisms h : L → 2 (mimicking
the maps f : P → X where P is the one-point space). Thus one obtains the
spectrum ΣL of L, with open sets Σa = {h : L→ 2 | h(a) = 1}, a ∈ L. Each
localic group has at least one point, namely ε : L→ 2 (this may be the only
one, even if L is large, see [13]); the set

NL = {a | ε(a) = 1}
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can be viewed as the set of (representatives of) the neighbourhoods of the
unit.

3.4. Recall that monotone maps f : (X,≤)→ (Y,≤) are (Galois) adjoint (f
is the left one and g the right one) if

f(x) ≤ y iff x ≤ g(y).

We will denote the left adjoint f of g by

g#.

If X,Y are complete lattices f is a left adjoint (resp. g is a right adjoint) iff
it preserves all suprema (resp. infima) (see any text on partially ordered sets,
e.g. [5]). Thus in particular each frame homomorphism has a right adjoint.
We have, though,

3.4.1. Proposition. (a) The multiplication µ in a localic group has a left
adjoint.

(b) Also µ⊕ id and id⊕ µ have left adjoints and there holds

(µ⊕ id)#(a⊕ b) = µ#(a)⊕ b and (id⊕ µ)#(a⊕ b) = a⊕ µ#(b).

Proof. (a) Recall (3.2.4). We have µ = αι1; α, as an isomorphism, is its own
adjoint, and ι1 has, as it is easy to check, the left adjoint

(ι1)#(u) =
∨
{x | ∃y ̸= 0, x⊕ y ≤ u}.

Thus, we have µ# = (ι1)#α.

(b) It is easy to check that if E ∈ L⊕ L is saturated then the union∪
{↓(µ(x), y) | x⊕ y ≤ E}

is saturated (recall 1.3) so that

(µ⊕ id)(E) =
∪
{↓(µ(x), y | x⊕ y ≤ E}.
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Hence
F ≤ (µ⊕ id)(E)

iff ∀a⊕ b ≤ F, (a, b) ∈
∪
{↓(µ(x), y) | x⊕ y ≤ E}

iff ∀a⊕ b ≤ F ∃x⊕ y ≤ E, a ≤ µ(x) and b ≤ y

iff ∀a⊕ b ≤ F ∃x⊕ y ≤ E, µ#(a) ≤ x and b ≤ y

iff ∀a⊕ b ≤ F µ#(a)⊕ b ≤ E

iff φ(F ) =
∨
{a⊕ b | µ#(a)⊕ b ≤ E} ≤ E.

In particular (µ⊕ id)#(a⊕ b) = φ(a⊕ b) = µ#(a)⊕ b. �

Note. The first statement is a part of Johnstone’s stronger observation ([15])
that µ is an open homomorphism (open homomorphisms are counterparts of
open continuous maps, and are characterized as Heyting homomorphisms
that have left adjoint ([16]). The L in a localic group is always regular, and
hence the Heyting part follows from the adjointness ([14, 23]).

3.5. The “semigroup of open parts”. The algebra (L, ∗, (−)−1) to be
introduced is a counterpart of the semigroup (with involution) of open subsets
of a topological group, with the operations

UV = {uv | u ∈ U, v ∈ V }, U−1 = {u−1 | u ∈ U}.
It appeared in passing in [4] with the proofs of the properties just hinted.
Here we will be more explicit.

On L define a (classical) binary operation ∗ and a unary operation (−)−1
on L by setting

x ∗ y = µ#(x⊕ y), x−1 = γ(x).

3.5.1. Observation. Since ι1 is one-one, µ = αι1 is one-one and we easily
infer that

µµ# ≥ id and µ#µ = id.

In particular
µ#(0) = 0.

3.5.2. Proposition. (1) If x′ ≤ x and y′ ≤ y then x′ ∗ y′ ≤ x ∗ y.
(2) If x = 0 or y = 0 then x ∗ y = 0.

(3) The operation ∗ is associative.
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(4) If y ∈ N then x ∗ y ≥ x and y ∗ x ≥ x.

(5) If x ∧ y ̸= 0 then x ∗ y−1 ∈ N .

(6) (x ∗ y)−1 = y−1 ∗ x−1.
(7) If x ∈ N then x−1 ∈ N .

Proof. (1) and (2) are trivial.

(3) Using 3.4.1 we obtain

a ∗ (b ∗ c) = µ#(a⊕ µ#(b⊕ c)) = µ#(id⊕ µ)#(a⊕ b⊕ c) =

= ((id⊕ µ)µ)#(a⊕ b⊕ c) = ((µ⊕ id)µ)#(a⊕ b⊕ c) =

= µ#(µ⊕ id)#(a⊕ b⊕ c) = µ#(µ#(a⊕ b)⊕ c) = (a ∗ b) ∗ c.

(4) Applying id⊕ ε on both sides of µµ#(x⊕ y) ≥ x⊕ y we obtain

x ∗ y ≥ (id⊕ ε)(x⊕ y) = x⊕ ε(y) = x ∧ ε(y).

(5) Since we have

σε(x ∗ y−1) = ∇(id⊕ γ)µµ#(id⊕ γ)(x⊕ y) ≥
≥ ∇(id⊕ γ)(id⊕ γ)(x⊕ y) = x ∧ y ̸= 0,

ε(x ∗ y−1) cannot be 0.

(6) Since τ# = τ and γ# = γ, we obtain from (3.2.3) that

µ#(γ ⊕ γ) = γµ#τ,

and as τ(x⊕ y) = y ⊕ x we conclude

x−1 ∗ y−1 = µ#(γ(x)⊕ γ(y)) = γµ#(y ⊕ x) = (y ∗ x)−1.

(7) follows from (3.2.2). �
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4. Uniformities on localic groups

4.1. More on the semigroup (L, ∗, (−)−1). Recall the system

N = NL = {a | ε(a) = 1}
of “neighbourhoods of unit” from 3.3. Obviously

a, b ∈ N ⇒ a ∧ b ∈ N and a ∈ N ⇒ a−1 = γ(a) ∈ N.

Here are some more facts about the multiplication.

4.1.1. Lemma. If c ∗ b ≤ a, u ∗ u−1 ≤ c and v ∧ b ̸= 0 then u ≤ a.

Proof. We have c⊕ b ≤ µ(a) and u⊕ γ(u) ≤ µ(c) so that

u⊕ γ(u)⊕ b ≤ µ(c)⊕ b = (µ⊕ id)(c⊕ b) ≤ (µ⊕ id)µ(a) = (id⊕ µ)µ(a).

Applying id ⊕ ∇(γ ⊕ id) we obtain on the leftmost side u ⊕ (u ∧ b) (as
∇(x⊕ y) = x ∧ y) and on the rightmost one

(id⊕ (∇(γ ⊕ id)µ)µ(a) = (id⊕ σε)µ(a) =

= (id⊕ σ)(id⊕ ε)µ(a) = (id⊕ σ)(a) = a⊕ 1.

Thus u⊕ (u ∧ b) ≤ a⊕ 1 and since u ∧ b ̸= 0, u ≤ a. �

4.1.2. Lemma. For each a ∈ N there are b, c ∈ N such that b ∗ b ≤ a and
c ∗ c−1 ≤ a

Proof. Any L can be viewed as a coproduct

2
σL−−→ L

idL←−− L

and since σ2 = id2 we have

ε = id2 ⊕ ε : L = 2⊕ L→ 2⊕ 2 = 2.

Hence, ε = (id2 ⊕ ε)(ε⊕ idL)µ = (ε⊕ ε)µ and we obtain, for a ∈ N ,

1 = ε(a) =
∨
{ε(x)⊕ ε(y) | x⊕ y ≤ µ(a)} =

∨
{ε(x)⊕ ε(y) | x ∗ y ≤ a}

so that there are x, y such that x ∗ y ≤ a and ε(x) = ε(y) = 1. Set b = x ∧ y
and c = x ∧ γ(y). �

4.2. For an a ∈ N set

U(a) = {x ∈ L | x⊕ γ(x) ≤ µ(a)} = {x ∈ L | x ∗ x−1 ≤ a},
V (a) = {x ∈ L | γ(x)⊕ x ≤ µ(a)} = {x ∈ L | x−1 ∗ x ≤ a}
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and consider the systems

U = {U | U ≥ U(a), ε(a) = 1} and V = {V | V ≥ V (a) ε(a) = 1}.

4.2.1. Proposition. U and V are uniformities on L.

Proof. It will be done for U .
I. Each U(a) is a cover. We have

U(a) = {x ∧ y | x⊕ y ≤ (id⊕ γ)µ(a)}.
(Indeed, if x⊕γ(x) ≤ µ(a) then x⊕x ≤ (id⊕γ)(x⊕γ(x)) ≤ (id⊕γ)µ(a). On
the other hand, if x⊕y ≤ (id⊕γ)µ(a) then (x∧y)⊕γ(x∧y) ≤ (id⊕γ)(x⊕y) ≤
(id⊕ γ)(id⊕ γ)µ(a) = µ(a).)
Thus, ∨

U(a) =
∨
{x ∧ y | x⊕ y ≤ (id⊕ γ)µ(a)} =

=
∨
{∇(x⊕ y) | x⊕ y ≤ (id⊕ γ)µ(a)} =

= ∇
∨
{x⊕ y | x⊕ y ≤ (id⊕ γ)µ(a)} =

= ∇(id⊕ γ)µ(a) = σε(a) = 1.

II. The system U is admissible. By 4.1.1, if c ∗ b ≤ a then U(c)b ≤ a. We
have

a = (ε⊕ id)µ(a) =
∨
{ε(c)⊕ b | c⊕ b ≤ µ(a)} =

=
∨
{b | u ∗ b ≤ a, c ∈ N} ≤

∨
{b | U(c)b ≤ a, c ∈ N}.

III. Trivially U(a ∧ b) ≤ U(a) ∧ U(b).

IV. For a ∈ N choose, by 4.1.2, a b ∈ N such that b ∗ b ∗ b−1 ∗ b−1 ≤ a. We
will show that U(b)U(b) ≤ U(a).
Fix an x ∈ U(b) and consider any u ∈ U(b) such that u ∧ x ̸= 0. Thus,

x ∗ x−1 ≤ b and u ∗ u−1 ≤ b and, by 3.5.2, (u ∧ x)−1 ∗ (u ∧ x) ∈ N . Thus,

u ≤ u ∗ (u ∧ x)−1 ∗ (u ∧ x) ≤ u ∗ u−1 ∗ x ≤ b ∗ x
and hence U(b)x ≤ b ∗ x and finally, since also b−1 ∈ N , again by 3.5.2,

U(b)x ∗ (U(b)x)−1 ≤ b ∗ x ∗ x−1 ∗ b−1 ≤ b ∗ b ∗ b−1 ≤ b ∗ b ∗ b−1 ∗ b−1 ≤ a

and U(b)x ∈ U(a). �
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4.2.2. The uniformity U (resp. V) is called the left uniformity (resp. right
uniformity) on the localic group.

4.3. An alternative description by entourages. For an a ∈ NL set

E(a) = (id⊕ γ)µ(a) and F (a) = (γ ⊕ id)µ(a);

hence

E(a) =
∨
{x⊕ y | x⊕ y ≤ (id⊕ γ)µ(a)} =

∨
{x⊕ y | x ∗ y ≤ a},

and similarly for F (a).

Observation. E(a) and F (a) are entourages.

Proof. For x ∈ U(a) we have x⊕ γ(x) ≤ µ(a). Hence∨
{x | x⊕ x ≤ E(a)} ≥

∨
U(a) = 1

since U(a) is a cover, as we already know. �

4.4. Denote by E ′ resp. F ′ the system of entourages {E(a) | a ∈ N} resp.
{F (a) | a ∈ N}, and set

E = {E | E entourage, E ≥ E(a) ∈ E ′},
F = {E | E entourage, E ≥ F (a) ∈ F ′}.

Proposition. The systems E and F are entourage-uniformities and we have,
in the notation of 4.2 and 2.5, E = EU and F = EV .

Proof. We will show that E = {E | E entourage, E ≥ E(a) ∈ E ′} = EU =
{E | E entourage, E ≥ EU(a), a ∈ N}.
We have EU(a)(=

∨
{x⊕ x | x⊕ γ(x) ≤ µ(a)}) ≤ E(a).

To obtain an estimate from the other side, choose by 4.1.2 b, c ∈ N such
that b ∗ b−1 ≤ c and c∗ c−1 ≤ a. Let x⊕ y ≤ E(b). We can assume x⊕ y ̸= 0,
hence x ̸= 0 ̸= y. First, as y ̸= 0, we have by 3.5.2 ((4), (5) and (7)),

x ∗ x−1 ≤ x ∗ y−1 ∗ y ∗ x−1 ≤ b ∗ b−1 ≤ c and x ∗ y−1 ≤ b ∗ b−1 ≤ c

and hence (x, x), (x, y) ∈ E(c) and since E(c) is saturated (recall 1.3) we
have, for z = x ∨ y,

(x, z) ≤ E(c), that is, x ∗ z−1 ≤ c.



18 J. PICADO AND A. PULTR

Now (x ∗ z−1) ∗ (x ∗ z−1)−1 ≤ c ∗ c−1 ≤ a, hence (x ∗ z−1)⊕ (x ∗ z−1) ≤ EU(a)

and (x∗z−1)∗(x∗z−1)−1 ≤ µ(EU(a)). Since x∧z ̸= 0 we have (x∗z−1)−1 ∈ N
by 3.5.2(5), and by 3.5.2(4) we obtain

x ∗ z−1 ≤ x ∗ z−1 ∗ (x ∗ z−1)−1 ≤ µ(EU(a))

so that x⊕ y ≤ x⊕ z ≤ EU(a). Thus, E(b) ≤ EU(a). �

4.5. Localic group homomorphisms. A localic group homomorphism
(briefly, LG-homomorphism)

h : (L, µL, γL, εL)→ (M,µM , γM , εM)

is a frame homomorphism h : L→M such that

µMh = (h⊕ h)µL, γMh = hγL and εMh = εL (hom)

(that is, it is the standard homomorphism between algebras defined in the
category Loc represented in the category of frames).

4.5.1. Proposition. Each LG-homomorphism

h : (L, µL, γL, εL)→ (M,µM , γM , εM)

is uniform with respect to both the left and the right uniformities.

Proof. We will prove it for the left uniformity. By 4.4 and 2.6 we can choose
whether we will prove it for the U or for the entourage uniformity E . We will
do it for the latter. By (hom) we have

(h⊕ h)(E(a)) = (h⊕ h)(idL ⊕ γ)µL(a) =

= (idM ⊕ γM)(h⊕ h)µL(a) = (idM ⊕ γM)µM(h(a)) = E(h(a))

(since εMh = εL, h(a) ∈ NM , and E(h(a)) makes sense). �

4.6. Remarks. (1) Note that we did not have to prove that E is a uniformity.
It followed from the fact that EU is one.

(2) The proof of 4.5.1 shows an advantage of the entourage approach. A
proof of the fact based on the cover description seems to be rather difficult.
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Différentielle Catég. 29 (1988), 157-161.

[16] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Mem. Amer.
Math. Soc. 51 (1984), no. 309.

[17] A. Kock, Limit monads in categories, Ph.D. Thesis, University of Chicago, 1967.
[18] S. MacLane, Categories for the Working Mathematician, Springer-Verlag, New York, 1971.
[19] J. Picado, Weil entourages in Pointfree Topology, Ph.D. Thesis, University of Coimbra, 1995.
[20] J. Picado, Weil uniformities for frames, Comment. Math. Univ. Carolinae 36 (1995), 357-370.
[21] J. Picado, Structured frames by Weil entourages, Appl. Categ. Structures 8 (2000), 351-366.
[22] A. Pultr, Pointless uniformities I,II, Comment. Math. Univ. Carolinae 25 (1984), 91-104,

105-120.
[23] A. Pultr, Frames, Chapter in: Handbook of Algebra, Vol. 3, (ed. by M. Hazewinkel), Elsevier

2003, 791-858.
[24] J.W. Tukey, Convergence and uniformity in topology, Ann. Math. Stud. 2, Princeton Univer-

sity Press, 1940.
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