PAIRS OF SETS WITH SMALL SUMSET AND SMALL PERIODIC PRODUCT-SET

CRISTINA CALDEIRA

Dedicated to J.A. Dias da Silva

Abstract

We characterize the pairs (A, B) of finite non-empty subsets of a field such that $|A+B|=\min \{p,|A|+|B|-1\}$ and $|A B|=\max \{|A|,|B|\}$.

Keywords: Sumset, product-set, cardinality.
AMS Subject Classification (2010): 11P70.

1. Introduction

Let \mathbb{F} be a field and p its characteristic in nonzero characteristic, $p=+\infty$ otherwise. We denote $\mathbb{F} \backslash\{0\}$ by \mathbb{F}^{*}.

Let $A \neq\{0\}$ and $B \neq\{0\}$ be two non-empty finite subsets of \mathbb{F}. The sumset of A and B is the set $A+B=\{a+b: a \in A$ and $b \in B\}$ and the product-set is $A B=\{a b: a \in A$ and $b \in B\}$. When $\mathbb{F}=\mathbb{Z}_{p}$, CauchyDavenport Theorem $[2,3,4]$ establishes a lower bound for the cardinality of $A+B$:

$$
|A+B| \geq \min \{p,|A|+|B|-1\}
$$

In [5] Dias da Silva and Hamidoune proved that this result holds for any field.

For the product-set the trivial lower bound $|A B| \geq \max \{|A|,|B|\}$ is best possible. Equality holds, for instance, when A and B are cosets associated to the same subgroup of $\left(\mathbb{F}^{*}, \cdot\right)$.

We characterize the pairs (A, B) of finite non-empty subsets of \mathbb{F} such that $|A+B|=\min \{p,|A|+|B|-1\}$ and $|A B|=\max \{|A|,|B|\}$.

[^0]
2. Polynomials whose roots are arithmetic or geometric progressions

Let $u, d \in \mathbb{F}$ and $k \in \mathbb{N}$. We denote by $B^{(k)}(u, d)$ the $k \times k$ upper-triangular matrix with elements in \mathbb{F}, such that its (i, j)-entry is

$$
b_{i, j}^{(k)}= \begin{cases}k+1-i & \text { if } i=j \\ (-d)^{j-i-1}\left[(u-d)\binom{j}{i}+d\binom{j+1}{i}\right] & \text { if } i<j \\ 0 & \text { if } i>j\end{cases}
$$

Notice that, for $k<p, B^{(k)}(u, d)$ is invertible.
We denote by $C^{(k)}(u, d)$ the vector in \mathbb{F}^{k} with i-entry given by

$$
c_{i}^{(k)}=(-d)^{k-i}\left(u\binom{k+1}{i}+d\binom{k+1}{i-1}\right), \quad \text { for } i=1, \ldots, k .
$$

Next we present a characterization for the coefficients of a monic polynomial whose roots are a given arithmetic progression.

Proposition 1. Let $u, d \in \mathbb{F}, n \in \mathbb{N}$ be such that $d \neq 0$ and $n \leq p$. The roots of the polynomial $X^{n}-\sum_{i=0}^{n-1} A_{i} X^{i} \in \mathbb{F}[X]$ are $u, u+d, \ldots, u+(n-1) d$ if and only if $A_{0}=(-1)^{n} \prod_{i=0}^{n-1}(u+i d)$ and $B^{(n-1)}(u, d)\left[A_{1} \cdots A_{n-1}\right]^{T}=$ $C^{(n-1)}(u, d)$.

Proof: Suppose $X^{n}-\sum_{i=0}^{n-1} A_{i} X^{i}=\prod_{i=0}^{n-1}(X-u-i d)$. Obviously, $A_{0}=$ $(-1)^{n} \prod_{i=0}^{n-1}(u+i d)$ and

$$
\begin{aligned}
\prod_{i=-1}^{n-1}(X-u-i d) & =(X-u+d)\left(X^{n}-\sum_{i=0}^{n-1} A_{i} X^{i}\right) \\
& =X^{n+1}+\sum_{i=0}^{n}\left[(u-d) A_{i}-A_{i-1}\right] X^{i}
\end{aligned}
$$

where $A_{-1}:=0$ and $A_{n}:=-1$.

Consider $Y=X+d$. Then

$$
\begin{align*}
& \prod_{i=0}^{n}(Y-u-i d)=(Y-d)^{n+1}+\sum_{i=0}^{n}\left[(u-d) A_{i}-A_{i-1}\right](Y-d)^{i} \\
\Leftrightarrow & (Y-u-n d) \sum_{j=0}^{n}-A_{j} Y^{j}= \\
& (Y-d)^{n+1}+\sum_{i=0}^{n}\left[(u-d) A_{i}-A_{i-1}\right](Y-d)^{i} . \tag{1}
\end{align*}
$$

Comparing the coefficients of Y^{j} in both sides of (1) we obtain

$$
\begin{aligned}
& (n-j) d A_{j}+\sum_{i=j+1}^{n-1}(-1)^{i-j+1} d^{i-j}\left[d\binom{i+1}{j}+(u-d)\binom{i}{j}\right] A_{i}= \\
& \quad=(-1)^{n-j+1} d^{n-j}\left[d\binom{n+1}{j}+(u-d)\binom{n}{j}\right], \quad j=1, \ldots, n-1,
\end{aligned}
$$

that is,

$$
\sum_{i=j}^{n-1} b_{j i}^{(n-1)} A_{i}=c_{j}^{(n-1)}, \quad j=1, \ldots, n-1
$$

Reciprocally, let $q(X)=X^{n}-\sum_{i=0}^{n-1} A_{i} X^{i}$, where $A_{0}=(-1)^{n} \prod_{i=0}^{n-1}(u+i d)$ and $B^{(n-1)}(u, d)\left[A_{1} \cdots A_{n-1}\right]^{T}=C^{(n-1)}(u, d)$.
Consider $t(X)=\prod_{i=0}^{n-1}(X-u-i d)=X^{n}-\sum_{i=0}^{n-1} B_{i} X^{i}$. Of course $B_{0}=A_{0}$ and, from what we have already proved, $\left[B_{1} B_{2} \cdots B_{n-1}\right]^{T}$ is a solution of the system $B^{(n-1)}(u, d) x=C^{(n-1)}(u, d)$. Since $p>n-1$, matrix $B^{(n-1)}(u, d)$ is invertible and so $A_{i}=B_{i}$, for $i=1, \ldots, n-1$.

In the next proposition we present an explicit characterization for the coefficients of a polynomial whose roots are a given geometric progression. As a corollary we obtain, for finite p, a result on certain subgroups of $\{1, \ldots, p-1\}$ in the multiplicative group of the field \mathbb{F}. This corollary is used in section 4.
Proposition 2. Let $u, r \in \mathbb{F}^{*}, n \in \mathbb{N}$ be such that $r \neq 1$. Then

$$
\prod_{i=0}^{n-1}\left(X-u r^{i}\right)=X^{n}+\sum_{i=1}^{n-1} d_{i}^{(n)}(u, r) X^{i}+(-u)^{n} r^{\frac{n(n-1)}{2}},
$$

where

$$
d_{i}^{(n)}(u, r)=(-u)^{n-i} r^{\frac{(n-i)(n-i-1)}{2}} \prod_{j=1}^{\min \{i, n-i\}} \frac{1-r^{n-j+1}}{1-r^{j}}, \quad i=1, \ldots, n-1
$$

Proof: It is a matter of straight forward calculations to prove that, for $n \geq$ $2, d_{1}^{(n+1)}(u, r)=(-u)^{n} r^{\frac{n(n-1)}{2}}-u r^{n} d_{1}^{(n)}(u, r), d_{n}^{(n+1)}(u, r)=d_{n-1}^{(n)}(u, r)-u r^{n}$ and

$$
d_{i}^{(n+1)}(u, r)=d_{i-1}^{(n)}(u, r)-u r^{n} d_{i}^{(n)}(u, r), \quad i=2, \ldots, n-1
$$

The result follows by induction on n.
Corollary 1. Suppose p is finite and $p>2$. Let $H=<h>\neq\{1\}$ be a subgroup of $\{1,2, \ldots, p-1\}$ in the multiplicative group of the field \mathbb{F}. Then

$$
H=\{1\} \dot{\cup}\left\{1+|H| h^{j}: j=1, \ldots,|H|-1\right\}
$$

if and only if $H=\{1, p-1\}$ or $H=\{1,2, \ldots, p-1\}$.
Proof: It is trivial to prove that $\{1, p-1\}$ and $\{1,2, \ldots, p-1\}$ satisfy the desired condition. Suppose $H=\{1\} \dot{\cup}\left\{1+t h^{j}: j=1, \ldots, t-1\right\}$ where $t=|H| \geq 3$. Then the polynomials in $\mathbb{F}[X]$
$f(X)=\prod_{j=1}^{t-1}\left(X-h^{j}\right)=\frac{X^{t}-1}{X-1}=\sum_{i=0}^{t-1} X^{i} \quad$ and $\quad g(X)=\prod_{j=1}^{t-1}\left(X-1-t h^{j}\right)$
coincide.
First we consider the case $t=3$. The coefficients of X^{0} in $f(X)$ and $g(X)$ are, respectively, 1 and $(-1-3 h)\left(-1-3 h^{2}\right)$. From $h^{3}=1$ and $h \neq 1$ we get $h^{2}+h+1=0$. Then, from $1=(-1-3 h)\left(-1-3 h^{2}\right)$ it follows that $6 \equiv 0(\bmod p)$, which is absurd, since $t=3$ and $t \mid p-1$.

Next we suppose $t>3$. Since

$$
\begin{aligned}
g(X) & =\prod_{j=1}^{t-1}\left[(X-1)-t h^{j}\right] \\
& =(X-1)^{t-1}+\sum_{i=1}^{t-2} d_{i}^{(t-1)}(t h, h)(X-1)^{i}+(-t h)^{t-1} h^{\frac{(t-1)(t-2)}{2}}
\end{aligned}
$$

the coefficient of X^{t-3} in $g(X)$ coincides with the coefficient of X^{t-3} in

$$
(X-1)^{t-1}+d_{t-2}^{(t-1)}(t h, h)(X-1)^{t-2}+d_{t-3}^{(t-1)}(t h, h)(X-1)^{t-3}
$$

Hence, the coefficient of X^{t-3} in $g(X)$ is

$$
\left\{\begin{array}{ll}
8 h \frac{1-h^{3}}{1-h}\left(2 h^{2}+1\right)+3 & \text { if } \quad t=4 \tag{2}\\
t h \frac{1-h^{t-1}}{1-h}\left(t h^{2} \frac{1-h^{t-2}}{1-h^{2}}+t-2\right)+\frac{(t-1)(t-2)}{2} & \text { if } \quad t \geq 5
\end{array} .\right.
$$

If $t=4$ then ord $h=4$ and, from $h^{4}=1 \Leftrightarrow\left(h^{2}-1\right)\left(h^{2}+1\right)=0$, it follows that $h^{2}=-1$. Then, making (2) equal to 1 , we have $10 \equiv 0(\bmod p)$. Hence $p=5$ and $H=\{1,2,3,4\}$.

If $t \geq 5$, since

$$
h \frac{1-h^{t-1}}{1-h}=h+h^{2}+\cdots+h^{t-1}=-1
$$

and

$$
h^{2} \frac{1-h^{t-2}}{1-h^{2}}=\frac{h^{2}}{1+h}\left(1+h+\cdots+h^{t-3}\right)=-\frac{h^{t}+h^{t+1}}{1+h}=-1
$$

we obtain $t(t+1) \equiv 0(\bmod p)$. From $t \mid p-1$, it follows that $t=p-1$ and $H=\{1, \ldots, p-1\}$.

3. Auxiliary results

In this section we begin by presenting, for the benefit of the reader, two known results on the cardinalities of $A+B$ and $A B$, respectively. The first one is just a generalization of Vosper's Theorem [10, 11] to the additive group of an arbitrary field. The second is a trivial corollary from Kneser's Theorem. As before, \mathbb{F} is a field and p its characteristic in nonzero characteristic, $p=$ $+\infty$ otherwise.

Proposition 3. [1, Lemma 2.6] Let A and B be finite nonempty subsets of \mathbb{F}.

$$
|A+B|=\min \{p,|A|+|B|-1\}
$$

if and only if one of the following alternatives holds:
(1): $1=|A| \leq|B| \leq p$ or $1=|B| \leq|A| \leq p ;$
(2): A and B are arithmetic progressions with the same difference;
(3): $|A|+|B|=p$ and there exist $d \in \mathbb{F}^{*}, a \in A, b \in B$ and $n \in$ $\{1,2, \ldots, p-1\}$ such that $A \subsetneq a+\{0, d, \ldots,(p-1) d\}, B \subsetneq b+$ $\{0, d, \ldots,(p-1) d\}$ and $a+b+n d-A=(b+\{0, d, \ldots,(p-1) d\}) \backslash B ;$
(4): $|A|+|B| \geq p+1$ and there exist $d \in \mathbb{F}^{*}, a \in A, b \in B$ such that $A \subseteq a+\{0, d, \ldots,(p-1) d\}$ and $B \subseteq b+\{0, d, \ldots,(p-1) d\}$.

Remarks

(1) If (3) holds then $A+B=(a+b+\{0, d, \ldots,(p-1) d\}) \backslash\{a+b+n d\}$;
(2) If (4) holds then $A+B=a+b+\{0, d, \ldots,(p-1) d\}$;
(3) If (4) holds then, for all $a \in A, b \in B, A \subseteq a+\{0, d, \ldots,(p-1) d\}$ and $B \subseteq b+\{0, d, \ldots,(p-1) d\} ;$
(4) If (3) holds then, for all $a \in A, b \in B$, there exists $n \in\{1, \ldots, p-1\}$ (depending on a and b) such that $A \subsetneq a+\{0, d, \ldots,(p-1) d\}, B \subsetneq$ $b+\{0, d, \ldots,(p-1) d\}$ and $a+b+n d-A=(b+\{0, d, \ldots,(p-1) d\}) \backslash B$.
Let G be an abelian group with multiplicative notation and let A be a non-empty subset of G. The stabilizer of A in G is the subgroup of G, $H(A)=\{g \in G: g A=A\}$.
Since A is the union of $H(A)$-cosets, if A is finite then $H(A)$ is a finite subgroup of G. A non-empty set A is said periodic if $H(A) \neq\{1\}$.
Theorem 1. (Kneser's Theorem) [6, 7, 9] Let A and B be two finite nonempty subsets of an abelian group (G, \cdot). Let H denote the stabilizer of $A B$ in G. Then $|A B| \geq|A|+|B|$ or $|A B|=|A H|+|B H|-|H|$.
From Kneser's Theorem it is easy to obtain the next corollary.
Corollary 2. Let A and B be two finite non-empty subsets of an abelian group (G, \cdot) such that $|B| \geq|A| \geq 2$. Then $|A B|=|B|$ if and only if $|H(B)| \geq 2$ and $A \subseteq a H(B)$, for all $a \in A$.

Notice that, from the previous corollary and from $H(B) \subseteq H(A B)$, it follows that, if A and B are finite non-empty subsets of a group such that $|A| \geq 2,|B| \geq 2$ and $|A B|=\max \{|A|,|B|\}$ then $A B$ is periodic.
In order to use Proposition 3 and Corollary 2 simultaneously, we need to obtain information, for finite p, on arithmetic progressions that contain a geometric progression of length at least 3 . This will be done in the next lemma.

Lemma 1. Suppose $p>2$ is finite and let $c, d \in \mathbb{F}^{*}, r \in \mathbb{F}^{*} \backslash\{-1,1\}$ be such that $c r, c r^{2} \in c+d\{0,1, \ldots, p-1\}$. Then $r \in\{1,2, \ldots, p-1\}$ and $c^{p-1}=d^{p-1}$.

Proof: Let $k_{1}, k_{2} \in\{1, \ldots, p-1\}$ be such that $c r^{j}=c+d k_{j}, j=1,2$. Since $k_{j}^{p-1}=1$ it follows that

$$
\begin{equation*}
\left(r^{j}-1\right)^{p-1}=\left(d c^{-1}\right)^{p-1}, \quad j=1,2 . \tag{3}
\end{equation*}
$$

Then
$\left(r^{2}-1\right)^{p-1}=(r-1)^{p-1} \Leftrightarrow(r+1)^{p}=r+1 \Leftrightarrow r^{p-1}=1 \Rightarrow r \in\{1,2, \ldots, p-1\}$.
Also, from $r \in\{1,2, \ldots, p-1\}$ and (3) it follows that $c^{p-1}=d^{p-1}$.
In the next lemma we obtain information on the stabilizer in $\left(\mathbb{F}^{*}, \cdot\right)$ of periodic subsets of type $C \cap \mathbb{F}^{*}$ when p is finite and C is a subset of an arithmetic progression.

Lemma 2. Suppose $p>2$ is finite and let C be a subset of \mathbb{F} such that $|C| \geq 2$ and C is a subset of an arithmetic progression with difference $d \in \mathbb{F}^{*}$. If $\left|H\left(C \cap \mathbb{F}^{*}\right)\right| \geq 2$ then $H\left(C \cap \mathbb{F}^{*}\right) \subseteq\{1,2, \ldots, p-1\}$ and $C \subseteq d\{0,1, \ldots, p-1\}$.

Proof: Let $C^{*}=C \cap \mathbb{F}^{*}, H=H\left(C^{*}\right)$ and $t=|H| \geq 2$. Every finite subgroup of the multiplicative group of a field is cyclic [8, Theorem 1.9, pg 177] so, there exists $r \in \mathbb{F}^{*}$, with ord $r=t$, such that $H=\langle r\rangle$.
Let $c \in C^{*}$. Then $c H=c\left\{1, r, \ldots, r^{t-1}\right\} \subseteq C \subseteq c+\{0, d, \ldots,(p-1) d\}$.
Suppose $t \geq 3$. From Lemma 1 it follows that $r \in\{1,2, \ldots, p-1\}$. Hence $H \subseteq\{1,2, \ldots, p-1\}$. Also, from Lemma 1 we have $c^{p-1}=d^{p-1}$. This is true for all $c \in C^{*}=C \cap \mathbb{F}^{*}$, therefore

$$
C \cap \mathbb{F}^{*} \subseteq\left\{x \in \mathbb{F}^{*}: x^{p-1}=d^{p-1}\right\}=d\{1,2, \ldots, p-1\} .
$$

If $t=2$ then $H=\{1, p-1\}, r=p-1$ and, using the same arguments as in the proof of Lemma 1, we have,

$$
(r-1)^{p-1}=\left(d c^{-1}\right)^{p-1} \Leftrightarrow 1=\left(d c^{-1}\right)^{p-1} .
$$

Therefore $c^{p-1}=d^{p-1}$, for all $c \in C \cap \mathbb{F}^{*}$.
If C is an arithmetic progression then the result in Lemma 2 may be improved.

Lemma 3. Suppose $p>2$ and let $C \subseteq \mathbb{F}$ be a finite arithmetic progression, with difference $d \in \mathbb{F}^{*}$. If $\left|H\left(C \cap \mathbb{F}^{*}\right)\right| \geq 2$ then one the following alternatives holds:
(1): p is finite and $C=d\{0,1,2, \ldots, p-1\}$;
(2): p is finite and $C=d\{1,2, \ldots, p-1\}$;
(3): $C=d\{-k,-k+1, \ldots,-1,0,1, \ldots, k\}$, for some $k \in \mathbb{N}$ such that $2 k+1<p$;
(4): $C=d\left\{-k+2^{-1}+i: i=0,1, \ldots, 2 k-1\right\}$, for some $k \in \mathbb{N}$ such that $2 k+1<p$.

Proof: Let $H=H\left(C \cap \mathbb{F}^{*}\right)$ and $t=|H| \geq 2$. Then $H=\left\{x \in \mathbb{F}^{*}: x^{t}=1\right\}$. $C \cap \mathbb{F}^{*}$ is an union of H-cosets, so there exist $k \in \mathbb{N}, c_{1}, \ldots c_{k} \in C \cap \mathbb{F}^{*}$ such that

$$
C \cap \mathbb{F}^{*}=\bigcup_{i=1}^{\bullet} c_{i} H=\bigcup_{i=1}^{\bullet}\left\{x \in \mathbb{F}^{*}: x^{t}=c_{i}^{t}\right\}
$$

Let u be the first term of the arithmetic progression C. If p is finite then $C \subseteq u+\{0, d, \ldots,(p-1) d\}$ and, from Lemma $2, H \subseteq\{1,2, \ldots, p-1\}$. So, if $p=|C|$ and $0 \in C$ then (1) holds. We consider the remaining four cases:

Case I: : $p>|C|, 0 \in C$ and $t=2$.
In this case, $H=\{-1,1\}$ and $C=\{0\} \dot{\cup} \bigcup_{i=1}^{\bullet}\left\{c_{i},-c_{i}\right\}$. Then C is the set of the roots of the polynomial

$$
X \prod_{i=1}^{k}\left(X^{2}-c_{i}^{2}\right)=X^{2 k+1}-\sum_{i=1}^{2 k} A_{i} X^{i}
$$

where $A_{i}=0$ for i even. Then $A_{2 k}=0$ and, from Proposition 1, we have
$B^{(2 k)}(u, d)\left[A_{1} A_{2} \cdots A_{2 k-1} 0\right]^{T}=C^{(2 k)}(u, d)$. Considering the last one of these $2 k$ equalities we obtain, since $2 k+1=|C|<p$,

$$
u\binom{2 k+1}{2 k}+d\binom{2 k+1}{2 k-1}=0 \Leftrightarrow u=-d k .
$$

Hence (3) holds.
Case II: : $0 \notin C$ and $t=2$.
C is the set of roots of the polynomial

$$
\prod_{i=1}^{k}\left(X^{2}-c_{i}^{2}\right)=X^{2 k}-\sum_{i=1}^{2 k-1} A_{i} X^{i}
$$

where $A_{i}=0$ for i odd. As in the previous case, from Proposition 1, we have, since $2 k=|C|<p$,

$$
u\binom{2 k}{2 k-1}+d\binom{2 k}{2 k-2}=0 \Leftrightarrow u=\left(-k+2^{-1}\right) d .
$$

Hence (4) or (2) hold, according $2 k+1<p$ or $2 k+1=p$.

Case III: : $p>|C|, 0 \in C$ and $t \geq 3$.
The set C is the set of all roots of the polynomial

$$
X \prod_{i=1}^{k}\left(X^{t}-c_{i}^{t}\right)=X^{k t+1}-\sum_{i=1}^{k t} A_{i} X^{i},
$$

where $A_{i}=0$ for $i \not \equiv 1(\bmod t)$. Since $k t \not \equiv 1(\bmod t)$ and $k t-1 \not \equiv 1$ $(\bmod t) A_{k t}=A_{k t-1}=0$. Then, from Proposition 1, we have

$$
\left\{\begin{array}{l}
u\binom{k t+1}{k t-1}+d\binom{k t+1}{k t-2}=0 \\
u\binom{k t+1}{k t}+d\binom{k t+1}{k t-1}=0
\end{array}\right. \text {. }
$$

From these two equalities it follows, because $p>|C|=k t+1>3$, that p is finite, $k t+2=p$ and $u=d$. Then $C=d\{1,2, \ldots, p-1\}$ but this is absurd, since we are assuming that $0 \in C$.
Case IV: : $0 \notin C$ and $t \geq 3$.
As in case III, from Proposition 1 we have

$$
\left\{\begin{array}{l}
u\left(\begin{array}{c}
k t \\
k t-2 \\
k t
\end{array}\right)+d\left(\begin{array}{c}
k t \\
k t-3 \\
k t \\
k t-1
\end{array}\right)+d\left(\begin{array}{c}
\\
k t-2
\end{array}\right)=0
\end{array},\right.
$$

and, since $p>k t \geq 3$, it follows that p is finite, $p=k t+1$ and $u=d$. Then $C=d\{1,2, \ldots, p-1\}$ and (2) holds.

Remarks

(1) If (1) or (2) hold then $H\left(C \cap \mathbb{F}^{*}\right)=\{1,2, \ldots, p-1\}$;
(2) If (3) holds then $0 \in C$ and $H(C \backslash\{0\})=\{-1,1\}$;
(3) If (4) holds then $0 \notin C$ and $H(C)=\{-1,1\}$.

4. Main Result

In order to obtain the main result we will prove three results each of which characterizing the pairs (A, B) satisfying: one of cases (2)-(4) from Proposition $3,|B| \geq|A| \geq 2$ and $|A B|=|B|$.

Proposition 4. Let A and B be two finite subsets of \mathbb{F} such that $|B| \geq|A| \geq$ 2. Then $|A B|=|B|$ and A and B are arithmetic progressions with the same difference if and only if one of the following alternatives holds:
(1): $A=d\{0,1\}$ and B is an arithmetic progression with difference d that contains 0 , for some $d \in \mathbb{F}^{*}$;
(2): $A=\{-d, 0, d\}$ and $B=d\{-k, \ldots,-1,0,1, \ldots, k\}$, for some $d \in$ \mathbb{F}^{*} and $k \in \mathbb{N}$ such that $p>2 k+1$;
(3): $A=\left\{-\frac{d}{2}, \frac{d}{2}\right\}$ and $B=d\{-k, \ldots,-1,0,1, \ldots, k\}$, for some $d \in \mathbb{F}^{*}$ and $k \in \mathbb{N}$ such that $p>2 k+1$;
(4): $A=\left\{-\frac{d}{2}, \frac{d}{2}\right\}$ and $B=d\left\{-k+2^{-1}+i: i=0,1, \ldots, 2 k-1\right\}$, for some $d \in \mathbb{F}^{*}$ and $k \in \mathbb{N}$ such that $p>2 k+1$;
(5): p is finite and $A=d(s+\{0,1, \ldots, \ell-1\}), B=d\{1, \ldots, p-1\}$, for some $d \in \mathbb{F}^{*}$ and $s, \ell \in \mathbb{N}$ such that $\ell \geq 2, s<p-1$ and $s+\ell \leq p$;
(6): p is finite and $A=d(s+\{0,1, \ldots, \ell-1\}), B=d\{0,1, \ldots, p-1\}$, for some $d \in \mathbb{F}^{*}$ and $s, \ell \in \mathbb{N}$ such that $2 \leq \ell \leq p$ and $s \leq p-1$.

Proof: First we consider two arithmetic progressions, A and B, with the same difference $d \in \mathbb{F}^{*}$, such that $|B| \geq|A| \geq 2$ and $|A B|=|B|$.
If $p=2$ then $|A B|=|A|=|B|=2$ and it is easy to prove that (1) holds.
Suppose $p>2$. Let $A^{*}=A \cap \mathbb{F}^{*}, B^{*}=B \cap \mathbb{F}^{*}, H=H\left(B^{*}\right)$ and $t=|H|$.
Notice that, from $|A B|=|B|$ it follows that if $0 \in A$ then also $0 \in B$. Hence $0 \in A B \Leftrightarrow 0 \in B$ and $\left|A^{*} B^{*}\right|=\left|B^{*}\right|$. Then, also, $\left|B^{*}\right| \geq\left|A^{*}\right|$. If $\left|A^{*}\right|=1$ then (1) holds. Suppose $\left|A^{*}\right| \geq 2$. Then, from Corollary 2 it follows that $t \geq 2$ and $A^{*} \subseteq a H$, for all $a \in A^{*}$. From Lemma 3, applied to B, we have four possible cases.

- p is finite and $B=d\{0,1, \ldots, p-1\}$:

Suppose $A=\left\{a^{\prime}, a^{\prime}+d, \ldots, a^{\prime}+(\ell-1) d\right\}$, where $\ell=|A| \in\{2, \ldots, p\}$.
From $|A B|=|B|$ it follows that $A B=a^{\prime} B$. Then $\left(a^{\prime}+d\right) d \in a^{\prime} B$.
Hence, for some $i \in\{2, \ldots, p\}$, we have

$$
a^{\prime}+d=a^{\prime} i \Leftrightarrow a^{\prime}(i-1)=d .
$$

Let $s \in\{1, \ldots, p-1\}$ be the inverse, modulus p, of $i-1$. Then $a^{\prime}=s d$ and $A=d(s+\{0,1, \ldots, \ell-1\})$. Hence (6) holds.

- p is finite and $B=d\{1, \ldots, p-1\}$:

Similarly to the previous case it can be proved that (5) holds. Notice that, in this case, $0 \notin B$. Hence $0 \notin A$ and $s+\ell \leq p$.

- $B=d\{-k,-k+1, \ldots,-1,0,1, \ldots, k\}$, for some $k \in \mathbb{N}$ such that $p>2 k+1$:
In this case $H=\{-1,1\}$. Hence, (2) or (3) hold according $0 \in A$ or $0 \notin A$.
- $B=d\left\{-k+2^{-1}+i: i=0,1, \ldots, 2 k-1\right\}$, for some $k \in \mathbb{N}$ such that $p>2 k+1$:

In this case $0 \notin B$ and $H=\{-1,1\}$. Then $0 \notin A$ and $|A|=2$. Then (4) holds.

Let A and B satisfy one of the conditions (1)-(6). It is obvious that they are arithmetic progressions with difference d. It remains to prove that $|A B|=$ $|B|$. For the six possible cases we have:
(1): $A B=d B$.
(2): $A B=\{0\} \bigcup\left\{i d^{2}: i=1,2, \ldots, k\right\} \bigcup$ ఏ $\left\{-i d^{2}: i=1,2, \ldots, k\right\}$. Therefore $|A B|=2 k+1=|B|$.
(3): $A B=\{0\} \bigcup\left\{i 2^{-1} d^{2}: i=1,2, \ldots, k\right\} \bigcup\left\lfloor-i 2^{-1} d^{2}: i=1,2, \ldots, k\right\}$.

Then $|A B|=2 k+1=|B|$.
(4): $A B=\left\{d^{2} 2^{-1}\left(-k+i+2^{-1}\right): i=0,1, \ldots, 2 k-1\right\}$. Then $|A B|=$ $2 k=|B|$.
(5): From Corollary 2 it is sufficient to prove that $|H(B)| \geq 2$ and $A \subseteq a H(B)$, for all $a \in A$. It is obvious that $H(B)=\{1,2, \ldots, p-1\}$. Let $a \in A$. Then $a=j d$ for some $j \in\{s, s+1, s+\ell-1\}$ and $a H(B)=j d\{1,2, \ldots, p-1\}$. Since the congruence $j x \equiv i(\bmod p)$ has exactly one solution in $\{1, \ldots, p-1\}$, for $i=1, \ldots, p-1$, then, from $A=d\{i: i=s, s+1, \ldots, s+\ell-1\} \subseteq d\{1, \ldots, p-1\}$, it follows that $A \subseteq a H(B)$.
(6): Since $B^{*}=d\{1,2, \ldots, p-1\}$ then $H\left(B^{*}\right)=\{1,2, \ldots, p-1\}$ and, as in case (5), we have $A^{*} \subseteq a H\left(B^{*}\right)$, for all $a \in A^{*}$. Then $|A B|=$ $\left|A^{*} B^{*}\right|+1=\left|B^{*}\right|+1=|B|$.

Proposition 5. Suppose p is finite and let A and B be two finite subsets of \mathbb{F} such that $|B| \geq|A| \geq 2$. Then, the pair (A, B) satisfies
(i): $|A|+|B| \geq p+1$;
(ii): $|A B|=|B|$;
(iii): There exists $d \in \mathbb{F}^{*}$ such that $A \subseteq a+d\{0,1, \ldots, p-1\}, B \subseteq$ $b+d\{0,1, \ldots, p-1\}$, for all $a \in A, b \in B ;$
if and only if one of the following cases holds:
(1): $|A|=2,|B| \in\{p-1, p\}, 0 \in A \cap B$ and $A, B \subseteq d\{0,1, \ldots, p-1\}$, for some $d \in \mathbb{F}^{*}$;
(2): $A \subseteq B=d\{0,1,2, \ldots, p-1\}$, for some $d \in \mathbb{F}^{*}$;
(3): $A \subseteq B=d\{1,2, \ldots, p-1\}$, for some $d \in \mathbb{F}^{*}$;
(4): There exist $\{1\} \neq H \subsetneq\{1,2, \ldots, p-1\}$ subgroup of $\left(\mathbb{F}^{*}, \cdot\right)$, $d \in \mathbb{F}^{*}, c_{1}, c_{2}, \ldots, c_{k+1} \in\{1,2, \ldots, p-1\}$, where $k=\frac{p-1}{|H|}-1$, and $j \in\{1,2, \ldots, k+1\}$ such that

$$
\{1,2, \ldots, p-1\}=\bigcup_{i=1}^{k+1} c_{i} H, \quad B=\{0\} \dot{\cup} \bigcup_{i=1}^{\bullet} d c_{i} H
$$

and $A=\{0\} \dot{U} d c_{j} H$.
Proof: Let A and B be subsets of \mathbb{F} such that (i)-(iii) hold. If $p=2$ then (1) holds. Suppose $p>2$. Let A^{*}, B^{*}, H and t be as in the proof of the previous proposition. Then $0 \in A B \Leftrightarrow 0 \in B$ and $\left|A^{*} B^{*}\right|=\left|B^{*}\right|$. Then, also, $\left|B^{*}\right| \geq\left|A^{*}\right|$.
If $\left|A^{*}\right|=1$ then (1) holds. Suppose $\left|A^{*}\right| \geq 2$. Then, from Corollary 2 it follows that $t \geq 2$ and $A^{*} \subseteq a H$, for all $a \in A^{*}$. From Lemma 2, applied to B, we have $H \subseteq\{1, \ldots, p-1\}$ and $B^{*} \subseteq d\{1, \ldots, p-1\}$. Hence $p \equiv 1(\bmod t)$. Since $H=H\left(B^{*}\right), B^{*}$ is the union of H-cosets. Let k be the number of such H-cosets, that is, $k=\frac{\left|B^{*}\right|}{t}$. We consider four cases:
(a): $0 \notin B$

Since $k t=|B| \leq p$ and $p \equiv 1(\bmod t)$, we have $k t<p$. Then $k t<$ $p \leq|A|+|B|-1 \leq(k+1) t-1$. From $p \equiv 1(\bmod t)$ it follows that $p=k t+1$ and $|B|=p-1$. Therefore, $B=d\{1, \ldots, p-1\}, H=$ $H(B)=\{1, \ldots, p-1\}$ and $k=1$. Also, since $A \subseteq a+d\{1, \ldots, p-1\}$ and $A \subseteq a\{1, \ldots, p-1\}$ for all $a \in A$, we have $A \subseteq d\{1, \ldots, p-1\}$ and (3) holds.
(b): $p=|B|$ and $0 \in B$

Then $B=d\{0,1, \ldots, p-1\}, H=H\left(B^{*}\right)=\{1, \ldots, p-1\}$ and $k=1$. Also, since $A \subseteq a+d\{0,1, \ldots, p-1\}$ and $A^{*} \subseteq a\{1, \ldots, p-1\}$ for all $a \in A^{*}$, we have $A \subseteq d\{0,1, \ldots, p-1\}$ and (2) holds.
(c): $p>|B|, 0 \in B$ and $0 \notin A$

In this case we have $k t+1=|B|<p \leq|A|+|B|-1 \leq(k+1) t$ and this contradicts $p \equiv 1(\bmod t)$.
(d): $p>|B|$ and $0 \in A \cap B$

Then $k t+1=|B|<p \leq|A|+|B|-1 \leq(k+1) t+1$. From $p \equiv 1$ $(\bmod t)$ it follows that $p=(k+1) t+1$. Then $k=\frac{p-1}{t}-1,|B|=p-t$ and $A=\{0\} \dot{\cup} a H$, for all $a \in A^{*}$.

Let $c_{1}, c_{2}, \ldots, c_{k+1} \in\{1,2, \ldots, p-1\}$ be such that $\{1,2, \ldots, p-1\}=$ $k+1$
$\bigcup_{i=1}^{\bullet} c_{i} H$. Since $B^{*} \subseteq d\{1,2, \ldots, p-1\}$ and B^{*} is an union of $k H$ cosets we may assume that $B=\{0\} \dot{\cup} \bigcup_{i=1}^{\bullet} d c_{i} H$. From (iii) it follows that $A \subseteq d\{0,1, \ldots, p-1\}=\{0\} \dot{\cup} \bigcup_{i=1}^{\bullet+1} d c_{i} H$. Hence, because A^{*} is an H-coset, $A=\{0\} \dot{\cup} d c_{j} H$, for some $j \in\{1, \ldots, k+1\}$ and (4) holds.
Let A and B satisfy one of the conditions (1)-(4). It is obvious that the pair (A, B) satisfies (i) and (iii). We have also $|A B|=|B|$ since, for the four possible cases, the set $A B$ is
(1): $a B$, where $\{a\}=A^{*}$;
(2): $d^{2}\{0,1,2, \ldots, p-1\}=d B$;
(3): $d^{2}\{1,2, \ldots, p-1\}=d B$;
(4): $d c_{j} B$.

Proposition 6. Suppose p is finite and let A and B be two finite subsets of \mathbb{F} such that $|B| \geq|A| \geq 2$. Then, the pair (A, B) satisfies
(i): $|A|+|B|=p$;
(ii): $|A B|=|B|$;
(iii): There exists $d \in \mathbb{F}^{*}$ such that, for all $a \in A, b \in B$, $A \subsetneq a+d\{0,1, \ldots, p-1\}, B \subsetneq b+d\{0,1, \ldots, p-1\}$ and $(b+d\{0,1, \ldots, p-1\}) \backslash B=a+b+n d-A$, for some $n \in\{1,2, \ldots, p-1\}$, depending on a and b;
if and only if one of the following cases holds:
(1): $A=d\{0, \ell\}$ and $B=d\{0,1, \ldots, p-1\} \backslash d\{n, n-\ell\}$, for some $d \in \mathbb{F}^{*}, \ell, n \in\{1,2, \ldots, p-1\}$, with $n \neq \ell$;
(2): There exist $\{1\} \neq H \subsetneq\{1,2, \ldots, p-1\}$ subgroup of $\left(\mathbb{F}^{*}, \cdot\right), d \in \mathbb{F}^{*}$, $c_{1}, c_{2}, \ldots, c_{k+1} \in\{1,2, \ldots, p-1\}$, where $k=\frac{p-1}{|H|}-1$, such that

$$
\{1,2, \ldots, p-1\}=\bigcup_{i=1}^{\bullet} c_{i} H, \quad B=\{0\} \dot{\cup} \bigcup_{i=1}^{\bullet} d c_{i} H
$$

and $A=-d c_{k+1} H$.
Proof: Let A and B be subsets of \mathbb{F} such that (i)-(iii) hold. Let A^{*}, B^{*}, H and t be as in the proofs of the previous propositions. Then $0 \in A B \Leftrightarrow 0 \in B$, $\left|A^{*} B^{*}\right|=\left|B^{*}\right|$ and $\left|B^{*}\right| \geq\left|A^{*}\right|$.

If $\left|A^{*}\right|=1$ then (1) holds.
Suppose $\left|A^{*}\right| \geq 2$. As in the proof of Proposition $5, t \geq 2, H \subseteq\{1, \ldots, p-$ $1\}, p \equiv 1(\bmod t), A^{*} \subseteq a H$, for all $a \in A^{*}$ and $B^{*} \subseteq d\{1, \ldots, p-1\}$ is the union of H-cosets. We denote by k be the number of such H-cosets, that is, $k=\frac{\left|B^{*}\right|}{t}$.

We consider three cases:
(a): $0 \notin B$

Then $k t=|B|<p=|A|+|B| \leq(k+1) t$. From $p \equiv 1(\bmod t)$ it follows that $p=k t+1$. Then $|A|+|B|=k t+1$ and $|A|=1$, which is absurd.
(b): $0 \in B$ and $0 \notin A$

In this case we have $k t+1=|B|<p=|A|+|B| \leq(k+1) t+1$. Then $p=(k+1) t+1$ and $|A|=t$. Hence $A=a H$, for all $a \in A$.
Let $c_{1}, c_{2}, \ldots, c_{k+1} \in\{1,2, \ldots, p-1\}$ be such that $\{1,2, \ldots, p-1\}=$ $\bigcup_{i=1}^{\bullet \bullet} c_{i} H$. Since $B^{*} \subseteq d\{1,2, \ldots, p-1\}=\bigcup_{i=1}^{\bullet+1} d c_{i} H$ and B^{*} is an union of $k H$-cosets we may assume that $B=\{0\} \dot{\cup} \bigcup_{i=1}^{\bullet} d c_{i} H$.

Let $a \in A$. Since $0 \in B$, from (iii) it follows that, for some $n \in$ $\{1,2, \ldots, p-1\}$,

$$
\begin{align*}
a+n d-A & =d\{0,1, \ldots, p-1\} \backslash B=d\{1, \ldots, p-1\} \backslash B^{*} \\
& =d c_{k+1} H \tag{4}
\end{align*}
$$

Since $n d \in a+n d-A$, and $a+n d-A$ is an H-coset, we have $n d H=a+n d-A$.

Suppose $H=<h>=\left\{1, h, \ldots, h^{t-1}\right\}$. From $a+n d-a H=a+$ $n d-A=n d H$ we have

$$
\sum_{j=1}^{t-1}\left(a+n d-a h^{j}\right)=\sum_{j=1}^{t-1} n d h^{j} \Leftrightarrow a+n d=0
$$

Then, from (4), if follows that $A=-d c_{k+1} H$ and (2) holds.
(c): $0 \in B$ and $0 \in A$

Then $k t+1=|B|<p=|A|+|B| \leq(k+1) t+2$. Then $p=(k+1) t+1$ and $|A|=t$. Hence $A=\{0\} \dot{\cup} a_{1} H \backslash\left\{a_{1}\right\}$, for some $a_{1} \in \mathbb{F}^{*}$. Since $0 \in A \cap B$, from (iii) it follows that, for some $n \in\{1,2, \ldots, p-1\}$,

$$
n d-A=d\{0,1, \ldots, p-1\} \backslash B=d\{1, \ldots, p-1\} \backslash B^{*} .
$$

Then $n d-A$ is an H-coset. Since $n d \in n d-A$, we have $n d-A=n d H$.
Suppose $H=<h>=\left\{1, h, \ldots, h^{t-1}\right\}$. From $n d H=n d-A=$ $n d-\{0\} \dot{\cup}\left(a_{1} H \backslash\left\{a_{1}\right\}\right)$ it follows that

$$
\sum_{j=1}^{t-1}\left(n d-a_{1} h^{j}\right)=\sum_{j=1}^{t-1} n d h^{j} \Leftrightarrow a_{1}=-t n d .
$$

But, from $n d-A=n d H=\left\{x \in \mathbb{F}^{*}: x^{t}=(n d)^{t}\right\}$, we also have that, for $j=1, \ldots, t-1$,

$$
\left(n d-a_{1} h^{j}\right)^{t}=(n d)^{t} \Leftrightarrow\left(1+t h^{j}\right)^{t}=1 .
$$

Then, $H=\left\{1+t h^{j}: j=1, \ldots, t-1\right\} \dot{\cup}\{1\}$ and, from Corollary 1 , $H=\{1, p-1\}$ or $H=\{1, \ldots, p-1\}$. None of these two cases is possible since $|A|=|H|,|A|+|B|=p$ and $p>|B| \geq|A| \geq 3$.
Let A and B satisfy condition (1). Then $|A|+|B|=p$ and $|A B|=|B|$ since $A B=\{0\} \dot{\cup} \ell d(B \backslash\{0\})$.

Let $a=r d$ and $b=s d$ be any two elements of A and B, respectively, where $r \in\{0, \ell\}, s \in\{0,1, \ldots, p-1\} \backslash\{\ell, n-\ell\}$. It is obvious that $A \subsetneq$ $a+d\{0,1, \ldots, p-1\}$ and $B \subsetneq b+d\{0,1, \ldots, p-1\}$. Let $n^{\prime} \in\{0,1, \ldots, p-1\}$ be such that $r+s+n^{\prime} \equiv n(\bmod p)$. From $n d \notin A+B$ it follows that $n^{\prime} \neq 0$. Also,

$$
\begin{aligned}
a+b+n^{\prime} d-A & =\left(r+s+n^{\prime}\right) d-A=n d-A=d\{0,1, \ldots, p-1\} \backslash B \\
& =(b+d\{0,1, \ldots, p-1\}) \backslash B .
\end{aligned}
$$

Now suppose the pair (A, B) satisfies condition (2). Then $|A|+|B|=p$ and $|A B|=|B|$, since $A B=\{0\} \dot{\cup} \bigcup_{i=1}^{\bullet}-d^{2} c_{i} c_{k+1} H$.
Since $H \subsetneq\{1,2, \ldots, p-1\}$ and $c_{1}, c_{2}, \ldots, c_{k+1} \in\{1,2, \ldots, p-1\}$, then $B \subsetneq d\{0,1, \ldots, p-1\}$ and $A \subsetneq d\{1, \ldots, p-1\}$. Then, trivially, $B \subsetneq b+$ $d\{0,1, \ldots, p-1\}$ and $A \subsetneq a+d\{1, \ldots, p-1\}$, for all $b \in B, a \in A$.

Let $a=r d$ and $b=s d$ be any two elements of A and B, respectively, where $r \in\{1, \ldots, p-1\}, s \in\{0,1, \ldots, p-1\}$. Let $n^{\prime} \in\{0,1, \ldots, p-1\}$ be such that $r+s+n^{\prime} \equiv 0(\bmod p)$. From $B \cap-A=\emptyset$ it follows that $n^{\prime} \neq 0$. Also, $a+b+n^{\prime} d-A=-A=d\{0,1, \ldots, p-1\} \backslash B=(b+d\{0,1, \ldots, p-1\}) \backslash B$.

Remarks - Let A and B be two finite subsets of \mathbb{F} such that $|B| \geq|A| \geq 2$.
(1) If (A, B) satisfies condition (1) of Proposition 5 then (A, B) satisfies condition (1) of Proposition 4;
(2) If (A, B) satisfies condition (5) of Proposition 4 then (A, B) satisfies condition (3) of Proposition 5;
(3) If (A, B) satisfies condition (6) of Proposition 4 then (A, B) satisfies condition (2) of Proposition 5.
From Propositions 3, 4, 5 and 6 we obtain next result.
Theorem 2. Let A and B be two finite subsets of \mathbb{F} such that $|B| \geq|A| \geq 1$. Then $|A B|=|B|$ and $|A+B|=\min \{p,|A|+|B|-1\}$ if and only if one of the following alternatives holds:

- $1=|A| \leq|B| \leq p ;$
- $A=d\{0,1\}$ and B is an arithmetic progression with difference d that contains 0 , for some $d \in \mathbb{F}^{*}$;
- $A=\{-d, 0, d\}$ and $B=d\{-k, \ldots,-1,0,1, \ldots, k\}$, for some $d \in \mathbb{F}^{*}$ and $k \in \mathbb{N}$ such that $p>2 k+1$;
- $A=\left\{-\frac{d}{2}, \frac{d}{2}\right\}$ and $B=d\{-k, \ldots,-1,0,1, \ldots, k\}$, for some $d \in \mathbb{F}^{*}$ and $k \in \mathbb{N}$ such that $p>2 k+1$;
- $A=\left\{-\frac{d}{2}, \frac{d}{2}\right\}$ and $B=d\left\{-k+2^{-1}+i: i=0,1, \ldots, 2 k-1\right\}$, for some $d \in \mathbb{F}^{*}$ and $k \in \mathbb{N}$ such that $p>2 k+1$;
- p is finite, $A=d\{0, \ell\}$ and $B=d\{0,1, \ldots, p-1\} \backslash d\{n, n-\ell\}$, for some $d \in \mathbb{F}^{*}$ and $\ell, n \in\{1,2, \ldots, p-1\}$, with $n \neq \ell$;
- p is finite and $A \subseteq B=d\{0,1,2, \ldots, p-1\}$, for some $d \in \mathbb{F}^{*}$;
- p is finite and $A \subseteq B=d\{1,2, \ldots, p-1\}$, for some $d \in \mathbb{F}^{*}$;
- p is finite and there exist $\{1\} \neq H \subsetneq\{1,2, \ldots, p-1\}$ subgroup of $\left(\mathbb{F}^{*}, \cdot\right), d \in \mathbb{F}^{*}, c_{1}, c_{2}, \ldots, c_{k+1} \in\{1,2, \ldots, p-1\}$, where $k=\frac{p-1}{|H|}-1$, and $j \in\{1,2, \ldots, k+1\}$ such that

$$
\{1,2, \ldots, p-1\}=\bigcup_{i=1}^{k+1} c_{i} H, \quad B=\{0\} \dot{\cup} \bigcup_{i=1}^{\bullet} d c_{i} H
$$

and $A=\{0\} \dot{U} d c_{j} H ;$

- p is finite and there exist $\{1\} \neq H \subsetneq\{1,2, \ldots, p-1\}$ subgroup of $\left(\mathbb{F}^{*}, \cdot\right), d \in \mathbb{F}^{*}, c_{1}, c_{2}, \ldots, c_{k+1} \in\{1,2, \ldots, p-1\}$, where $k=\frac{p-1}{|H|}-1$, such that

$$
\{1,2, \ldots, p-1\}=\bigcup_{i=1}^{k+1} c_{i} H, \quad B=\{0\} \dot{\cup} \bigcup_{i=1}^{\bullet} d c_{i} H
$$

and $A=-d c_{k+1} H$.

References

[1] C. Caldeira, Critical pairs of matrices for the degree of the minimal polynomial of the Kronecker sum, Linear and Multilinear Algebra 42(1997), 73-88.
[2] A. Cauchy, Recherches sur les nombres, J. École Polytech. 9(1813),99-116.
[3] H. Davenport, On the addition of residue classes, J. London Math. Soc. 10(1935), 30-32.
[4] H. Davenport, A historical note, J. London Math. Soc. 22(1947), 100-101.
[5] J. A. Dias da Silva and Y. O. Hamidoune, A note on the minimal polynomial of the Kronecker sum of two linear operators, Linear Algebra and its Applications 141(1990), 283-287.
[6] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen, Math. Z. 58(1953), 459-484.
[7] M. Kneser, Ein Satz über abelschen Gruppen mit Anwendungen auf die Geometrie der Zahlen Math. Z. 61(1955), 429-434.
[8] S. Lang, Algebra, Addison-Wesley Publishing Company, Inc., 1993.
[9] M. B. Nathanson, Additive Number Theory-Inverse Problems and the Geometry of Sumsets, Graduate Texts in Mathematics 165, Springer-Verlag, New York, 1996.
[10] A. G. Vosper, The critical pairs of subsets of a group of prime order, J. London Math. Soc. 31(1956), 200-205.
[11] A. G. Vosper, Addendum to "The critical pairs of subsets of a group of prime order", J. London Math. Soc. 31(1956), 280-282.

[^1]
[^0]: Received October 11, 2010.
 This research was done within the activities of "Centro de Matemática da Universidade de Coimbra/FCT".

[^1]: Cristina Caldeira
 CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal
 E-mail address: caldeira@mat.uc.pt

