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1. Introduction
Let F be a field and p its characteristic in nonzero characteristic, p = +∞

otherwise. We denote F \ {0} by F∗.
Let A 6= {0} and B 6= {0} be two non-empty finite subsets of F. The

sumset of A and B is the set A + B = {a + b : a ∈ A and b ∈ B} and
the product-set is AB = {ab : a ∈ A and b ∈ B}. When F = Zp, Cauchy-
Davenport Theorem [2, 3, 4] establishes a lower bound for the cardinality of
A+ B:

|A+ B| ≥ min{p, |A|+ |B| − 1} .

In [5] Dias da Silva and Hamidoune proved that this result holds for any
field.
For the product-set the trivial lower bound |AB| ≥ max{|A|, |B|} is best

possible. Equality holds, for instance, when A and B are cosets associated
to the same subgroup of (F∗, ·).
We characterize the pairs (A,B) of finite non-empty subsets of F such that

|A+ B| = min{p, |A|+ |B| − 1} and |AB| = max{|A|, |B|}.
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Coimbra/FCT”.

1
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2. Polynomials whose roots are arithmetic or geometric
progressions
Let u, d ∈ F and k ∈ N. We denote by B(k)(u, d) the k×k upper-triangular

matrix with elements in F, such that its (i, j)-entry is

b
(k)
i,j =











k + 1− i if i = j

(−d)j−i−1
[

(u− d)
(

j

i

)

+ d
(

j + 1
i

)]

if i < j

0 if i > j .

Notice that, for k < p, B(k)(u, d) is invertible.
We denote by C(k)(u, d) the vector in Fk with i-entry given by

c
(k)
i = (−d)k−i

(

u
(

k + 1
i

)

+ d
(

k + 1
i− 1

))

, for i = 1, . . . , k .

Next we present a characterization for the coefficients of a monic polyno-
mial whose roots are a given arithmetic progression.

Proposition 1. Let u, d ∈ F, n ∈ N be such that d 6= 0 and n ≤ p. The

roots of the polynomial Xn−
∑n−1

i=0 AiX
i ∈ F[X] are u, u+d, . . . , u+(n−1)d

if and only if A0 = (−1)n
∏n−1

i=0 (u + id) and B(n−1)(u, d)[A1 · · ·An−1]
T =

C(n−1)(u, d) .

Proof: Suppose Xn −
∑n−1

i=0 AiX
i =

∏n−1
i=0 (X − u − id). Obviously, A0 =

(−1)n
∏n−1

i=0 (u+ id) and

n−1
∏

i=−1

(X − u− id) = (X − u + d)

(

Xn −
n−1
∑

i=0

AiX
i

)

= Xn+1 +
n
∑

i=0

[(u− d)Ai −Ai−1]X
i ,

where A−1 := 0 and An := −1.
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Consider Y = X + d. Then
n
∏

i=0

(Y − u− id) = (Y − d)n+1 +

n
∑

i=0

[(u− d)Ai − Ai−1] (Y − d)i

⇔ (Y − u− nd)
n
∑

j=0

−AjY
j =

(Y − d)n+1 +
n
∑

i=0

[(u− d)Ai − Ai−1] (Y − d)i . (1)

Comparing the coefficients of Y j in both sides of (1) we obtain

(n− j)dAj +

n−1
∑

i=j+1

(−1)i−j+1di−j
[

d
(

i+ 1
j

)

+ (u− d)
(

i

j

)]

Ai =

= (−1)n−j+1dn−j
[

d
(

n+ 1
j

)

+ (u− d)
(

n

j

)]

, j = 1, . . . , n− 1 ,

that is,
n−1
∑

i=j

b
(n−1)
ji Ai = c

(n−1)
j , j = 1, . . . , n− 1 .

Reciprocally, let q(X) = Xn −
n−1
∑

i=0

AiX
i, where A0 = (−1)n

∏n−1
i=0 (u+ id)

and B(n−1)(u, d)[A1 · · ·An−1]
T = C(n−1)(u, d).

Consider t(X) =
n−1
∏

i=0

(X − u− id) = Xn −
n−1
∑

i=0

BiX
i. Of course B0 = A0

and, from what we have already proved, [B1B2 · · ·Bn−1]
T is a solution of the

system B(n−1)(u, d)x = C(n−1)(u, d). Since p > n − 1, matrix B(n−1)(u, d) is
invertible and so Ai = Bi, for i = 1, . . . , n− 1.

In the next proposition we present an explicit characterization for the coef-
ficients of a polynomial whose roots are a given geometric progression. As a
corollary we obtain, for finite p, a result on certain subgroups of {1, . . . , p−1}
in the multiplicative group of the field F. This corollary is used in section 4.

Proposition 2. Let u, r ∈ F∗, n ∈ N be such that r 6= 1. Then
n−1
∏

i=0

(X − uri) = Xn +

n−1
∑

i=1

d
(n)
i (u, r)X i + (−u)nr

n(n−1)
2 ,
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where

d
(n)
i (u, r) = (−u)n−ir

(n−i)(n−i−1)
2

min{i,n−i}
∏

j=1

1− rn−j+1

1− rj
, i = 1, . . . , n− 1 .

Proof: It is a matter of straight forward calculations to prove that, for n ≥

2, d
(n+1)
1 (u, r) = (−u)nr

n(n−1)
2 − urnd

(n)
1 (u, r), d

(n+1)
n (u, r) = d

(n)
n−1(u, r)− urn

and

d
(n+1)
i (u, r) = d

(n)
i−1(u, r)− urnd

(n)
i (u, r) , i = 2, . . . , n− 1 .

The result follows by induction on n.

Corollary 1. Suppose p is finite and p > 2. Let H =< h > 6= {1} be a

subgroup of {1, 2, . . . , p− 1} in the multiplicative group of the field F. Then

H = {1}∪̇{1 + |H| hj : j = 1, . . . , |H| − 1}

if and only if H = {1, p− 1} or H = {1, 2, . . . , p− 1}.

Proof: It is trivial to prove that {1, p − 1} and {1, 2, . . . , p − 1} satisfy
the desired condition. Suppose H = {1}∪̇{1 + thj : j = 1, . . . , t− 1} where
t = |H| ≥ 3 . Then the polynomials in F[X]

f(X) =

t−1
∏

j=1

(X−hj) =
Xt − 1

X − 1
=

t−1
∑

i=0

X i and g(X) =

t−1
∏

j=1

(X−1−thj)

coincide.
First we consider the case t = 3. The coefficients of X0 in f(X) and g(X)

are, respectively, 1 and (−1− 3h)(−1− 3h2). From h3 = 1 and h 6= 1 we get
h2 + h+ 1 = 0. Then, from 1 = (−1− 3h)(−1− 3h2) it follows that
6 ≡ 0(mod p), which is absurd, since t = 3 and t|p− 1.
Next we suppose t > 3. Since

g(X) =
t−1
∏

j=1

[(X − 1)− thj ]

= (X − 1)t−1 +
t−2
∑

i=1

d
(t−1)
i (th, h)(X − 1)i + (−th)t−1h

(t−1)(t−2)
2 ,

the coefficient of Xt−3 in g(X) coincides with the coefficient of Xt−3 in

(X − 1)t−1 + d
(t−1)
t−2 (th, h)(X − 1)t−2 + d

(t−1)
t−3 (th, h)(X − 1)t−3 .
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Hence, the coefficient of Xt−3 in g(X) is










8h 1−h3

1−h
(2h2 + 1) + 3 if t = 4

th 1−ht−1

1−h

(

th2 1−ht−2

1−h2 + t− 2
)

+ (t−1)(t−2)
2 if t ≥ 5

. (2)

If t = 4 then ordh = 4 and, from h4 = 1 ⇔ (h2 − 1)(h2 + 1) = 0, it follows
that h2 = −1. Then, making (2) equal to 1, we have 10 ≡ 0(mod p). Hence
p = 5 and H = {1, 2, 3, 4}.
If t ≥ 5, since

h
1− ht−1

1− h
= h+ h2 + · · ·+ ht−1 = −1

and

h21− ht−2

1− h2
=

h2

1 + h
(1 + h+ · · ·+ ht−3) = −

ht + ht+1

1 + h
= −1 ,

we obtain t(t+ 1) ≡ 0(mod p). From t | p− 1, it follows that t = p− 1 and
H = {1, . . . , p− 1}.

3. Auxiliary results
In this section we begin by presenting, for the benefit of the reader, two

known results on the cardinalities of A+ B and AB, respectively. The first
one is just a generalization of Vosper’s Theorem [10, 11] to the additive group
of an arbitrary field. The second is a trivial corollary from Kneser’s Theorem.
As before, F is a field and p its characteristic in nonzero characteristic, p =
+∞ otherwise.

Proposition 3. [1, Lemma 2.6] Let A and B be finite nonempty subsets of

F.

|A+ B| = min{p, |A|+ |B| − 1}

if and only if one of the following alternatives holds:

(1): 1 = |A| ≤ |B| ≤ p or 1 = |B| ≤ |A| ≤ p;

(2): A and B are arithmetic progressions with the same difference;

(3): |A| + |B| = p and there exist d ∈ F∗, a ∈ A, b ∈ B and n ∈
{1, 2, ..., p − 1} such that A ( a + {0, d, ..., (p − 1)d}, B ( b +
{0, d, ..., (p− 1)d} and a+ b+ nd−A = (b+ {0, d, ..., (p− 1)d}) \B;

(4): |A|+ |B| ≥ p+ 1 and there exist d ∈ F∗, a ∈ A, b ∈ B such that

A ⊆ a+ {0, d, ..., (p− 1)d} and B ⊆ b+ {0, d, ..., (p− 1)d}.
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Remarks

(1) If (3) holds then A+B = (a+ b+ {0, d, . . . , (p− 1)d})\ {a+ b+nd};
(2) If (4) holds then A+B = a+ b+ {0, d, . . . , (p− 1)d};
(3) If (4) holds then, for all a ∈ A, b ∈ B, A ⊆ a+ {0, d, ..., (p− 1)d} and

B ⊆ b+ {0, d, ..., (p− 1)d};
(4) If (3) holds then, for all a ∈ A, b ∈ B, there exists n ∈ {1, . . . , p− 1}

(depending on a and b) such that A ( a + {0, d, ..., (p − 1)d}, B (

b+{0, d, ..., (p−1)d} and a+b+nd−A = (b+ {0, d, ..., (p− 1)d}) \B.

Let G be an abelian group with multiplicative notation and let A be a
non-empty subset of G. The stabilizer of A in G is the subgroup of G,
H(A) = {g ∈ G : gA = A}.
Since A is the union of H(A)-cosets, if A is finite then H(A) is a finite

subgroup of G. A non-empty set A is said periodic if H(A) 6= {1}.

Theorem 1. (Kneser’s Theorem) [6, 7, 9] Let A and B be two finite non-

empty subsets of an abelian group (G, ·). Let H denote the stabilizer of AB

in G. Then |AB| ≥ |A|+ |B| or |AB| = |AH|+ |BH| − |H|.

From Kneser’s Theorem it is easy to obtain the next corollary.

Corollary 2. Let A and B be two finite non-empty subsets of an abelian

group (G, ·) such that |B| ≥ |A| ≥ 2. Then |AB| = |B| if and only if

|H(B)| ≥ 2 and A ⊆ aH(B), for all a ∈ A.

Notice that, from the previous corollary and from H(B) ⊆ H(AB), it
follows that, if A and B are finite non-empty subsets of a group such that
|A| ≥ 2, |B| ≥ 2 and |AB| = max{|A|, |B|} then AB is periodic.
In order to use Proposition 3 and Corollary 2 simultaneously, we need to

obtain information, for finite p, on arithmetic progressions that contain a
geometric progression of length at least 3. This will be done in the next
lemma.

Lemma 1. Suppose p > 2 is finite and let c, d ∈ F∗, r ∈ F∗ \ {−1, 1} be

such that cr, cr2 ∈ c + d{0, 1, . . . , p − 1}. Then r ∈ {1, 2, . . . , p − 1} and

cp−1 = dp−1.

Proof: Let k1, k2 ∈ {1, . . . , p − 1} be such that crj = c + dkj, j = 1, 2.

Since k
p−1
j = 1 it follows that

(rj − 1)p−1 = (dc−1)p−1 , j = 1, 2 . (3)
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Then

(r2−1)p−1 = (r−1)p−1 ⇔ (r+1)p = r+1 ⇔ rp−1 = 1 ⇒ r ∈ {1, 2, . . . , p−1} .

Also, from r ∈ {1, 2, . . . , p− 1} and (3) it follows that cp−1 = dp−1.

In the next lemma we obtain information on the stabilizer in (F∗, ·) of
periodic subsets of type C ∩ F∗ when p is finite and C is a subset of an
arithmetic progression.

Lemma 2. Suppose p > 2 is finite and let C be a subset of F such that |C| ≥ 2
and C is a subset of an arithmetic progression with difference d ∈ F∗. If

|H(C∩F∗)| ≥ 2 then H(C∩F∗) ⊆ {1, 2, . . . , p−1} and C ⊆ d{0, 1, . . . , p−1}.

Proof: Let C∗ = C ∩ F∗, H = H(C∗) and t = |H| ≥ 2. Every finite
subgroup of the multiplicative group of a field is cyclic [8, Theorem 1.9, pg
177] so, there exists r ∈ F∗, with ord r = t, such that H =< r >.
Let c ∈ C∗. Then cH = c{1, r, . . . , rt−1} ⊆ C ⊆ c+ {0, d, ..., (p− 1)d}.
Suppose t ≥ 3. From Lemma 1 it follows that r ∈ {1, 2, . . . , p− 1}. Hence

H ⊆ {1, 2, . . . , p−1}. Also, from Lemma 1 we have cp−1 = dp−1. This is true
for all c ∈ C∗ = C ∩ F∗, therefore

C ∩ F∗ ⊆ {x ∈ F∗ : xp−1 = dp−1} = d{1, 2, . . . , p− 1} .

If t = 2 then H = {1, p− 1}, r = p− 1 and, using the same arguments as
in the proof of Lemma 1, we have,

(r − 1)p−1 = (dc−1)p−1 ⇔ 1 = (dc−1)p−1 .

Therefore cp−1 = dp−1, for all c ∈ C ∩ F∗.

If C is an arithmetic progression then the result in Lemma 2 may be im-
proved.

Lemma 3. Suppose p > 2 and let C ⊆ F be a finite arithmetic progression,

with difference d ∈ F∗. If |H(C ∩F∗)| ≥ 2 then one the following alternatives

holds:

(1): p is finite and C = d{0, 1, 2, . . . , p− 1};
(2): p is finite and C = d{1, 2, . . . , p− 1};
(3): C = d{−k,−k + 1, . . . ,−1, 0, 1, . . . , k}, for some k ∈ N such that

2k + 1 < p;

(4): C = d{−k + 2−1 + i : i = 0, 1, . . . , 2k − 1}, for some k ∈ N such

that 2k + 1 < p.
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Proof: Let H = H(C∩F∗) and t = |H| ≥ 2. Then H = {x ∈ F∗ : xt = 1}.
C ∩ F∗ is an union of H-cosets, so there exist k ∈ N, c1, . . . ck ∈ C ∩ F∗ such
that

C ∩ F∗ =

k
•
⋃

i=1

ci H =

k
•
⋃

i=1

{x ∈ F∗ : xt = cti} .

Let u be the first term of the arithmetic progression C. If p is finite then
C ⊆ u + {0, d, . . . , (p− 1)d} and, from Lemma 2, H ⊆ {1, 2, . . . , p− 1}. So,
if p = |C| and 0 ∈ C then (1) holds. We consider the remaining four cases:

Case I: : p > |C|, 0 ∈ C and t = 2.

In this case, H = {−1, 1} and C = {0}∪̇

k
•
⋃

i=1

{ci,−ci}. Then C is the

set of the roots of the polynomial

X

k
∏

i=1

(X2 − c2i ) = X2k+1 −
2k
∑

i=1

AiX
i ,

where Ai = 0 for i even. Then A2k = 0 and, from Proposition 1, we
have
B(2k)(u, d)[A1A2 · · ·A2k−10]

T = C(2k)(u, d). Considering the last one
of these 2k equalities we obtain, since 2k + 1 = |C| < p,

u
(

2k + 1
2k

)

+ d
(

2k + 1
2k − 1

)

= 0 ⇔ u = −dk .

Hence (3) holds.
Case II: : 0 6∈ C and t = 2.
C is the set of roots of the polynomial

k
∏

i=1

(X2 − c2i ) = X2k −
2k−1
∑

i=1

AiX
i ,

where Ai = 0 for i odd. As in the previous case, from Proposition 1,
we have, since 2k = |C| < p,

u
(

2k
2k − 1

)

+ d
(

2k
2k − 2

)

= 0 ⇔ u = (−k + 2−1)d .

Hence (4) or (2) hold, according 2k + 1 < p or 2k + 1 = p.
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Case III: : p > |C|, 0 ∈ C and t ≥ 3.
The set C is the set of all roots of the polynomial

X

k
∏

i=1

(Xt − cti) = Xkt+1 −
kt
∑

i=1

AiX
i ,

where Ai = 0 for i 6≡ 1(mod t). Since kt 6≡ 1(mod t) and kt − 1 6≡ 1
(mod t) Akt = Akt−1 = 0. Then, from Proposition 1, we have







u
(

kt+ 1
kt− 1

)

+ d
(

kt+ 1
kt− 2

)

= 0

u
(

kt+ 1
kt

)

+ d
(

kt+ 1
kt− 1

)

= 0
.

From these two equalities it follows, because p > |C| = kt + 1 > 3,
that p is finite, kt + 2 = p and u = d. Then C = d{1, 2, . . . , p − 1}
but this is absurd, since we are assuming that 0 ∈ C.

Case IV: : 0 6∈ C and t ≥ 3.
As in case III, from Proposition 1 we have







u
(

kt

kt− 2

)

+ d
(

kt

kt− 3

)

= 0

u
(

kt

kt− 1

)

+ d
(

kt

kt− 2

)

= 0
,

and, since p > kt ≥ 3, it follows that p is finite, p = kt+1 and u = d.
Then C = d{1, 2, . . . , p− 1} and (2) holds.

Remarks

(1) If (1) or (2) hold then H(C ∩ F∗) = {1, 2, . . . , p− 1};
(2) If (3) holds then 0 ∈ C and H(C \ {0}) = {−1, 1};
(3) If (4) holds then 0 6∈ C and H(C) = {−1, 1}.

4.Main Result
In order to obtain the main result we will prove three results each of which

characterizing the pairs (A,B) satisfying: one of cases (2)-(4) from Proposi-
tion 3, |B| ≥ |A| ≥ 2 and |AB| = |B|.

Proposition 4. Let A and B be two finite subsets of F such that |B| ≥ |A| ≥
2. Then |AB| = |B| and A and B are arithmetic progressions with the same

difference if and only if one of the following alternatives holds:

(1): A = d{0, 1} and B is an arithmetic progression with difference d

that contains 0, for some d ∈ F∗;
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(2): A = {−d, 0, d} and B = d{−k, . . . ,−1, 0, 1, . . . , k}, for some d ∈
F∗ and k ∈ N such that p > 2k + 1;

(3): A = {−d
2,

d
2} and B = d{−k, . . . ,−1, 0, 1, . . . , k}, for some d ∈ F∗

and k ∈ N such that p > 2k + 1;
(4): A = {−d

2 ,
d
2} and B = d{−k + 2−1 + i : i = 0, 1, . . . , 2k − 1}, for

some d ∈ F∗ and k ∈ N such that p > 2k + 1;
(5): p is finite and A = d(s + {0, 1, . . . , ℓ − 1}), B = d{1, . . . , p − 1},
for some d ∈ F∗ and s, ℓ ∈ N such that ℓ ≥ 2, s < p− 1 and s+ ℓ ≤ p;

(6): p is finite and A = d(s+ {0, 1, . . . , ℓ− 1}), B = d{0, 1, . . . , p− 1},
for some d ∈ F∗ and s, ℓ ∈ N such that 2 ≤ ℓ ≤ p and s ≤ p− 1.

Proof: First we consider two arithmetic progressions, A and B, with the
same difference d ∈ F∗, such that |B| ≥ |A| ≥ 2 and |AB| = |B|.
If p = 2 then |AB| = |A| = |B| = 2 and it is easy to prove that (1) holds.
Suppose p > 2. Let A∗ = A ∩ F∗, B∗ = B ∩ F∗, H = H(B∗) and t = |H|.

Notice that, from |AB| = |B| it follows that if 0 ∈ A then also 0 ∈ B. Hence
0 ∈ AB ⇔ 0 ∈ B and |A∗B∗| = |B∗|. Then, also, |B∗| ≥ |A∗|. If |A∗| = 1
then (1) holds. Suppose |A∗| ≥ 2. Then, from Corollary 2 it follows that
t ≥ 2 and A∗ ⊆ aH, for all a ∈ A∗. From Lemma 3, applied to B, we have
four possible cases.

• p is finite and B = d{0, 1, . . . , p− 1}:
Suppose A = {a′, a′+d, . . . , a′+(ℓ−1)d}, where ℓ = |A| ∈ {2, . . . , p}.
From |AB| = |B| it follows that AB = a′B. Then (a′ + d)d ∈ a′B.
Hence, for some i ∈ {2, . . . , p}, we have

a′ + d = a′i ⇔ a′(i− 1) = d .

Let s ∈ {1, . . . , p−1} be the inverse, modulus p, of i−1. Then a′ = sd

and A = d(s+ {0, 1, . . . , ℓ− 1}). Hence (6) holds.
• p is finite and B = d{1, . . . , p− 1}:
Similarly to the previous case it can be proved that (5) holds. Notice
that, in this case, 0 6∈ B. Hence 0 6∈ A and s+ ℓ ≤ p.

• B = d{−k,−k + 1, . . . ,−1, 0, 1, . . . , k}, for some k ∈ N such that
p > 2k + 1:
In this case H = {−1, 1}. Hence, (2) or (3) hold according 0 ∈ A or
0 6∈ A.

• B = d{−k + 2−1 + i : i = 0, 1, . . . , 2k − 1}, for some k ∈ N such that
p > 2k + 1:
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In this case 0 6∈ B and H = {−1, 1}. Then 0 6∈ A and |A| = 2. Then
(4) holds.

Let A and B satisfy one of the conditions (1)-(6). It is obvious that they are
arithmetic progressions with difference d. It remains to prove that |AB| =
|B|. For the six possible cases we have:

(1): AB = dB.

(2): AB = {0}
•
⋃

{id2 : i = 1, 2, . . . , k}
•
⋃

{−id2 : i = 1, 2, . . . , k}. There-

fore |AB| = 2k + 1 = |B|.

(3): AB = {0}
•
⋃

{i2−1d2 : i = 1, 2, . . . , k}
•
⋃

{−i2−1d2 : i = 1, 2, . . . , k}.

Then |AB| = 2k + 1 = |B|.
(4): AB = {d2 2−1(−k + i+ 2−1) : i = 0, 1, . . . , 2k − 1}. Then |AB| =
2k = |B|.

(5): From Corollary 2 it is sufficient to prove that |H(B)| ≥ 2 and
A ⊆ aH(B), for all a ∈ A. It is obvious that H(B) = {1, 2, . . . , p−1}.
Let a ∈ A. Then a = jd for some j ∈ {s, s + 1, s + ℓ − 1} and
aH(B) = jd{1, 2, . . . , p − 1}. Since the congruence j x ≡ i(mod p)
has exactly one solution in {1, . . . , p − 1}, for i = 1, . . . , p − 1, then,
from A = d{i : i = s, s+1, . . . , s+ ℓ− 1} ⊆ d{1, . . . , p− 1}, it follows
that A ⊆ aH(B).

(6): Since B∗ = d{1, 2, . . . , p − 1} then H(B∗) = {1, 2, . . . , p− 1} and,
as in case (5), we have A∗ ⊆ aH(B∗), for all a ∈ A∗. Then |AB| =
|A∗B∗|+ 1 = |B∗|+ 1 = |B|.

Proposition 5. Suppose p is finite and let A and B be two finite subsets of

F such that |B| ≥ |A| ≥ 2. Then, the pair (A,B) satisfies

(i): |A|+ |B| ≥ p + 1;
(ii): |AB| = |B|;
(iii): There exists d ∈ F∗ such that A ⊆ a + d{0, 1, . . . , p − 1}, B ⊆
b+ d{0, 1, . . . , p− 1}, for all a ∈ A, b ∈ B;

if and only if one of the following cases holds:

(1): |A| = 2, |B| ∈ {p− 1, p}, 0 ∈ A∩B and A,B ⊆ d{0, 1, . . . , p− 1},
for some d ∈ F∗;

(2): A ⊆ B = d{0, 1, 2, . . . , p− 1}, for some d ∈ F∗;
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(3): A ⊆ B = d{1, 2, . . . , p− 1}, for some d ∈ F∗;

(4): There exist {1} 6= H ( {1, 2, . . . , p − 1} subgroup of (F∗, ·),
d ∈ F∗, c1, c2, . . . , ck+1 ∈ {1, 2, . . . , p − 1}, where k = p−1

|H | − 1, and

j ∈ {1, 2, . . . , k + 1} such that

{1, 2, . . . , p− 1} =

k+1
•
⋃

i=1

ciH , B = {0}∪̇

k
•
⋃

i=1

dciH

and A = {0}∪̇dcjH.

Proof: Let A and B be subsets of F such that (i)-(iii) hold. If p = 2 then
(1) holds. Suppose p > 2. Let A∗, B∗, H and t be as in the proof of the
previous proposition. Then 0 ∈ AB ⇔ 0 ∈ B and |A∗B∗| = |B∗|. Then,
also, |B∗| ≥ |A∗|.
If |A∗| = 1 then (1) holds. Suppose |A∗| ≥ 2. Then, from Corollary 2 it

follows that t ≥ 2 and A∗ ⊆ aH, for all a ∈ A∗. From Lemma 2, applied to B,
we have H ⊆ {1, . . . , p− 1} and B∗ ⊆ d{1, . . . , p− 1}. Hence p ≡ 1(mod t).
Since H = H(B∗), B∗ is the union of H-cosets. Let k be the number of such

H-cosets, that is, k = |B∗|
t
. We consider four cases:

(a): 0 6∈ B

Since kt = |B| ≤ p and p ≡ 1(mod t), we have kt < p. Then kt <

p ≤ |A| + |B| − 1 ≤ (k + 1)t− 1. From p ≡ 1(mod t) it follows that
p = kt + 1 and |B| = p − 1. Therefore, B = d{1, . . . , p − 1}, H =
H(B) = {1, . . . , p− 1} and k = 1. Also, since A ⊆ a+ d{1, . . . , p− 1}
and A ⊆ a{1, . . . , p − 1} for all a ∈ A, we have A ⊆ d{1, . . . , p − 1}
and (3) holds.

(b): p = |B| and 0 ∈ B

Then B = d{0, 1, . . . , p− 1}, H = H(B∗) = {1, . . . , p− 1} and k = 1.
Also, since A ⊆ a+ d{0, 1, . . . , p− 1} and A∗ ⊆ a{1, . . . , p− 1} for all
a ∈ A∗, we have A ⊆ d{0, 1, . . . , p− 1} and (2) holds.

(c): p > |B|, 0 ∈ B and 0 6∈ A

In this case we have kt + 1 = |B| < p ≤ |A|+ |B| − 1 ≤ (k + 1)t and
this contradicts p ≡ 1(mod t).

(d): p > |B| and 0 ∈ A ∩B

Then kt + 1 = |B| < p ≤ |A| + |B| − 1 ≤ (k + 1)t + 1. From p ≡ 1
(mod t) it follows that p = (k+1)t+1. Then k = p−1

t
− 1, |B| = p− t

and A = {0}∪̇aH, for all a ∈ A∗.
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Let c1, c2, . . . , ck+1 ∈ {1, 2, . . . , p−1} be such that {1, 2, . . . , p−1} =
k+1
•
⋃

i=1

ciH . Since B∗ ⊆ d{1, 2, . . . , p − 1} and B∗ is an union of k H-

cosets we may assume that B = {0}∪̇

k
•
⋃

i=1

dciH. From (iii) it follows

that A ⊆ d{0, 1, . . . , p− 1} = {0}∪̇

k+1
•
⋃

i=1

dciH . Hence, because A∗ is an

H-coset, A = {0}∪̇dcjH, for some j ∈ {1, . . . , k + 1} and (4) holds.

Let A and B satisfy one of the conditions (1)-(4). It is obvious that the
pair (A,B) satisfies (i) and (iii). We have also |AB| = |B| since, for the four
possible cases, the set AB is

(1): aB, where {a} = A∗;
(2): d2{0, 1, 2, . . . , p− 1} = dB;
(3): d2{1, 2, . . . , p− 1} = dB;
(4): dcjB.

Proposition 6. Suppose p is finite and let A and B be two finite subsets of

F such that |B| ≥ |A| ≥ 2. Then, the pair (A,B) satisfies

(i): |A|+ |B| = p;

(ii): |AB| = |B|;
(iii): There exists d ∈ F∗ such that, for all a ∈ A, b ∈ B,

A ( a + d{0, 1, . . . , p − 1}, B ( b + d{0, 1, . . . , p − 1} and

(b + d{0, 1, . . . , p − 1}) \ B = a + b + nd − A, for some

n ∈ {1, 2, . . . , p− 1}, depending on a and b;

if and only if one of the following cases holds:

(1): A = d{0, ℓ} and B = d{0, 1, . . . , p − 1} \ d{n, n − ℓ}, for some

d ∈ F∗, ℓ, n ∈ {1, 2, . . . , p− 1}, with n 6= ℓ;

(2): There exist {1} 6= H ( {1, 2, . . . , p− 1} subgroup of (F∗, ·), d ∈ F∗,

c1, c2, . . . , ck+1 ∈ {1, 2, . . . , p− 1}, where k = p−1
|H | − 1, such that

{1, 2, . . . , p− 1} =

k+1
•
⋃

i=1

ciH , B = {0}∪̇

k
•
⋃

i=1

dciH
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and A = −dck+1H .

Proof: Let A and B be subsets of F such that (i)-(iii) hold. Let A∗, B∗, H
and t be as in the proofs of the previous propositions. Then 0 ∈ AB ⇔ 0 ∈ B,
|A∗B∗| = |B∗| and |B∗| ≥ |A∗|.
If |A∗| = 1 then (1) holds.
Suppose |A∗| ≥ 2. As in the proof of Proposition 5, t ≥ 2, H ⊆ {1, . . . , p−

1}, p ≡ 1(mod t), A∗ ⊆ aH, for all a ∈ A∗ and B∗ ⊆ d{1, . . . , p − 1} is the
union of H-cosets. We denote by k be the number of such H-cosets, that is,

k = |B∗|
t
.

We consider three cases:

(a): 0 6∈ B

Then kt = |B| < p = |A| + |B| ≤ (k + 1)t. From p ≡ 1(mod t) it
follows that p = kt + 1. Then |A| + |B| = kt + 1 and |A| = 1, which
is absurd.

(b): 0 ∈ B and 0 6∈ A

In this case we have kt+1 = |B| < p = |A|+ |B| ≤ (k+1)t+1. Then
p = (k + 1)t+ 1 and |A| = t. Hence A = aH, for all a ∈ A.
Let c1, c2, . . . , ck+1 ∈ {1, 2, . . . , p−1} be such that {1, 2, . . . , p−1} =

k+1
•
⋃

i=1

ciH. Since B∗ ⊆ d{1, 2, . . . , p− 1} =

k+1
•
⋃

i=1

dciH and B∗ is an union

of k H-cosets we may assume that B = {0}∪̇

k
•
⋃

i=1

dciH.

Let a ∈ A. Since 0 ∈ B, from (iii) it follows that, for some n ∈
{1, 2, . . . , p− 1},

a+ nd− A = d{0, 1, . . . , p− 1} \B = d{1, . . . , p− 1} \ B∗

= dck+1H . (4)

Since nd ∈ a + nd − A, and a + nd − A is an H-coset, we have
ndH = a+ nd− A.
Suppose H =< h >= {1, h, . . . , ht−1}. From a + nd − aH = a +

nd− A = ndH we have
t−1
∑

j=1

(a+ nd− ahj) =
t−1
∑

j=1

ndhj ⇔ a+ nd = 0 .
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Then, from (4), if follows that A = −dck+1H and (2) holds.
(c): 0 ∈ B and 0 ∈ A

Then kt+1 = |B| < p = |A|+ |B| ≤ (k+1)t+2. Then p = (k+1)t+1
and |A| = t. Hence A = {0}∪̇a1H \ {a1}, for some a1 ∈ F∗. Since
0 ∈ A ∩B, from (iii) it follows that, for some n ∈ {1, 2, . . . , p− 1},

nd−A = d{0, 1, . . . , p− 1} \B = d{1, . . . , p− 1} \B∗ .

Then nd−A is anH-coset. Since nd ∈ nd−A, we have nd−A = ndH.
Suppose H =< h >= {1, h, . . . , ht−1}. From ndH = nd − A =

nd− {0}∪̇(a1H \ {a1}) it follows that

t−1
∑

j=1

(nd− a1h
j) =

t−1
∑

j=1

ndhj ⇔ a1 = −tnd .

But, from nd− A = ndH = {x ∈ F∗ : xt = (nd)t}, we also have that,
for j = 1, . . . , t− 1,

(nd− a1h
j)t = (nd)t ⇔ (1 + thj)t = 1 .

Then, H = {1 + thj : j = 1, . . . , t − 1}∪̇{1} and, from Corollary 1,
H = {1, p − 1} or H = {1, . . . , p − 1}. None of these two cases is
possible since |A| = |H|, |A|+ |B| = p and p > |B| ≥ |A| ≥ 3.

Let A and B satisfy condition (1). Then |A| + |B| = p and |AB| = |B|
since AB = {0}∪̇ℓ d(B \ {0}).
Let a = rd and b = sd be any two elements of A and B, respectively,

where r ∈ {0, ℓ}, s ∈ {0, 1, . . . , p − 1} \ {ℓ, n − ℓ}. It is obvious that A (

a+d{0, 1, . . . , p−1} and B ( b+d{0, 1, . . . , p−1}. Let n′ ∈ {0, 1, . . . , p−1}
be such that r+ s+ n′ ≡ n(mod p). From nd 6∈ A+B it follows that n′ 6= 0.
Also,

a+ b+ n′d−A = (r + s+ n′)d−A = nd−A = d{0, 1, . . . , p− 1} \B

= (b+ d{0, 1, . . . , p− 1}) \B .

Now suppose the pair (A,B) satisfies condition (2). Then |A| + |B| = p

and |AB| = |B|, since AB = {0}∪̇

k
•
⋃

i=1

−d2cick+1H.

Since H ( {1, 2, . . . , p − 1} and c1, c2, . . . , ck+1 ∈ {1, 2, . . . , p − 1}, then
B ( d{0, 1, . . . , p − 1} and A ( d{1, . . . , p − 1}. Then, trivially, B ( b +
d{0, 1, . . . , p− 1} and A ( a+ d{1, . . . , p− 1}, for all b ∈ B, a ∈ A.
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Let a = rd and b = sd be any two elements of A and B, respectively, where
r ∈ {1, . . . , p − 1}, s ∈ {0, 1, . . . , p − 1}. Let n′ ∈ {0, 1, . . . , p − 1} be such
that r + s+ n′ ≡ 0(mod p). From B ∩ −A = ∅ it follows that n′ 6= 0. Also,

a+ b+ n′d−A = −A = d{0, 1, . . . , p− 1} \B = (b+ d{0, 1, . . . , p− 1}) \B .

Remarks - Let A and B be two finite subsets of F such that |B| ≥ |A| ≥ 2.

(1) If (A,B) satisfies condition (1) of Proposition 5 then (A,B) satisfies
condition (1) of Proposition 4;

(2) If (A,B) satisfies condition (5) of Proposition 4 then (A,B) satisfies
condition (3) of Proposition 5;

(3) If (A,B) satisfies condition (6) of Proposition 4 then (A,B) satisfies
condition (2) of Proposition 5.

From Propositions 3, 4, 5 and 6 we obtain next result.

Theorem 2. Let A and B be two finite subsets of F such that |B| ≥ |A| ≥ 1.
Then |AB| = |B| and |A + B| = min{p, |A|+ |B| − 1} if and only if one of

the following alternatives holds:

• 1 = |A| ≤ |B| ≤ p;

• A = d{0, 1} and B is an arithmetic progression with difference d that

contains 0, for some d ∈ F∗;

• A = {−d, 0, d} and B = d{−k, . . . ,−1, 0, 1, . . . , k}, for some d ∈ F∗

and k ∈ N such that p > 2k + 1;
• A = {−d

2 ,
d
2} and B = d{−k, . . . ,−1, 0, 1, . . . , k}, for some d ∈ F∗ and

k ∈ N such that p > 2k + 1;
• A = {−d

2
, d
2
} and B = d{−k+2−1 + i : i = 0, 1, . . . , 2k− 1}, for some

d ∈ F∗ and k ∈ N such that p > 2k + 1;
• p is finite, A = d{0, ℓ} and B = d{0, 1, . . . , p − 1} \ d{n, n − ℓ}, for
some d ∈ F∗ and ℓ, n ∈ {1, 2, . . . , p− 1}, with n 6= ℓ;

• p is finite and A ⊆ B = d{0, 1, 2, . . . , p− 1}, for some d ∈ F∗;

• p is finite and A ⊆ B = d{1, 2, . . . , p− 1}, for some d ∈ F∗;

• p is finite and there exist {1} 6= H ( {1, 2, . . . , p − 1} subgroup of

(F∗, ·), d ∈ F∗, c1, c2, . . . , ck+1 ∈ {1, 2, . . . , p − 1}, where k = p−1
|H | − 1,

and j ∈ {1, 2, . . . , k + 1} such that

{1, 2, . . . , p− 1} =

k+1
•
⋃

i=1

ciH , B = {0}∪̇

k
•
⋃

i=1

dciH
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and A = {0}∪̇dcjH;

• p is finite and there exist {1} 6= H ( {1, 2, . . . , p − 1} subgroup of

(F∗, ·), d ∈ F∗, c1, c2, . . . , ck+1 ∈ {1, 2, . . . , p − 1}, where k = p−1
|H | − 1,

such that

{1, 2, . . . , p− 1} =

k+1
•
⋃

i=1

ciH , B = {0}∪̇

k
•
⋃

i=1

dciH

and A = −dck+1H.
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