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1. Introduction

Let F be a field and p its characteristic in nonzero characteristic, p = +00
otherwise. We denote F \ {0} by F*.

Let A # {0} and B # {0} be two non-empty finite subsets of F. The
sumset of A and B is the set A+ B = {a+b:a € Aandb € B} and
the product-set is AB = {ab:a € Aand b € B}. When F = Z,, Cauchy-
Davenport Theorem [2, 3, 4] establishes a lower bound for the cardinality of
A+ B:

A+ B| > min{p, | 4] + |B| - 1}

In [5] Dias da Silva and Hamidoune proved that this result holds for any
field.

For the product-set the trivial lower bound |AB| > max{|A|, |B|} is best
possible. Equality holds, for instance, when A and B are cosets associated
to the same subgroup of (F*, ).

We characterize the pairs (A, B) of finite non-empty subsets of F such that
|A+ B| = min{p, |A| + |B| — 1} and |AB| = max{|A|, |B|}.
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2. Polynomials whose roots are arithmetic or geometric
progressions

Let u,d € F and k € N. We denote by B%¥ (u, d) the k x k upper-triangular
matrix with elements in [, such that its (¢, j)-entry is

k+1—i if =
(k) _ —i—1 ' j+1 e
b = (—dy [(u—d)(]i)+d<]i )] if i<
0 if 1>7.

Notice that, for k < p, B®(u, d) is invertible.
We denote by C*)(u, d) the vector in F* with i-entry given by

W= (=) (w (M) a (BHL)) L feri=1 ok

Next we present a characterization for the coefficients of a monic polyno-
mial whose roots are a given arithmetic progression.

Proposition 1. Let u,d € F, n € N be such that d # 0 and n < p. The
roots of the polynomial X™ — Z?:_()l A X' e FIX] areu,u+d,...,u+(n—1)d

if and only if Ay = (=1)"T1'= (u + id) and BV (u,d)[A;--- A, 1]" =
C D (u,d).

Proof: Suppose X" — Z?:_ol A X = H;:Ol(X — u — id). Obviously, Ay =
(~1)" [T (s + id) and

ﬁ(X—u—id) = (X —u+d) (X”HXEAZXZ)

= Xn+1 + Z [(U — d)AZ — Az‘fl] Xi,

1=0

where A_; :=0and A, :== —1.
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Consider Y = X 4 d. Then

n

[y —u—id)= (Y —d)" + ) [(u—d)A; — Ai] (Y = d)

1=0 1=0

& (Y—u—nd)) -AY =
j=0

V—d)"™ +> [u—d)A— A (Y —d) . (1)
i=0
Comparing the coefficients of Y7 in both sides of (1) we obtain

(n — j)dA; + ni (1 =a a () 4 w—a) (1)) A=

i=j+1
— (1)L [d (”;1 ) 4 (u—d) (’; )} o j=1...n—1,
that is,
me =d"Y j=1,..n-1
n—1 -
Reciprocally, let ¢(X) = X" — Z Ai X' where Ay = (—1)" ', (u + id)
i=0
and B" Y (u, d)[A; - Ap_1]T = C Y (u, d).
n—1 n—1
Consider t(X) = H(X —u—id) = X" — ZBiXi. Of course By = Ay

1=0 i=0
and, from what we have already proved, [B1Bs - - - anl]T is a solution of the
system BV (u,d)x = C"Y(u,d). Since p > n — 1, matrix B™V(u,d) is
invertible and so A; = B;, fori=1,...,n — 1. |

In the next proposition we present an explicit characterization for the coef-
ficients of a polynomial whose roots are a given geometric progression. As a
corollary we obtain, for finite p, a result on certain subgroups of {1,...,p—1}
in the multiplicative group of the field F. This corollary is used in section 4.

Proposition 2. Let u,r € F*, n € N be such that r # 1. Then

n—1

n—1
H(X —ur') = X" + Z dE"’(u, r) X'+ (—u)"rn g :
i=1

1=0
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min{i,n—i}

(n) B i (n=in—i-1) 1 — I+ B
di (U,T)—(—U) T 2 H 1_—7nj’ 'L—l, ,n—l
7=1
Proof: It is a matter of straight forward calculations to prove that, for n >
2, dgnﬂ)(u,r) = (—u)”rn(—nzfl) — ur”dgn)(u,r), d%nﬂ)(u,r) = dff_)l(u,r) — ur”
and

dz(.nﬂ)(u, r) = dl(.T_L)l(u, r) — ur”dl(.n)(u, ry, i=2,...,n—1.

The result follows by induction on n. |

Corollary 1. Suppose p is finite and p > 2. Let H =< h ># {1} be a
subgroup of {1,2,...,p — 1} in the multiplicative group of the field F. Then

H={1Y{1+|H|W:j=1,... |H -1}
if and only iof H={1,p—1} or H ={1,2,...,p—1}.

Proof: It is trivial to prove that {1,p — 1} and {1,2,...,p — 1} satisfy
the desired condition. Suppose H = {1}U{1 +th’/ : j =1,...,t — 1} where
t =|H| >3 . Then the polynomials in F[X]

F(X) = H(X hi) = ))‘:_1 =Z and  g(X) = [J(X—1-0)

coincide.

First we consider the case t = 3. The coefficients of X" in f(X) and g(X)
are, respectively, 1 and (=1 — 3h)(—1 — 3h?). From h® = 1 and h # 1 we get
h*+ h+1=0. Then, from 1 = (=1 — 3h)(—1 — 3h?) it follows that
6 = O(mod p), which is absurd, since ¢t = 3 and t|p — 1.

Next we suppose t > 3. Since

g(X) = H[ —1) —th’]

t—2
(t=1)(t—2) 1)(t 2)

= (X =07 d Y th, hY(X = 1) (—th) T
i=1
the coefficient of X*73 in g(X) coincides with the coefficient of X'~ in

(X — D)k d S (th, h) (X — )72 4 a5 (th, h) (X — 1)



SMALL SUMSET AND SMALL PERIODIC PRODUCT-SET 5

Hence, the coefficient of X!~ in g(X) is

8h iU (2h% +-1) +3 if t=4

(2)

1—pt—1 2 1—h!—2 =D(=2) .

If t = 4 then ord h = 4 and, from h' = 1 & (h? — 1)(h*> + 1) = 0, it follows
that h? = —1. Then, making (2) equal to 1, we have 10 = 0(mod p). Hence
p=>5and H ={1,2,3,4}.

If £ > 5, since

1_ht—1
h =h+h* 4+ n =1
— N T
and
1 — ht—2 h2 ht + ht—i—l
h? = l+h+ - +h = ——— = —
1 — h? 1+h( Tht e BT L+h ’
we obtain ¢(t + 1) = O(mod p). From ¢ | p — 1, it follows that t = p — 1 and
H={1,...,p—1}. u

3. Auxiliary results

In this section we begin by presenting, for the benefit of the reader, two
known results on the cardinalities of A + B and AB, respectively. The first
one is just a generalization of Vosper’s Theorem [10, 11] to the additive group
of an arbitrary field. The second is a trivial corollary from Kneser’s Theorem.
As before, IF is a field and p its characteristic in nonzero characteristic, p =
400 otherwise.

Proposition 3. [1, Lemma 2.6] Let A and B be finite nonempty subsets of
F.
|A + B| = min{p, |A| + |B| — 1}
if and only if one of the following alternatives holds:
(1): 1= [A] < |B| <p or 1 = |B| < |A] < p;
(2): A and B are arithmetic progressions with the same difference;
(3): |A| + |B| = p and there exist d € F*, a € A, b € B andn €
{1,2,....,p — 1} such that A € a + {0,d,...,(p — 1)d}, B € b+
{0,d,....(p—1)d} anda+b+nd—A=(b+{0,d,...,(p—1)d}) \B;
(4): |A|+|B| > p+ 1 and there exist d € F*, a € A, b € B such that
ACa+{0,d,....(p—1)d} and BCb+{0,d,...,(p—1)d}.
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Remarks

(1) If (3) holds then A+ B = (a + b+ {0.d,...,(p—1)d}) \ {a+b+nd};

(2) If (4) holds then A+ B=a+b+{0,d,...,(p—1)d};

(3) If (4) holds then, for alla € A, b€ B, ACa+{0,d,...,(p—1)d} and
BCb+{0,d,...,(p—1)d};

(4) If (3) holds then, for all a € A, b € B, there exists n € {1,...,p— 1}
(depending on a and b) such that A C a + {0,d,...,(p — 1)d}, B C
b+{0,d,...,(p—1)d} and a+b+nd— A = (b+ {0,d, ..., (p — 1)d}) \ B.

Let G be an abelian group with multiplicative notation and let A be a
non-empty subset of GG. The stabilizer of A in GG is the subgroup of G,
H(A)={ge G:gA=A}.

Since A is the union of H(A)-cosets, if A is finite then H(A) is a finite
subgroup of G. A non-empty set A is said periodic if H(A) # {1}.

Theorem 1. (Kneser’s Theorem) [6, 7, 9] Let A and B be two finite non-
empty subsets of an abelian group (G,-). Let H denote the stabilizer of AB
in G. Then |AB| > |A| + |B| or |AB| = |AH| + |BH| — |H|.

From Kneser’s Theorem it is easy to obtain the next corollary.

Corollary 2. Let A and B be two finite non-empty subsets of an abelian
group (G,-) such that |B| > |A| > 2. Then |AB| = |B| if and only if
|H(B)| > 2 and A C aH(B), for alla € A.

Notice that, from the previous corollary and from H(B) C H(AB), it
follows that, if A and B are finite non-empty subsets of a group such that
|A| > 2, |B] > 2 and |AB| = max{|A|, |B|} then AB is periodic.

In order to use Proposition 3 and Corollary 2 simultaneously, we need to
obtain information, for finite p, on arithmetic progressions that contain a
geometric progression of length at least 3. This will be done in the next
lemma.

Lemma 1. Suppose p > 2 is finite and let ¢,d € F*, r € F*\ {—1,1} be

such that cryer* € ¢+ d{0,1,...,p —1}. Thenr € {1,2,...,p — 1} and
=t

Proof: Let ki, ko € {1,...,p — 1} be such that cr/ = ¢+ dk;, j = 1,2.
Since &7 ~1 = 1 it follows that

(r! — 1Pt = (de 1Pt j=12. (3)
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Then
(=1t =r-1Pe @+l =r+lerr ! =1=re{l,2,...,p—1}.
Also, from r € {1,2,...,p— 1} and (3) it follows that ¢*~1 = a1, H

In the next lemma we obtain information on the stabilizer in (F*,-) of
periodic subsets of type C' N F* when p is finite and C' is a subset of an
arithmetic progression.

Lemma 2. Suppose p > 2 is finite and let C be a subset of F such that |C| > 2
and C' 1is a subset of an arithmetic progression with difference d € F*. If
|H(CNF*)| > 2 then H{CNF*) C {1,2,...,p—1} and C C d{0,1,...,p—1}.

Proof: Let C* = CNF*, H = H(C*) and t = |H| > 2. Every finite
subgroup of the multiplicative group of a field is cyclic [8, Theorem 1.9, pg
177] so, there exists r € F*, with ord r = ¢, such that H =< r >.

Let c€ C*. Then cH =c{1,r,...,r"71} CC Cc+{0,d, ..., (p—1)d}.

Suppose t > 3. From Lemma 1 it follows that r € {1,2,...,p — 1}. Hence
H C{1,2,...,p—1}. Also, from Lemma 1 we have ¢t = d’~1. This is true
for all c € C* = C'NF*, therefore

CNFClreF o=} =d{1,2,...,p—1}.

If t =2then H={1,p—1}, r = p— 1 and, using the same arguments as
in the proof of Lemma 1, we have,

(r—1)P "t =(dc Y le 1= (d)Y".
Therefore ¢! = @?~!, for all ¢ € C' N F*. |

If C'is an arithmetic progression then the result in Lemma 2 may be im-
proved.

Lemma 3. Suppose p > 2 and let C C F be a finite arithmetic progression,
with difference d € F*. If |H(C' NF*)| > 2 then one the following alternatives
holds:
(1): p is finite and C' = d{0,1,2,...,p—1};
(2): p is finite and C' =d{1,2,...,p—1};
(3): C=d{—k,—k+1,...,—-1,0,1,...,k}, for some k € N such that
2k+1 < p;
(4): C=d{-k+21+i:i=0,1,...,2k — 1}, for some k € N such
that 2k +1 < p.
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Proof: Let H = H(CNF*) and t = |H| > 2. Then H = {x € F*: 2! = 1}.
C NF* is an union of H-cosets, so there exist k € N, ¢1,...¢;, € C NF* such

that
k k

CﬂF*:UCiH:U{xEF*:xt:cﬁ}.
i=1 i=1
Let u be the first term of the arithmetic progression C'. If p is finite then
C Cu+{0,d,...,(p—1)d} and, from Lemma 2, H C {1,2,...,p— 1}. So,
if p=|C| and 0 € C then (1) holds. We consider the remaining four cases:

CaseI: : p> |C],0€ C and t = 2.

k
In this case, H = {—1,1} and C = {0}U U{Ci, —c¢;i}. Then C is the
i=1
set of the roots of the polynomial
k 2k |
XH(X2 . CZQ) — X2k+1 . ZAinj
i=1 i=1

where A; = 0 for ¢ even. Then Ay = 0 and, from Proposition 1, we
have

B (u, d)[A1 Ay - - - Agp_10]T = C®¥)(u, d). Considering the last one
of these 2k equalities we obtain, since 2k + 1 = |C| < p,

2k +1 2k +1 . _
U ( ok )+d (%_1>—0<:)u——dk.

Hence (3) holds.
Case II: : 0 ¢ C and t = 2.
C is the set of roots of the polynomial

k 2k—1
[[(X* =) =X - > Ax",
=1 =1

where A; = 0 for ¢ odd. As in the previous case, from Proposition 1,
we have, since 2k = |C| < p,

2k 2k _ _ -1
u <2k—1) +d (2k—2> =0 u=(—k+2)d.

Hence (4) or (2) hold, according 2k +1 < p or 2k + 1 = p.
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Case III: : p> |C|,0€ C and t > 3.
The set C' is the set of all roots of the polynomial

k kt
XH(Xt_CD :th+1 - ZAZXza
i=1 i=1
where A; = 0 for ¢ # 1(mod ¢). Since kt # 1(mod t) and kt — 1 # 1
(mod t) Ag; = Agr—1 = 0. Then, from Proposition 1, we have

kt+1 kt+1 .
U\ ko1 +d kt —2 = 0

kt+1 kt+1 .
u kt +d kt—1 =0

From these two equalities it follows, because p > |C| = kt + 1 > 3,
that p is finite, k&t + 2 = p and u = d. Then C = d{1,2,...,p — 1}
but this is absurd, since we are assuming that 0 € C.

Case IV:: 0 & C and t > 3.
As in case III, from Proposition 1 we have

kt kt o
U\ k-2 +d kt—3 =0
kt kt . !
CRN T +d kt —2 =0
and, since p > kt > 3, it follows that p is finite, p = kt +1 and u = d.
Then C' =d{1,2,...,p— 1} and (2) holds. |

Remarks

(1) If (1) or (2) hold then H(C NF*) ={1,2,...,p— 1};
(2) If (3) holds then 0 € C' and H(C'\ {0}) = {—1,1};
(3) If (4) holds then 0 ¢ C' and H(C) = {—1,1}.

4. Main Result

In order to obtain the main result we will prove three results each of which
characterizing the pairs (A, B) satisfying: one of cases (2)-(4) from Proposi-
tion 3, |B| > |A| > 2 and |AB| = |B|.

Proposition 4. Let A and B be two finite subsets of F such that |B| > |A| >
2. Then |AB| = |B| and A and B are arithmetic progressions with the same
difference if and only if one of the following alternatives holds:

(1): A = d{0,1} and B is an arithmetic progression with difference d
that contains 0, for some d € F*;
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(2): A ={-d,0,d} and B = d{—k,...,—1,0,1,...,k}, for some d €
F* and k € N such that p > 2k + 1;

(3): A= {—‘—;,g} and B =d{—k,...,—1,0,1,...,k}, for some d € F*
and k € N such that p > 2k + 1;

(4): A={-4 9 and B=d{-k+2'+i:i=0,1,...,2k — 1}, for

some d € F* and k € N such that p > 2k + 1;
(5): p is finite and A = d(s+ {0,1,...,0—1}), B=d{l,...,p— 1},
for some d € F* and s, € N such that { > 2, s <p—1 and s+{ < p;
(6): p is finite and A =d(s+{0,1,...,—1}), B=4d{0,1,...,p—1},
for some d € F* and s,f € N such that 2 < { <p and s <p— 1.

Proof: First we consider two arithmetic progressions, A and B, with the
same difference d € F*, such that |B| > |A| > 2 and |AB| = |B|.

If p=2then |AB| = |A| = |B| = 2 and it is easy to prove that (1) holds.

Suppose p > 2. Let A* = ANF*, B*=BNF", H=H(B*) and t = |H|.
Notice that, from |AB| = | B| it follows that if 0 € A then also 0 € B. Hence
0 € AB < 0 € B and |A*B*| = |B*|. Then, also, |B*| > |A*|. If |A*| =1
then (1) holds. Suppose |A*| > 2. Then, from Corollary 2 it follows that
t>2and A* C aH, for all a € A*. From Lemma 3, applied to B, we have
four possible cases.

e p is finite and B = d{0,1,...,p— 1}:
Suppose A ={d’,d' +d,...,d +({—1)d}, where { = |A| € {2,...,p}.
From |AB| = |B] it follows that AB = o’B. Then (a’ 4+ d)d € d'B.
Hence, for some i € {2,...,p}, we have

d+d=diedi-1)=d.

Let s € {1,...,p—1} be the inverse, modulus p, of i—1. Then a’ = sd
and A =d(s+{0,1,...,¢—1}). Hence (6) holds.

e p is finite and B =d{1,...,p— 1}
Similarly to the previous case it can be proved that (5) holds. Notice
that, in this case, 0 € B. Hence 0 € A and s + ¢ < p.

e B =d{—-k,—k+1,...,—-1,0,1,...,k}, for some k € N such that
p > 2k + 1:
In this case H = {—1,1}. Hence, (2) or (3) hold according 0 € A or
0¢&A.

e B=d{-k+21+i:i=0,1,...,2k — 1}, for some k € N such that
p > 2k + 1:
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In this case 0 ¢ B and H = {—1,1}. Then 0 ¢ A and |A| = 2. Then
(4) holds.

Let A and B satisfy one of the conditions (1)-(6). It is obvious that they are
arithmetic progressions with difference d. It remains to prove that |AB| =
|B|. For the six possible cases we have:

(1): AB =dB.

(2): AB = {0} O{idQ i=1,2,...,k} U{—z’d2 :i=1,2,...,k}. There-
fore |AB| =2k +1=|B].

(3): AB = {0} O{i21d2 ci=1,2,...,k} L.J{—z'21d2 i=1,2,...,k}.

Then |[AB| =2k + 1= |B|.

(4): AB={d*2"(~k+i+21):i=0,1,...,2k — 1}. Then |AB| =
2k = |B|.

(5): From Corollary 2 it is sufficient to prove that |H(B)| > 2 and
A CaH(B), foralla € A. It is obvious that H(B) = {1,2,...,p—1}.
Let a € A. Then a = jd for some j € {s,s+ 1,s + ¢ — 1} and
aH(B) = jd{1,2,...,p — 1}. Since the congruence j x = i(mod p)
has exactly one solution in {1,...,p— 1}, for i = 1,...,p — 1, then,
from A=d{i:i=s,s+1,...,s+0—1} Cd{l,...,p— 1}, it follows
that A C aH(B).

(6): Since B* = d{1,2,...,p — 1} then H(B*) = {1,2,...,p— 1} and,
as in case (5), we have A* C aH(B*), for all a € A*. Then |AB| =
|A*B*| +1=|B*|+1=|B|. |

Proposition 5. Suppose p is finite and let A and B be two finite subsets of
F such that |B| > |A| > 2. Then, the pair (A, B) satisfies
(i): [A] +[B] =2 p+1;
(ii): |AB| = |B];
(iii): There ezists d € F* such that A C a + d{0,1,...,p — 1}, B C
b+ d{0,1,....,p—1}, foralla € A, b € B;

iof and only if one of the following cases holds:
(): |A|=2,|Ble{p—1,p},0€ ANB and A,B C d{0,1,...,p—1},
for some d € F*;
(2): ACB=4d{0,1,2,...,p— 1}, for some d € F*;
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(3): ACB=d{1,2,...,p—1}, for some d € F*;

(4): There exist {1} # H < {1,2,...,p — 1} subgroup of (F*,-),
d € F* c1,c0,. .., 0601 € {1,2,...,p— 1}, where k = % — 1, and
jeA{1,2,...,k+ 1} such that

k+1 k
°

{1,2,...,p—1} = UcH B:{O}UOdC@'H

i=1 i=1
and A = {0}Udc;H.

Proof: Let A and B be subsets of I such that (i)-(iii) hold. If p = 2 then
(1) holds. Suppose p > 2. Let A*, B*, H and t be as in the proof of the
previous proposition. Then 0 € AB < 0 € B and |A*B*| = |B*|. Then,
also, |B*| > |A*|.

If |A*| = 1 then (1) holds. Suppose |A*| > 2. Then, from Corollary 2 it
follows that ¢ > 2 and A* C aH, for alla € A*. From Lemma 2, applied to B,
we have H C {1,...,p— 1} and B* C d{1,...,p—1}. Hence p = 1(mod t).
Since H = H(B*), B* is the union of H-cosets. Let k be the number of such

. B* .
H-cosets, that is, k = Bl We consider four cases:

t

(a): 0¢ B
Since kt = |B| < p and p = 1(mod t), we have kt < p. Then kt <
p<|Al+|B|—1<(k+1)t—1. From p = 1(mod t) it follows that
p =kt+ 1 and |B| = p— 1. Therefore, B = d{1,...,p— 1}, H =
H(B)=A{1,...,p—1} and k = 1. Also, since A Ca+d{l,...,p—1}
and A Ca{l,...,p— 1} for all a € A, we have A C d{1,...,p— 1}
and (3) holds.

(b): p=|Bland 0 € B
Then B =d{0,1,...,p—1}, H=H(B*)={1l,...,p—1} and k = 1.
Also, since A C a+d{0,1,...,p—1} and A* C a{l,...,p— 1} for all
a € A*, we have A C d{0,1,...,p— 1} and (2) holds.

(c):p>|B|,0e Band 0 ¢ A
In this case we have kt + 1 = |B| <p < |A|+ |B| — 1 < (k4 1)t and
this contradicts p = 1(mod t).

(d):p>|Bland0 € ANB
Then kt+1 = |B| <p < |A|+|B|-1< (k+ 1)t+ 1. From p =1
(mod t) it follows that p = (k+1)t+1. Then k = p%l—l, Bl =p—t
and A = {0}UaH, for all a € A*.
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) I;et C1,Cy -5 Chr1 €{1,2,...,p—1} be such that {1,2,...,p—1} =

+

U ¢;H . Since B* C d{1,2,...,p — 1} and B* is an union of k H-

i=1 :

cosets we may assume that B = {0}U UdciH . From (iii) it follows
Ei1 !

that A C d{0,1,...,p—1} = {0}U U dc; H. Hence, because A* is an

1=1
H-coset, A ={0}Udc;H, for some j € {1,...,k+ 1} and (4) holds.
Let A and B satisfy one of the conditions (1)-(4). It is obvious that the

pair (A, B) satisfies (i) and (iii). We have also |AB| = | B| since, for the four
possible cases, the set AB is

(1): aB, where {a} = A%,

(2): d*{0,1,2,...,p— 1} = dB;

(3): d*{1,2,...,p — 1} = dB;

(4): de;B. |

Proposition 6. Suppose p is finite and let A and B be two finite subsets of
F such that |B| > |A| > 2. Then, the pair (A, B) satisfies
(i): 1] + B = p:
(ii): |AB| = |B];
(iii): There exists d € TF* such that, for all a € A, b € B,
A C a+d{0,1,....p — 1}, B € b+ d{0,1,....,p — 1} and
(b + d{0,1,....p — 1}) \ B = a + b+ nd — A, for some
ne{l,2,...,p— 1}, depending on a and b;
iof and only if one of the following cases holds:
(1): A = d{0,¢} and B = d{0,1,...,p — 1} \ d{n,n — £}, for some
deF*, (ne{l,2,....,p— 1}, withn # ¢;
(2): There exist {1} # H C {1,2,...,p— 1} subgroup of (F*,-), d € F*,
C1,Co, . Cpr1 €{1,2,...,p— 1}, where k:ﬁ’—;ﬂl — 1, such that
k+1 k
{1.2,....p-1}=|JaH, B={0}0|Jd,H

i=1 =1
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and A = —dc 1 H .

Proof: Let A and B be subsets of F such that (i)-(iii) hold. Let A*, B*, H
and t be as in the proofs of the previous propositions. Then0 € AB < 0 € B,
A°B*| = |B*| and |B"| > | 47|

If |A*| = 1 then (1) holds.

Suppose |A*| > 2. As in the proof of Proposition 5, ¢t > 2, H C {1,...,p—
1}, p = 1(mod t), A* C aH, for all a € A* and B* C d{1,...,p — 1} is the
unior|1 o|f H-cosets. We denote by k£ be the number of such H-cosets, that is,
k=

We consider three cases:
(a): 0¢ B
Then kt = |B| < p = |A] +|B| < (k + 1)t. From p = 1(mod t) it
follows that p = kt + 1. Then |A| + |B| = kt + 1 and |A| = 1, which
is absurd.
(b):0eBand0¢ A
In this case we have kt+1 = |B| < p = |A|+|B| < (k+1)t+ 1. Then
p=(k+1)t+ 1 and |A| =t. Hence A = aH, for all a € A.
Let ¢1,¢9,...,¢cp01 €{1,2,...,p—1} besuch that {1,2,...,p—1} =
k+1 k+1
U ¢;H. Since B* C d{1,2,...,p—1} = U de; H and B* is an union
i=1 i=1
k
of k H-cosets we may assume that B = {0}U U de; H.
i=1
Let a € A. Since 0 € B, from (iii) it follows that, for some n €

{1,2,...,p— 1},
a+nd—A = d{0,1,...,p—1}\B =d{l,...,p—1}\ B*
= de;+1H. (4)

Since nd € a +nd — A, and a + nd — A is an H-coset, we have
ndH = a+ nd — A.
Suppose H =< h >= {1,h,...,h" '}, From a +nd — aH = a +
nd — A = ndH we have
t—1 t—1
(a+nd — ah?) :anhj(:)a—l—nd:().

Jj=1 j=1
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Then, from (4), if follows that A = —dcj1 H and (2) holds.
(c):0eBand0e A

Then kt+1 = |B| <p=|A|+|B| < (k+1)t+2. Thenp = (k+1)t+1

and |A| = t. Hence A = {0}Ua1H \ {a1}, for some a; € F*. Since

0 € AN B, from (iii) it follows that, for some n € {1,2,...,p — 1},

nd—A=4d{0,1,....,p—1}\B=d{l,...,p—1}\ B*.

Then nd— A is an H-coset. Since nd € nd— A, we have nd— A = ndH.
Suppose H =< h >= {1,h,...,ht"1}. From ndH = nd — A =
nd — {0}U(a1 H \ {a1}) it follows that

t—1
Z (nd — alh] anhj & ap = —tnd.
j=1

But, from nd — A = ndH = {x € F*: 2! = (nd)'}, we also have that,
fory=1,...,t—1,

(nd — a )t = (nd)' < (1 +th/) =1

Then, H = {1 +th/ : j = 1,...,t — 1}U{1} and, from Corollary 1,
H={l,p—1} or H ={1,...,p— 1}. None of these two cases is
possible since |A| = |H|, |A| + |B] =p and p > |B| > |A| > 3.

Let A and B satisfy condition (1). Then |A| + |B| = p and |AB| = |B|
since AB = {0}U¢ d(B\ {0}).

Let a = rd and b = sd be any two elements of A and B, respectively,
where r € {0,¢}, s € {0,1,...,p— 1} \ {¢{,n — ¢}. Tt is obvious that A C
a+d{0,1,...,p—1}and B C b+d{0,1,...,p—1}. Let n’ € {0,1,...,p—1}
be such that r + s +n' = n(mod p). From nd ¢ A+ B it follows that n’ # 0.
Also,

a+b+n'd—A = (r+s+n)d—A=nd—A=d{0,1,....,p—1}\ B
= (b+d{0,1,....p—1})\ B.
Now suppose the pair (A, B) satisfies condition (2). Then |A| 4+ |B| = p
k
and |AB| = |B|, since AB = {O}UU —d*cicp 1 H.
i=1
Since H € {1,2,....,p— 1} and ¢,¢9,...,¢1 € {1,2,...,p — 1}, then
B C d{0,1,...,p—1} and A C d{1,...,p — 1}. Then, trivially, B C b+
d{0,1,...,p—1}and AC a+d{l,...,p— 1}, forall b€ B, a € A.



16 C. CALDEIRA

Let a = rd and b = sd be any two elements of A and B, respectively, where
re{l,....p—1},s€{0,1,...,p—1}. Let n’ € {0,1,...,p — 1} be such
that r + s +n' = 0(mod p). From BN —A = () it follows that n’ # 0. Also,

a+b+nd—A=—-A=d{0,1,....,p—1}\B=(b+d{0,1,....,p—1})\ B.
|
Remarks - Let A and B be two finite subsets of F such that |B| > |A| > 2.

(1) If (A, B) satisfies condition (1) of Proposition 5 then (A, B) satisfies
condition (1) of Proposition 4;

(2) If (A, B) satisfies condition (5) of Proposition 4 then (A, B) satisfies
condition (3) of Proposition 5;

(3) If (A, B) satisfies condition (6) of Proposition 4 then (A, B) satisfies
condition (2) of Proposition 5.

From Propositions 3, 4, 5 and 6 we obtain next result.

Theorem 2. Let A and B be two finite subsets of F such that |B| > |A| > 1.
Then |AB| = |B| and |A + B| = min{p, |A| + |B| — 1} if and only if one of
the following alternatives holds:
e 1=[A]<|B|<p;
o A=4d{0,1} and B is an arithmetic progression with difference d that
contains 0, for some d € F*;

e A={-d,0,d} and B =d{—k,...,—1,0,1,...,k}, for some d € F*
and k € N such that p > 2k + 1;
oA:{—g,%} and B=d{-k,...,—1,0,1,...,k}, for somed € F* and

k € N such that p > 2k + 1;

oA:{—g,g} and B=d{-k+21+i:i=0,1,...,2k—1}, for some
d € F* and k € N such that p > 2k + 1;

e p is finite, A = d{0,¢} and B = d{0,1,...,p— 1} \ d{n,n — {}, for
somed € F* and {,n € {1,2,...,p— 1}, withn # {;

e p is finite and A C B=d{0,1,2,...,p— 1}, for some d € F*;

e pis finite and A C B=d{1,2,...,p— 1}, for some d € F*;

e p is finite and there exist {1} # H C {1,2,...,p — 1} subgroup of
(F*,-), d € F*, ¢1,¢9,. .., cpr1 € {1,2,...,p— 1}, wherek:%—l,
and j € {1,2,...,k+ 1} such that

ki1 k

{1.2,....p=1}=JaH, B:{O}UOdCiH

i=1 =1
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and A = {0}Udc;H;
e p is finite and there exist {1} # H C {1,2,...,p — 1} subgroup of
(F*,-), d € F*, ¢1,¢c0,. .., cp1 € {1,2,...,p— 1}, where k = bl

[H]
such that
k+1 k
{1.2,....p-1}=|JaH, B={0}0|Jd,H
=1 1=1

and A = —dc 1 H.
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