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PSEUDO-COMMUTATIVITY OF K-Z MONADS

IGNACIO LÓPEZ FRANCO

Abstract: In this paper we prove that K-Z monads (also known as lax idempotent
2-monads) are pseudo-commutative. The main examples of K-Z monads for us
will be 2-monads whose algebras are V -categories with chosen colimits of a given
class; this provides a large family of examples of pseudo-commutative 2-monads.
We also consider tensor products associated to pseudo-closed structures and show
some results on preservation of colimits. To cover the general case of V -enriched
categories and not only ordinary categories we are led to consider monads enriched
in a 2-category, and some of the associated two dimensional monad theory.
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1. Introduction
This paper studies categories equipped with extra structure satisfying a

uniqueness condition that could be phrased as if the extra structure exists
then it arises in a specified way, unique up to isomorphism. A typical example
of this kind of category is a category with finite colimits: if these colimits
exist they arise in a unique (up to isomorphism) way, given by the definition
of colimit. If one thinks of extra structure imposed on a category as a family
of operations satisfying some axioms, our main result roughly states that if
the extra structure satisfies this uniqueness condition then the operations
commute with each other up to isomorphism.
The fact that certain colimits commute with certain limits is fundamental

in innumerable areas of mathematics. The most common manifestation of
this phenomenon is the commutation of filtered colimits with finite limits; this
is the fundamental in the theory of pro-finite objects and its variations (e.g.,
pro-finite groups), the classical theory of sheaves on topological spaces (where
the stack on a point is a filtered colimit) and hence in algebraic geometry,
only to mention a few examples. The present paper could be considered to
be the step zero in a program aimed to obtain an algebraic formulation and
understanding of the commutation of some colimits with some limits. We
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2 I. LÓPEZ FRANCO

say step zero because here we are concerned with commutation of colimits
with colimits, or indeed of any other structure on a category that satisfies
the uniqueness condition referred to at the beginning of this introduction.
The mixed case of colimits and limits, although more complicated, should fit
in the same abstract framework.
Let’s first recall the lower dimensional case of sets with extra structure.

One way of thinking of categories of sets with extra algebraic structure is
by means of monads on the category of sets Set; this includes the usual
intuition of a sets equipped with operations satisfying equations, and more
besides. The idea of operations commuting with each other is encapsulated
in the notion of a commutative monad introduced by Kock [24, 25, 26].
Similarly, but in one dimension up, categories with extra algebraic structure

can be thought of in terms of 2-monads; a few examples are monoidal cat-
egories and their braided and symmetric variants, categories equipped with
a monad, or two monads with a distributive law between them, categories
with (finite or otherwise) chosen (co)products, or finite biproducts. When
the algebraic structures are “commutative” the 2-monad is called pseudo-
commutative, and this is the case studied in detail in [10], where the main
example is provided by symmetric strict monoidal categories. Observe that
the braided strong monoidal functors between two symmetric strict monoidal
categories are the objects of a category that is also symmetric strict monoidal.
This is also true in general: for a pseudo commutative 2-monad T , the pseu-
domorphisms of T -algebras A→ B are the objects of a T -algebra JA,BK, or
more precisely, the 2-category of T -algebras and pseudomorphisms T -Alg is
pseudo-closed [10].
Our main example in this paper, in fact a family of examples, are categories

with chosen colimits of a given class, and the associated 2-monads. These
are examples of K-Z or lax idempotent 2-monads. Our main result states
that any such 2-monad is pseudo-commutative in a canonical way.
The 2-monads corresponding to a class of colimits are different from other

examples in that, although we know their algebras, there is no easy descrip-
tion of the 2-monad itself. Indeed, if one tries to fashion a direct proof of the
pseudo-commutativity of these 2-monads, one quickly finds numerous obsta-
cles. We avoid them by considering the wider class of K-Z monads, obtaining
at the same time cleaner statements and proofs.
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The notion of colimit makes sense in the context of enriched categories and
indeed in the examples our categories can be enriched in vector spaces, sim-
plicial sets, in the category 2 = {∗ → •} (so 2-categories are partially ordered
sets) and many other possibilities. This makes us consider the 2-monads TΦ
on the 2-category V -Cat of V -enriched categories, whose algebras are V -
categories with chosen colimits of the class Φ, as studied in [21]. In order to be
able to extend the results on the pseudo-commutativity of TΦ to this enriched
case, we are forced to consider TΦ as a monad enriched in V -Cat. Working
with V -Cat presents no advantages nor convenient features to working with
a general 2-category W (required to be symmetric monoidal closed, complete
and cocomplete); because of this we opt for using W if only because of the
notational clarity it provides. We emphasise that enriching in V -Cat would
not have shorten or simplified any of the paper’s material. To accommo-
date the existing theory of 2-monads to this enrichment in W we define the
W -category T -Alg, whose enriched homs are “objects of pseudomorphisms,”
and provide easy extensions of some of the results in [3] to the W -enriched
framework.
The paper is organised as follows.
After this introduction, Section 2 recalls some of the necessary background

on two-dimensional monad theory. In Section 3 we describe the W -category
T -Alg of algebras (and pseudomorphisms) of a W -monad T . The neces-
sary adaptations of the pseudo-closed 2-categories and pseudo-commutative
2-monads of [10] to the W -enriched context are described in Section 4. Sec-
tion 5 proves one of the key results of this work, characterising pseudo-
commutativities in terms of data in T -Alg. The pseudo-closed structure of
the W -category T -Alg for a pseudo-commutative T together with the induced
tensor product can be found in Section 6; this is largely an easy adaptation
of the 2-categorical case, but we add some results on preservation of colimits
by the tensor product. In Section 7 we prove our main result stating that
K-Z W -monads are pseudo-commutative, while in Section 8 we look at the
example of monads given by completion under a class of chosen colimits.
Finally, there is an Appendix where we confine some standard extensions of
the existence of flexible replacements to W -enriched monads, and the proof
that the 2-monad for chosen finite colimits is finitary.
The author is indebted to Martin Hyland for enlightening exchanges and

Steve Lack for pointing out several bibliographic sources.
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2. Background on 2-monads
In this section we summarise the concepts of two-dimensional monad the-

ory necessary throughout the rest of the paper. The basic references on
2-categories are [13, 2] and for 2-monad theory [3]; [30] provides a good
survey of both.
A 2-monad (T, η, µ) on a 2-category K is a 2-functor T : K → K together

with 2-natural transformations µ : T 2 ⇒ T , η : 1 ⇒ T satisfying the usual
monad axioms: µXµTX = µX(TµX) and µX(TηX) = 1TX = µXηTX .
Given a 2-monad T on K , a T -pseudoalgebra is an object A of K with a

1-cell a : TA→ A and invertible 2-cells

a(Ta) ∼= aµA 1a ∼= aηX (1)

satisfying two axioms (see [3]). When the these 2-cells are identities we say
that (A, a) is a strict algebra. We will usually denote a T -algebra (A, a)
simply by its object part A, omitting the explicit mention of the action,
which will then be denoted by the lowercase of the letter we use for the
object part.
For the benefit of the reader unfamiliar with 2-monads, we provide this

basic example.

Example 2.1. A monoidal category can be identified with a pseudoalgebra for
a 2-monad T on Cat. The category TC has objects and arrows, respectively,
finite sequences of objects and arrows of C. Concatenation of lists endows
TC with the structure of a strict monoidal category. The 1-cell a : TC → C
is a functor, that can be thought as providing the tensor product of a list of
objects

(x1, x2, · · · , xn) 7→ x1 ⊗ x2 ⊗ · · · ⊗ xn

while its value on the empty list can be thought as the unit object for the
monoidal structure. The isomorphisms (1) provide the associativity and unit
constraints. Observe that a pseudo-T -algebra is not exactly the same as a
monoidal category but rather an unbiased monoidal category; see [32] for
a full explanation. Monoidal categories are algebras for a 2-monad, the de-
scription of which is related to the original Mac Lane’s proof of the coherence
theorem for monoidal categories [33] and Kelly’s notion of a club (see [15]
and the references therein).

Example 2.2. We will refer to later to the following 2-monad S onCat, that is
the main example of a pseudo-commutative 2-monad in [10]. For a category
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X, SX has objects the lists of objects of X and arrows (x1, · · · , xn) →
(y1, · · · , yn) the n + 1-tuples (f1, · · · , fn, s) where s is a permutation of n
elements and fi : xi → ys(i) is an arrow in X. Composition is induced by
the multiplication of permutations and the composition in X. Note that
there are no arrows between lists of different length. The category SX is
not only strict (unbiased) monoidal via concatenation of lists (definition on
arrows should be obvious) but is moreover symmetric. If x = (x1, · · · , xn),
y = (y1, · · · , ym), the component of the symmetry x⊗y → y⊗x is the arrow
(1, · · · , 1, s), where s is the permutation of n +m elements: s(i) = i + n if
1 ≤ i ≤ n, s(i) = i − n if n + 1 ≤ i ≤ n +m. S-algebras can be identified
with strict (unbiased) symmetric monoidal categories.

Example 2.3. The examples of 2-monad we are more interested in are 2-
monads whose algebras are categories with chosen colimits of a certain class
[21]. These examples are discussed in Section 8.

Example 2.4. Other structures that can be presented as algebras for a 2-
monad on Cat are: braided monoidal categories; categories equipped with
a endofunctor, a pointed endofunctor or a monad; a category equipped with
two monads and a distributive law between them.

Given a pseudomonad T : K → K and two pseudo-T -algebras A and B,
a lax morphism from A to B is a 1-cell f : A → B in K together with a
2-cell

TA
Tf

//

a
��

������ f̄

TB

b
��

A
f

// B

that satisfies two axioms of compatibility with the pseudoalgebra structures.
When this 2-cell is invertible we say that (f, f̄) is a pseudomorphism, and
when f̄ = 1 we say that f is a strict morphism.
A 2-cell between two lax morphisms (f, f̄), (g, ḡ) : A→ B between (pseudo

or strict) algebras is just a 2-cell α : f ⇒ g in K compatible with f̄ , ḡ.
Now we can combine algebras and morphisms to form 2-categories. For

a given 2-monad T on K we denote by Ps-T -Alg the 2-category with ob-
jects pseudo-T -algebras, 1-cells pseudomorphisms and 2-cells the 2-cells de-
fined above. We denote by T -Alg the 2-category of (strict) T -algebras and
pseudomorphisms between them, and by T -Algs the 2-category of (strict)
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T -algebras and strict morphisms between them. In all instances the 2-cells
are the same, and all these 2-categories have a forgetful 2-functor into K ,
and there is an inclusion 2-functor J : T -Algs → T -Alg. Full details can be
found in [3].

Example 2.5. For the 2-monad T on Cat of Example 2.1, it is not hard to
see that a pseudomorphism correspond to a strong monoidal functor (in the
terminology of [12]), and in fact Ps-T -Alg is (equivalent) to the 2-category of
monoidal categories, strong monoidal functors and monoidal natural trans-
formations. By methods developed in [3], with [14] as a predecessor, one can
find another 2-monad T ′ and an equivalence between Ps-T -Alg and T ′-Alg.

3. W -enriched monads
Enriched categories provide a framework in which to study categories whose

hom sets have more structure, for example, hom sets that are abelian groups;
or even categories whose homs are not simply sets with extra structure but
some other type of objects, as for example simplicial sets, chain complexes,
non-negative real numbers.
The notion of enriched category we consider is the classical one due to

Eilenberg-Kelly [9]. Thus will enrich in categories that are symmetric monoidal
closed, complete and cocomplete. The power of the theory of enriched cate-
gories is exemplified by [17].
When we are dealing with V -enriched categories with extra algebraic struc-

ture, usually we are not contemplating an ordinary 2-monad on V -Cat but
actually a V -Cat-enriched monad. The case of most interest for us will
be the 2-monads on V -Cat whose algebras are V -categories with chosen
colimits of a certain class, considered in [21].
Unless we impose some restrictive conditions on V , there is no advantage

in working with V -Cat instead of a more general 2-category W , so we will
follow this second option, assuming that W is a complete and cocomplete
symmetric monoidal closed Cat-enriched category. Before proceeding to the
kernel of this paper we need to say some words on the two-dimensional monad
theory associated to a W -enriched monad.
As usual, the functor W (I,−) : W → Set induces a 2-functor (−)0 :

W -Cat → Cat. But taking into account that W is a 2-category, and so
W (I,−) is in fact a 2-functor into Cat, we get a 2-functor (−)1 : W -Cat →
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2-Cat. Extending the usual notation of A0 for the underlying (ordinary) cat-
egory of a W -category A, we call A1 its underlying 2-category, and similarly
for functors and transformations.

3.1. Strength and enrichment. Suppose K is a W -category that admits
cotensor products with objects of W . Recall that a cotensor of an object
B of K with an object X of W , denoted by {X,B}, of W is defined by
the existence of a W -natural isomorphism K (A, {X,B}) ∼= [X,K (A,B)].
Cotensor products are a particular instance of weighted limits (see [17]).
As such, for any W -functor T : K → K there is a canonical comparison
W -natural transformation

t̄X,B : T{X,B} −→ {X,TB}
whose component t̄X,B can be characterised as the unique arrow making the
following diagram commutative.

[X,K (A,B)]
[X,T]

//

∼=
��

[X,K (TA, TB)]

∼=
��

K (A, {X,B}) T // K (TA, T{X,B})
K (TA,t̄)

// K (TA, {X,TB})

(2)

Observe that the T -algebra structure on the contensor product {X,A} of
X ∈ W with a T -algebra A can be written in terms of t̄ and a : TA→ A as

T{X,A} t̄X,A−−→ {X,TA} {X,a}−−−→ {X,A}
When K = W , cotensor products are just internal homs, and a further

transformation is associated to the enrichment of T in W , namely the strength

tX,Y : X ⊗ TY −→ T (X ⊗ Y ).

This transformation satisfies tX,Y⊗Z .(X⊗tY,Z) = tX⊗Y,Z , and the composition
of tI,X with the canonical unit isomorphisms is the identity arrow of TX. We
denote by t′X,Y : TX ⊗ Y → T (X ⊗ Y ) the transformation obtained from
t and the symmetry of W in the obvious way. An ordinary endo-functor
equipped with a strength is called a strong functor. There is a bijection
between strengths on T : W → W and enrichments of T in W .
When (T, η, µ) is a W -monad, the associated strength of T satisfies ad-

ditional properties, equivalent to the W -naturality of η and µ; namely,
µX⊗Y .T (tX,Y ).tX,TY = tX,Y .(X⊗µX) and tX,Y .(X⊗ηY ) = ηX⊗Y . These equal-
ities translate in terms of t̄X,Y : T [X,Y ] → [X,TY ] as [X,µY ].t̄X,TY .(T t̄X,Y ) =
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t̄X,Y .µ[X,Y ] and t̄X,Y .η[X,Y ] = [X, ηY ]. Ordinary monads equipped with an
strength satisfying the aforementioned equalities are called strong monads,
and appear in the series [24, 25, 26]. Then, to give a strong monad on W is
equivalent to giving a W -monad.

3.2. The W -category T -Alg. As in the rest of the section, W will be a
complete and cocomplete monoidal closed 2-category. The theory of monads
on categories and their algebras can be generalised to the enriched context
[8]. For a W -monad (T, η, µ) on a W -category K , the the Eilenberg-Moore
W -category of algebras of T , which we will denote by T -Algs, has objects the
T0-algebras, where T0 is the ordinary monad underlying T on K0. If A,B
are T -algebras, the enriched hom T -Algs(A,B) is defined by the equalizer of
the following pair:

K (A,B)
T−→ K (TA, TB)

K (1,b)−−−−→ K (TA,B) K (A,B)
K (a,1)−−−−→ K (TA,B)

(3)
The corresponding forgetful W -functor will be denoted by Us. Observe that
the 2-category T -Algs,1 is the 2-category of algebras and strict morphisms
of algebras for the 2-monad T1 on K1, and Us,1 the corresponding forgetful
2-functor.
For each pair of T -algebras A,B, we have 1-cells in W

σA,B : K (A,B)
T−→ K (TA, TB)

K (TA,b)−−−−−→ K (TA,B) (4)

that form a W -natural transformation σ : K (Us−, Us−) ⇒ K (TUs−, Us−) :
T -Algops ⊗ T -Algs → W . Observe that σ satisfy the following equations:

σTA,BσA,B = K (µA, B)σA,B K (ηA, B)σA,B = 1 (5)

This transformation will play a central role later sections.

Remark 3.1. When K admits cotensor products, σA,B and σA,{X,B} are re-
lated by the commutativity of the following square (a consequence of the
commutativity of (2)).

[X,K (A,B)]
[X,σA,B ]

//

∼=
��

[X,K (TA,B)]

∼=
��

K (A, {X,B})
σA,{X,B}

// K (TA, {X,B})

(6)
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The 2-categories T1-Algℓ and T1-Alg of algebras and, respectively, lax mor-
phisms and pseudomorphisms are the underlying 2-categories of two W -
categories, T -Algℓ and T -Alg. For a pair of T -algebras A,B, the object
T -Algℓ(A,B) comes equipped with a 2-cell

K (A,B)
σA,B

**TTTTTT

T -Algℓ(A,B)

Uℓ,A,B 44iiiiiii

Uℓ,A,B
**UUUUUUU

�� ��
�� γ K (TA,B)

K (A,B)
K (a,1)

44jjjjjj

(7)

universal with respect to the equalities in Figure 1. The one-dimensional
part of the universal property says that given any other 2-cell δ : σA,B.p ⇒
K (a,B).p : L → K (TA,B) satisfying the same equations, there exists a
unique 1-cell p̂ : L → T -Algℓ(A,B) such that δ = γ.p̂. The two-dimensional
part of the universal property says that given a 2-cell δ as above and another
ϵ : σA,B.q ⇒ K (a,B).q : L→ K (TA,B), and a 2-cell α : p⇒ q compatible
with δ, ϵ in the sense that δ(σA,B.α) = (K (a,B).α)ϵ, then α = Uℓ,A,B.α̂ for
a unique α̂ : p̂⇒ q̂.
If we further require the 2-cell (7) to be invertible, we obtain another object

that we denote by T -Alg(A,B); the object of pseudomorphisms.

Remark 3.2. The 2-cell (7) can be constructed by considering an inserter
of the pair of 1-cells σA,B,K (a,B) : K (A,B) → K (TA,B) and then two
equifes to impose the equations of Figure 1. Hence it can also be constructed
as a limit on one step: there exists a small 2-category Hℓ, a weight χℓ :
Hℓ → Cat and a 2-functor Hℓ,A,B : Hℓ,A,B → W such that lim(ϕ,Hℓ,A,B)
is T -Algℓ(A,B). The same applies to T -Alg(A,B), by using an iso-inserter
instead of an inserter.

Now it is routine to see that the objects T -Algℓ(A,B) and T -Alg(A,B)
are the enriched homs of two W -categories, that we write T -Algℓ and T -Alg
respectively, both with objects the T -algebras in K . For example, the com-
position T -Algℓ(A,B) ⊗ T -Algℓ(B,C) → T -Algℓ(A,C) and identity I →
T -Algℓ(A,A) correspond to the 2-cells in Figure 2.
The 1-cells Uℓ,A,B : T -Algℓ(A,B) → K (A,B) and UA,B : T -Alg(A,B) →

K (A,B) provide the effect on enriched homs of forgetful W -functors Uℓ :
T -Algℓ → K and U : T -Alg → K . There are obvious identity on objects
inclusions J : T -Algs → T -Alg and T -Alg → T -Algℓ. The first exists simply
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�� ��
�� γ

K (A,B)
σA,B

// K (TA,B)
σTA,B

((RRRRRRRRRRRRR

T -Algℓ(A,B)

Uℓ
66mmmmmmmmmmmmm

Uℓ //

Uℓ ((QQQQQQQQQQQQQ
�� ��
�� γ

K (A,B)
K (a,1)

66mmmmmmmmmmmm

σA,B

((QQQQQQQQQQQQ
K (T 2A,B)

K (A,B)
K (a,1)

// K (TA,B)
K (Ta,1)

66lllllllllllll

∥
K (A,B)

σA,B

**TTTTTTTT

T -Algℓ(A,B)

Uℓ 44iiiiiiiii

Uℓ
**UUUUUUUUU

�� ��
�� γ K (TA,B)

K (µA,1)// K (T 2A,B)

K (A,B)
K (a,1)

44jjjjjjjj

K (A,B)
σA,B

**UUUUUUUU

T -Algℓ(A,B)

Uℓ 44iiiiiiiii

Uℓ
**UUUUUUUUU

�� ��
�� γ K (TA,B)

K (ηA,1)// K (A,B)

K (A,B)
K (a,1)

44iiiiiiii

= 1

Figure 1. Equalities for T -Alg(A,B)ℓ.

because in the definition of the homs of T -Alg we used an iso-inserter, and
identities are trivially invertible, or in other words, strict morphisms are
pseudomorphisms. The second exists because iso-inserters factor through
the respective inserters, or in other words, pseudomorphisms are also lax
morphisms.
Because W -Cat → 2-Cat is induced by W1(I,−) : W1 → Cat, and rep-

resentable 2-functors preserve limits, it is easy to see that T -Algℓ,1 is the
usual 2-category of algebras and lax morphisms T1-Algℓ; similarly, T -Alg1 is
T1-Alg.
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[A,C]
T // [TA,TC]

[1,c]

��>
>>

>>
>>

>>
>>

>>
>>

>>
>>

[A,B][B,C]
TT //

comp
44jjjjjjjjjjjjjjjjjj

[TA,TB][TB,TC]
1[1,c]

//

comp
55lllllllllllll

[TA,TB][TB,C]

comp
OOOO

''OOOO

T -Algℓ(A,B)T -Algℓ(B,C)
UℓUℓ //

UℓUℓ

OO

UℓUℓ **TTTTTTTTTTTTTTTT

�� ��
�� 1⊗γ

�� ��
�� γ⊗1

[A,B][B,C]
T1 // [TA,TB][B,C]

1[b,1]

OO

[1,b]1
��

[TA,C]

[A,B][B,C]
[a,1]1

// [TA,B][B,C]

comp

77ooooooooooo

[A,A]
σA,A

))RRRRRRRRRR

I

id 77oooooooooo a //

id ''OOOOOOOOOO [TA,A]

[A,A]
[a,1]

55llllllllll

Figure 2

4. Pseudo-closed W -categories and pseudo-commutative
W -monads
In this section and the next we give an outline of the main constructions and

results of [10], where Hyland and Power give structures on a 2-monad T that
ensure that the 2-category T -Alg is pseudo-closed in a suitable sense. Here
we recall the definition of pseudo-closed structures, leaving the structures on
the 2-monad for the next section.

4.1. Pseudo-closed structures. Closed categories arose in the early days
of category theory [9], and although in many examples a closed structure is
accompanied by a monoidal structure, most of the time the former is easier
to describe (e.g., the category of k-modules for a commutative ring k). In
the the case of the 2-categories of algebras something similar takes place: in
order to construct a tensor product, if possible, it is simpler to first consider
a pseudo-closed structure.
We take the definition of a pseudo-closed structure from Hyland-Power

[10], changing Cat by W .
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I
jB //

j[A,B] &&LLLLLLLLLLLLL [B,B]

kA
��

[[A,B], [A,B]]

[A,C]
kA,A,C

// [[A,A], [A,C]]

[jA,1]
��

[A,C] [I, [A,C]]e[A,C]

oo

[C,D]

kB,C,D
��

kA,C,D
// [[A,C], [A,D]]

k // [[[A,B], [A,C]], [[A,B], [A,D]]]

[kA,B,C ,1]
��

[[B,C], [B,D]]
[1,kA,B,D]

// [[B,C], [[A,B], [A,D]]]

[A,B]
kI,A,B

//

[eA,1] ((PPPPPPPPPPPPP
[[I, A], [I, B]]

[1,eB ]
��

[[I, A], B]

Figure 3. Some of the axioms of a pseudo-closed 2-category.

Definition 4.1 ([10]). A pseudo-closed W -category is a W -category K
equipped with the following data: W -functors V : K → W and [−,−] :
K op ⊗ K → K , an object I ∈ K , W -(extraordinary) natural transforma-
tions jA : I → [A,A], eA : [I, A] → A, iA : A → [I, A], kA,B,C : [B,C] →
[[A,B], [A,C]]. This data must satisfy the commutativity of the diagrams in
K1 in Figure 3 and

• V [−,−] = K (−,−) : K op ⊗ K → W ;

• the 1-cell I
jA−→ K (I, [A,A]) = V [I, [A,A]]

V e[A,A]−−−−→ V [A,A] = K (A,A)
is the identity of A;

• there are equivalences iA ⊣ eA in the 2-category K1 whose units are
identity 2-cells, i.e., retracts equivalences;

• the 1-cell W1(I, V (iAeA)) : K1(I, A) → K1(I, A) in Cat takes each
f : I → A in K1 to eA[f, A]jA : I → [A,A] → [I, A] → A.

When W is Cat we recover the definition of a pseudo-closed 2-category
in [10]. It is also clear that if K is a pseudoclosed W -category, then its
underlying 2-category K1 is pseudo-closed.

Example 4.1. A candidate to a pseudo-closed 2-categories is, for example, the
2-category of braided strict monoidal categories, braided monoidal functors
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and monoidal transformations: given two such categories A,B, the category
of braided monoidal functors A→ B and monoidal transformations between
them has a canonical structure of a braided strict monoidal category. This ex-
ample is extensively studied, in the symmetric case, in [10]. Another possible
example of a pseudo-closed 2-category is the 2-category finitely cocomplete
categories, finitely cocontinuous functors and natural transformations. Here
again, given two such categories A,B, finitely cocontinuous functors A→ B
and transformations between them form a finitely cocontinuous category.
However, this 2-category is not quite pseudo-closed; to obtain a pseudo-
closed structure one has to move to categories with chosen colimits. This
example is studied in Section 8.

4.2. Pseudo-commutativities. The series [24, 25, 26] studies the struc-
tures on a strong monad (defined on a closed category) that induce a closed
structure on the corresponding category of Eilenberg-Moore algebras in such
a way that the associated forgetful functor preserves the closed structure.
The main result is that these closed structures correspond to a property of
this monad that was named commutativity. One basic example is the free
abelian group monad on Set. The category of algebras for this monad is the
category of abelian groups, which is manifestly closed. The commutativity
on the monad is an expression of the fact that the addition in an abelian
group is commutative. Hyland and Power [10] deal with the higher dimen-
sional problem of defining pseudo-commutativity for 2-monads, and finding
the right level of generality that allows for a large number of interesting
examples but at the same time remains manageable.

Definition 4.2 ([10]). A pseudo-commutativity for a W -monad T : W → W
is an invertible modification depicted in (8) of Figure 4, satisfying the axioms
resulting from replacing in [10, Definition 5] the cartesian product of Cat by
the tensor product ⊗ of W . We do not reproduce the axioms, as these will
not be explicitly used.
A W -monad equipped with a pseudo-commutativity will be called a pseudo-

commutative W -monad. Using the closed structure of W [10] expresses a
pseudo-commutativity (8) as a 2 -cell (9) in Figure 4. The axioms of a
pseudo-commutativity translate to the conditions in [10, Proposition 8], that
we spell below for later use.
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TX ⊗ TY
t′X,TY

//

tTX,Y

��

�� ��
�� γX,Y

T (X ⊗ TY )
TtX,Y

// T 2(X ⊗ Y )

µX⊗Y

��

T (TX ⊗ Y )
Tt′X,Y

// T 2(X ⊗ Y ) µX⊗Y

// T (X ⊗ Y )

(8)

T [X,Y ]
T (T)

//

t̄X,Y
��

�� ��
�� γ̄X,Y

T [TX, TY ]
t̄ // [TX, T 2Y ]

[1,µY ]
��

[X,TY ]
T

// [TX, T 2Y ]
[1,µY ]

// [TX, TY ]

(9)

Figure 4. Pseudo-commutativity.

The main example of a pseudo-commutative 2-monad in [10] is the 2-monad
on Cat whose algebras are symmetric strict monoidal categories (see Exam-
ple 2.2); in this case the modification (8) is the canonical isomorphism medi-
ating between two lexicographic orders. We refer the reader to the detailed
exposition in section 3 of the cited paper.
The following result appears as [10, Proposition 8], and we may take it as

a definition of a pseudo-commutativity. Our omission of condition 1 of [10,
Proposition 8], that is expressed in terms of both (8) and (9), is justified by
the comments in the forenamed paper that any two of the strength conditions
on γ̄ implies the third (see [10, p. 161]).

Proposition 4.2 ([10]). To give a pseudo-commutativity for a W -enriched
monad T is equivalent to giving a modification γ̄ as in (9) subject to the
following conditions.

(1) [X, γ̄Y,Z ].t̄X,[Y,Z] is the exponential transpose of [t, TZ].γ̄X⊗Y,Z.
(2) [TX, t̄Y,Z ].γ̄X,[Y,Z] is the exponential transpose of [t′X,Y , TZ].γ̄X⊗Y,Z.
(3) γ̄X,Y .η[X,Y ] is an identity.
(4) [ηX , TY ].γ̄X,Y is an identity.



K-Z MONADS 15

(5) γ̄X,Y .µ[X,Y ] is equal to the pasting

T 2[X,Y ]
T 2(T)

//

T t̄
��

�� ��
�� T γ̄X,Y

T 2[TX, TY ]
T t̄ //T t̄ // T [TX, T 2Y ]

T [1,µY ]
��

T [X,TY ]
T (T)

//

t̄
��

T [TX, T 2Y ]
T [1,µY ]//

t̄
��

T [TX, TY ]

t̄
��

[X,T 2Y ]

T
��

�� ��
�� γ̄X,TY

[TX, T 3Y ]
[1,TµY ] //

[1,µTY ]
��

[TX, T 2Y ]

[1,µY ]
��

[TX, T 3Y ]
[1,µTY ]

// [TX, T 2Y ]
[1,µY ]

// [TX, TY ]

(6) [µX , TY ]γ̄X,Y is equal to the pasting

T [X, Y ]
T (T)

//

t̄
��

T [TX, TY ]

t̄
��

T (T)
//

�� ��
�� γ̄TX,TY

T [T 2X,T 2Y ]
t̄ // [T 2X,T 3Y ]

[1,µTY ]
��

[X,TY ]

T
��

�� ��
��γ̄X,Y [TX, T 2Y ]

T //

[1,µY ]
��

[T 2X,T 3Y ]

[1,TµY ]
��

[1,µTY ] // [T 2X,T 2Y ]

[1,µY ]
��

[TX, T 2Y ]
[1,µY ]

// [TX, TY ]
T

// [T 2X,T Y ]
[1,µY ]

// [T 2X,TY ]

Example 4.3. To illustrate the previous proposition, and for the benefit of the
reader unfamiliar with [10], we exhibit the canonical pseudo-commutativity,
in its form γ̄, for the 2-monad T on Cat whose algebras are symmetric
strict monoidal categories. An object of T [X, Y ] is an n-tupe (f1, · · · , fn) of
functors fi : X → Y . The domain of the component of γ̄X,Y corresponding
to this object has as domain the functor TX → TY given on objects by

(x1, · · · , xm) 7→ (f1x1, · · · , f1xm, f2x1, · · · , f2xm, · · · fnx1, · · · , fnxm) (10)

while the codomain is the functor TX → TY given on objects by

(x1, · · · , xm) 7→ (f1x1, · · · , fnx1, f1x2, · · · , fnx2, · · · f1xm, · · · , fnxm) (11)

So domain and codomain are given by the two different lexicographic order-
ings of the objects fixj. The component ((γ̄X,Y )(f1,··· ,fn))(x1,··· ,xm) is the unique
isomorphism between (10) and (11) induced by the symmetry of TY .
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5. A characterisation of pseudo-commutativity
As mentioned at the beginning of the previous section, one of the main

points of [26, 25, 24] is that there is a correspondence between the commu-
tativity of a monad and closed structures on its Eilenberg-Moore category of
algebras. In the case of pseudo-commutativities something similar happens,
but the correspondence is not so clean; this reflects the fact that Definitions
4.1 and 4.2 are not as “weak” as possible but as “strict” as examples allow.
A key observation of [10] is that a pseudo-commutativity on a W -monad

T on W induces a pseudomorphism structure on the composite

σX,B : [X,B]
T−→ [TX, TB]

[TX,b]−−−→ [TX,B] (12)

for every T -algebra B, and these arrows form a pseudonatural transforma-
tion in the following way. Consider the 2-functors [−,−],[T−,−] : W op

1 ×
T -Alg1 → T -Alg1 and observe that the 1-cells (12) are the components of a
pseudonatural transformation

U [−,−] ⇒ U [T−,−] : W op
1 × T -Alg1 → W1. (13)

Indeed, if f : B → C is a 1-cell in T -Alg, the structural 2-cell σf correspond-
ing to f is the 2-cell below.

[X,B]

[1,f ]
��

T // [TX, TB]
[1,b]

//

[1,Tf ]
��

�� ��
��[1,f̄−1]

[TX,B]

[1,f ]
��

[X,C]
T // [TX, TC]

[1,c]
// [TX,C]

(14)

The pseudonatural transformation obtained by precomposing σ with

1× J1 : W op
1 × T -Algs,1 → W op

1 ⊗ T -Alg1

is in fact 2-natural. In other words, σ is 2-natural on strict morphisms.
We provide a refinement of the observations of [10] in the form of the

proposition below.

Proposition 5.1. There is a bijection between pseudo-commutativities on
T and liftings of σ to a pseudonatural transformation [−,−] ⇒ [T−,−] :
W op

1 × T -Alg1 → T -Alg1 satisfying the following conditions.

(1) [ηX , B].σX,B = 1[X,B] in T -Alg1.
(2) σTX,B.σX,B = [µX , B].σX,B in T -Alg1.
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(3) [X, σY,B] : [X, [Y,B]] → [X, [TY,B]] is the exponential transpose of
the 1-cell [tX,Y , B]σX⊗Y,B : [X ⊗ Y,B] → [X ⊗ TY,B] in T -Alg1, for
all T -algebra B.

(4) σX,[Y,TZ] : [X, [Y, TZ]] → [TX, [Y, TZ]] is the exponential transpose of
the 1-cell [t′X,Y , TZ].σX⊗Y,TZ : [X⊗Y, TZ] → [TX⊗Y, TZ] in T -Alg1,
for all X, Y, Z ∈ W .

(5) The composition of 1 × J1 : W op
1 × T -Algs,1 → W op

1 × T -Alg1 with σ
is a 2-natural transformation.

Observe that condition 4 is slightly different than the rest in that the T -
algebra is required to be of a special form, namely a free T -algebra.
We split the proof of the proposition in lemmas.

Lemma 5.2. Let T : W → W be a W -enriched monad. There is a bijection
between modifications γ̄ as in (9) satisfying conditions 3 and 5 of Proposition
4.2 and liftings of σ to a pseudonatural transformation [−,−] ⇒ [T−,−] :
W op

1 × T -Alg1 → T -Alg1 which composed with W op
1 × J are 2-natural.

Proof : Given a modification γ̄ as in (9), we can define 2-cells σ̄X,B forX ∈ W ,
B ∈ T -Alg as the following composition.

T [X,B]
T (T)

//

t̄

��

T [TX, TB]
T [1,b]

//

t̄
��

T [TX,B]

t̄
��

�� ��
�� γ̄X,B [TX, T 2B]

[TX,Tb]
//

[1,µB ]
��

[TX, TB]

[1,b]

��

[X,TB]
T //

[1,b]
��

[TX, T 2B]
[1,µB ] //

[1,T b]
��

[TX, TB]

[1,b] ((QQQQQQQQQQQQ

[X,B]
T

// [TX, TB]
[1,b]

// [TX,B]

Each 2-cell σ̄X,B endows [TX, b]T with the structure of a pseudomorphism
of T -algebras: the condition involving the unit η follows from condition 3 of
Proposition 4.2 and the condition involving the multiplication µ follows from
condition 5 of the same proposition. With this pseudomorphism structure,
the 2-cell (14) is a 2-cell in T -Alg1; in other words, (σ, σ̄) is a lifting of σ
to a pseudonatural transformation between the 2-functors [−,−], [T−,−] :
W op

1 × T -Alg1 → T -Alg1. (If such a lifting exists, it is unique). Moreover,



18 I. LÓPEZ FRANCO

the composition of (σ, σ̄) with 1× J1 : W op
1 × T -Algs,1 → W op

1 × T -Alg1 is a
2-natural transformation.
Conversely, we now show that any lifting (σ, σ̄) of σ whose composition

with W op
1 × J1 is 2-natural, induces a modification γ̄ as in (9). Given σ̄X,B

define γ̄X,Y by

T [X, Y ]
T (T)

//

t̄

��

T [1,ηY ]

((PPPPPPPPPPPP
T [TX, TY ]

T [1,TηY ]

))RRRRRRRRRRRRR
1

##

T [X,TY ]
T (T)

//

t̄
��

T [TX, T 2Y ]
T [1,µY ] // T [TX, TY ]

t̄
��

[X,TY ]
[1,TηY ] //

1 **

[X,T 2Y ]

[1,µY ]
��

�� ��
�� σ̄X,TY [TX, T 2Y ]

[1,µY ]
��

[X,TY ]
T

// [TX, T 2Y ]
[1,µY ]

// [TX, TY ]

To show that γ̄X,Y is a modification, we use that σ̄ is 2-natural on strict
morphisms: for f : Z → Y , h : W → X in W1,

γ̄X,Y .T [h, f ] = σ̄X,TY .(T [X, ηY ]).(T [h, f ]) = σ̄X,TY .(T [h, Tf ]).(T [W, ηZ ])

= [Th, Tf ].σ̄W,TZ .(T [W, ηZ ]) = [Th, Tf ].γ̄W,Z .

Condition 3 of Proposition 4.2 follows easily from the unit axiom of a pseudo-
morphism: γ̄X,Y .η[X,Y ] = σ̄X,TY .T [X, ηY ].η[X,Y ] = σ̄X,TY .η[X,TY ].[X, ηY ]. = 1.
Condition 5 of the same proposition is a bit harder to prove, but routine
nonetheless. We leave the verification to the reader; we only mention that
the equality [TX, µY ].σ̄X,T 2Y = σ̄X,TY .T [X,µY ] and the multiplication axiom
of a pseudomorphism must be used in the verification.
These constructions are inverse of each other: there is a bijection between

modifications γ̄ and liftings of σ to a pseudonatural transformation (σ, σ̄)
which composed with W op

1 × J1 are 2-natural.

Lemma 5.3. Assume the hypotheses of Lemma 5.2. Then

(1) Condition 4 of Proposition 4.2 holds if and only if [η,−].σ is the iden-
tity pseudonatural transformation of [−,−].

(2) Condition 6 of Proposition 4.2 holds for γ̄ if and only if σTX,B.σX,B =
[µX , B].σX,B for all X ∈ W1 and B ∈ T -Alg1.
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(3) Condition 1 of Proposition 4.2 holds for γ̄ if and only if the pseu-
domorphism [X, σY,B] : [X, [Y,B]] → [X, [TY,B]] corresponds to the
pseudomorphism [t, B].σX⊗Y,B : [X ⊗ Y,B] → [X ⊗ TY,B] under the
closedness structure of W1.

(4) Condition 2 of Proposition 4.2 holds for γ̄ if and only if the pseudo-
morphism σX,[Y,TZ] : [X, [Y, TZ]] → [TX, [Y, TZ]] corresponds to the
pseudomorphism [t′X,Y , TZ].σX⊗Y,TZ : [X ⊗ Y, TZ] → [TX ⊗ Y, TZ]

Proof : The proof of part 1 is obvious.
Now we show 2. Suppose that σTX,B.σX,B = [µX , B].σX,B. If γ̄ is defined

as in the proof of Lemma 5.2, condition 6 of Proposition 4.2 is the equality(
σTX,TY .σ̄X,TY .T [X, ηY ]

)(
[T 2X,µY ].σ̄TX,T 2Y .(T [TX, ηY ]).(TσX,TY ).(T [X, ηY ])

)
= [µX , TY ].σ̄X,TY .T [X, ηY ]

(15)

Using the 2-naturality of σ with respect to strict morphisms,

[T 2X,µY ].σ̄X,T 2Y = σ̄X,TY .T [TX, µY ]

and using this we can transform the left hand side of (15) into the pasting

T [X,Y ]
T [1,ηY ] // •

σ̄X,TY

��

// •
σ̄TX,TY

//

��

•

��
• // • // •

that is by hypothesis equal to [µX , TY ].σ̄X,TY .T [X, ηY ].
Conversely, assuming condition 6 of Proposition 4.2, and defining σ̄ in

terms of γ̄ as in the proof of Lemma 5.2, we have to show(
[T 2X, b].γ̄TX,B.T [TX, b].T (T)

)(
[T 2X, b].T.[TX, b].γ̄X,B

)
= [µX , B].[TX, b].γ̄X,B

for X ∈ W and a T -algebra (B, b). Using the fact that γ̄ is a modification,
one can see that the left hand side in the equality above is equal to the
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pasting

• //

��

T [TX, TB] //

γ̄TX,TB

��

•

��
γ̄X,B [TX, T 2B]

[1,µ]
��

// [T 2X,TB]

[T 2X,b][T 2X,Tb]
��

• // [TX, TB]
[T 2X,b][T 2X,Tb]T

// [T 2X,B]

that by hypothesis is just [T 2X, b][µX , TB]γ̄X,B. This completes the proof of
part 2.
Now we prove 3. It is not hard to show that at the level of 1-cells in W1,

[X, σY,B] always corresponds to [t, B]σX⊗Y,B, so we must only check the 2-
dimensional aspect. Suppose condition 1 of Proposition 4.2 holds. The pseu-
domorphism structure of [X, σY,B] is given by the 2-cell [X, σ̄Y,B].t̄X,[Y,B], and
then we must show that its exponential transpose is the 2-cell [tX,Y , B].σ̄X⊗Y,B.
This follows trivially from our hypothesis as the former is equal to the com-
position [X, [TY, b]].[X, γ̄X,B].tX,[Y,B] and the latter is equal to

[X ⊗ TY, b].[tX,Y , TB].γ̄X⊗Y,B.

Conversely, if we assume that the exponential transpose of [X, σ̄Y,B].t̄X,[Y,B]

is [tX,Y , B].σ̄X⊗Y,B, it is clear that

[X, γ̄Y,Z ].t̄X,[Y,Z] = [X, σ̄X,TZ ].[X,T [Y, ηZ ]].t̄X,[Y,Z]

corresponds to

[tX,Y , TZ].γ̄X⊗Y,Z = [tX,Y , TZ].σ̄X⊗Y,TZ .T [X ⊗ Y, ηZ ].

Finally, to prove number 4 we first note that σX,[Y,TZ] corresponds to the
pseudomorphism [t′X,Y , TZ].σX⊗Y,TZ only means that the corresponding pseu-
domorphisms structures correspond to each other, or more explicitly that the
2-cells (16) and (17) below correspond to each other.

σ̄X,[Y,TZ] (16)

[t′X,Y , TZ].σ̄X⊗Y,TZ (17)

[TX, t̄Y,Z ].γ̄X,[Y,Z] (18)

[t′X,Y , TZ].γ̄X⊗Y,Z (19)
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In one direction, we assume that this is the case and we have to show that
(18) is the exponential transpose of (19). By the definition of σ̄ in terms of
γ̄ above, we have

[TX, t̄Y,Z ].γ̄X,[Y,Z] = [TX, t̄Y,Z ].σ̄X,T [Y,Z].T [X, η[Y,Z]]

= σ̄X,[Y,TZ].T [X, t̄Y,Z ].T [X, η[Y,Z]]

= σ̄X,[Y,TZ].T [X, [Y, ηZ ]]

The second equality holds by the 2-pseudonaturality of σ with respect to
strict morphisms of algebras and the simple observation that t̄Y,Z : T [Y, Z] →
[Y, TZ] is a strict morphism, because

[Y, µZ ].t̄Y,TZ .T t̄Y,Z = t̄Y,Z .µ[Y,Z];

the last equality follows from the compatibility between η and the strength.
On the other hand,

[t′X,Y , TZ].γ̄X⊗Y,Z = [t′X,Y , TZ].σ̄X⊗Y,TZ .T [X ⊗ Y, ηZ ]

from where is obvious that (18) corresponds to (19). Conversely, assume that
(18) corresponds to (19), and write (16) and (17) in terms of γ̄ respectively
as

[TX, µY ].[TX, t̄Y,TZ ].γ̄X,[Y,TZ]

and

[t′X,Y , TZ].[T (X ⊗ Y ), µZ ].γ̄X⊗Y,TZ = [TX ⊗ Y, µY ].[t
′
X,Y , T

2Z].γ̄X⊗Y,TZ

By our assumption, these two 2-cells are exponential transpose one of the
other. This concludes the proof of the lemma.

6. T -Alg as pseudo-closed W -category
6.1. T -algebra on the object of pseudomorphisms. In this section we
briefly explain how a pseudo-commutativity on T induces a T -algebra JA,BK
with underlying W -category T -Alg(A,B), yielding the following result, which
is a W -enriched version of [10, Section 6].

Theorem 6.1. A pseudo-commutativity on a W -monad T on W induces a
pseudo-closed structure on T -Alg.
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A fact we need to recall from [3] is that T1-Alg admits certain limits and
the forgetful 2-functor U1 : T1-Alg → W1 preserves them. The limits we are
referring to are products, inserters and equifers, and therefore those limits
that can be constructed from these. See [3, Section 2]. Moreover, these
limits can assume that the components of the projections from these limits
are strict morphisms of algebras.
We want a T -algebra JA,BK with underlying object T -Alg(A,B) in W1,

and so there will be a universal invertible 2-cell

[A,B]
σA,B

((QQQQQQJA,BKUA,B 66mmmmmm

UA,B
((QQQQQQ

�� ��
�� γ [TA,B]

[A,B]
[a,1]

66mmmmmm

(20)

in W1 satisfying the universal property described in Section 3.2. This 2-cell
can be constructed from σA,B and [a,B] by considering an iso-inserter and
two equifers, and therefore, by the observations on the existence of limits in
T1-Alg of the previous paragraph, the diagram (20) itself will be a limit in
T1-Alg if σA,B, [a,B] : [A,B] → [TA,B] is a pseudomorphisms of T -algebras.
Both [A,B] and [TA,B] are T -algebras as described in section 3.1, and

[a, 1] is always a strict morphism of algebras. Finally, the fact that σA,B is a
pseudomorphism is precisely what happens when T is pseudo-commutative
by Proposition 5.1. The components UA,B of the forgetful W -functor U :
T -Alg → W are strict morphisms of algebras, and the T -algebra structure
T (T -Alg(A,B)) → T -Alg(A,B) is the unique 1-cell in W1 whose postcompo-
sition with UA,B equals

T (T -Alg(A,B))
T (UA,B)−−−−→ T [A,B]

t̄−→ [A, TB]
[A,b]−−→ [A,B].

Remark 6.2. Since σ is 2-natural on strict morphisms of algebras, one easily
deduces that JA, fK is a strict morphism of algebras for any strict morphism
f . The fact that Jf,BK is a strict morphism for any pseudomorphism f is
easily verified.

6.2. Multilinear maps. Before describing the pseudo-closed structure on
T -Alg we will briefly mention its multicategory structure, which in this case
seems to arise more naturally. Later we shall use these multilinear maps to
describe the composition of the pseudo-closed structure and to describe a
tensor product of T -algebras.
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Multilinear maps in the case of a pseudo-commutative 2-monad on Cat
are explained at length in [10]. We choose, then, to keep the details to a
minimum as our own contribution is only marginal.
Given T -algebras A,B and an object X of W , a 1-cell f : X ⊗ A → B

is a left parametrised morphism of T -algebras when it is equipped with an
invertible 2-cell

X ⊗ TA
t //

1⊗a
��

�� ��
�� f̄

T (X ⊗ A)
f

// TB

b
��

X ⊗ A
f

// B

(21)

satisfying the obvious equations, analogous to the axioms for a morphism of
T -algebras but this time involving the strength tX,A : X ⊗ TA→ T (X ⊗A).
We say that this parametrised morphism is strict when the 2-cell f̄ is an
identity.
Right parametrised morphisms can be defined in the same way, now us-

ing t′ : TA ⊗ X → T (X ⊗ A) instead of t, and combining t, t′ morphisms
parametrised on the two sides are easily described.
In fact, there is a universal object T -Alg(X,A;B) in W that classifies

parametrised morphisms; in particular (but not equivalently) 1-cells I →
T -Alg(X,A;B) are in bijection with parametrised morphisms as described
above. Indeed, we will have

T -Alg(X,A;B) ∼= [X,T -Alg(A,B)] (22)

and we could take this a defining the left hand side. Alternatively, we can
transpose along the adjunction (X⊗−) ⊣ [X,−] the universal 2-cell defining
the right hand side of (22) (recall that T -Alg(A,B) is defined as a certain
limit, and then so is the left hand side of (22)), to obtain a universal invertible
2-cell (after using Proposition 5.1.3)

[X ⊗ A,B]
[t,1].σA,B

**UUUUUUU

T -Alg(X,A;B)

33hhhhhhhh

++VVVVVVVVVVV

�� ��
�� ∼= [X ⊗ TA,B]

[A,B]
[a,1]

44iiiiiiiiii

(23)

satisfying two conditions that correspond to the equations in Figure 1. The
equation involving the multiplication of T uses Proposition 5.1.2, while the
condition involving the unit of T uses Proposition 5.1.1.
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T (A⊗ TB)
Tt //

�� ��
�� γ

T 2(A⊗B)
µ

''OOOOOOOOOOO

TA⊗ TB
t //

a⊗1
��

t′
77ooooooooooooo

T (TA⊗B)
Tt′ //

T (a⊗1)
��

T 2(A⊗B)
µ

//

T 2f
��

T (A⊗B)

Tf
��

A⊗ TB
t //

1⊗b

��

T (A⊗B)

Tf ((QQQQQQQQQQQQQQ

�� ��
�� T f̄1 T 2C

µ
//

Tc
��

TC

c

��

�� ��
�� f̄2 TC

c
((QQQQQQQQQQQQQQQQ

A⊗B
f

// C

TA⊗ TB
t′ //

1⊗b
��

T (A⊗ TB)
Tt //

T (1⊗b)
��

T 2(A⊗B)
µ

//

Tf
��

T (A⊗B)

f
��

TA⊗B
t′ //

a⊗1

��

T (A⊗B)

Tf ((QQQQQQQQQQQQQQ

�� ��
�� T f̄2 T 2C

Tc
��

µ
// TC

c

��

�� ��
�� f̄1 TC

c

((QQQQQQQQQQQQQQQQ

A⊗B
f

// C

Figure 5. Commutation axiom of a multilinear map.

A multilinear map f : A ⊗ B → C will have two structures: one of a
parametrised morphism UA⊗B → C and another of a parametised morphism
A⊗ UB → C, and both will commute in the sense that the two pastings in
Figure 5 must be equal (see also [10, p. 169]). Observe that to express this
condition one requires the existence of a pseudo-commutativity on T (in the
form (8)). There is a bijection between multiliner maps A ⊗ B → C and
pseudomorphisms A→ JB,CK; if we call

f̄2 : c.(Tf).t⇒ f.(A⊗ b) : A⊗ TB → C

f̄1 : c.(Tf).t
′ ⇒ f.(a⊗B) : TA⊗B → C

the left and right parametrised morphisms structures, these are related to
the corresponding pseudomorphism g : A → JB,CK in the following way.
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The 1-cell g in T1-Alg corresponds, by definition of JB,CK (see section 6.1),
to an invertible 2-cell in T1-Alg

ĝ : σB,C .U.g ⇒ [b, C].U.g (24)

This means that U.g : A→ [B,C] is a pseudomorphism with two-dimensional
structure

TA
T (U.g)

//

a

��

xxxxx� ḡ

T [B,C]

t̄
��

[B, TC]

[1,c]
��

A
U.g

// [B,C]

(25)

that satisfies a condition that states that ĝ is a 2-cell in T1-Alg; namely, a
compatibility condition involving ḡ, σ̄B,C and ĝ.
The 1-cell U.g and the 2-cell (24) have as exponential transpose en W1

respectively the 1-cell f : A ⊗ B → C and the 2-cell f̄2, while f̄1 is the
exponential transpose of ḡ (25). The compatibility condition referred to in
the previous paragraph corresponds to the commutation condition between
f̄1, f̄2 involving the pseudo-commutativity of T (that corresponds to σ̄).
The details of this bijection between multilinear maps A ⊗ B → C and

pseudomorphisms A→ JB,CK are analogous to the case W = Cat found in
[10].
The notion of a multilinear map “in two variables” can be easily extended

to allow any number of variables. Together with an obvious notion of mor-
phism between multilinear maps, these form a category what we shall denote
by T1-Alg(A1, · · · , An;C); accordingly to the paragraph above there is an
isomorphic to

T1-Alg(A1, · · · , An+1;C) ∼= T1-Alg(A1, · · · , An; JAn+1, CK) (26)

Defining T1-Alg(;C) = W1(I, C) we obtain a closed Cat-enriched multicate-
gory T1-Alg such that the usual forgetful 2-functor in to W1 is a morphism
of Cat-enriched muticategories.

Remark 6.3. Observe that on the bijection between multilinear maps f :
A ⊗ B → C and pseudomorphisms g : A → JB,CK the following can be be
added. The multimap f is strict in the second variable (f̄2 is an identity) if
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and only if g factors through T -Algs(B,C), and f is strict in the first variable
(f̄1 is an identity) if and only if g is a strict morphisms of T -algebras.

Example 6.4. A first but nonetheless important example of a multilinear map
is the evaluation ev : JA,BK ⊗ A → B; by definition, this is the multilinear
map associated to the identity pseudomorphism of JA,BK. According to
Remark 6.3 (taking the evaluation as f and the identity as g) we can deduce
a couple of properties that we will need later:

(1) Since the identity is a strict morphism of T -algebras (in the notation
above, ḡ = 1), then the parametrised morphism ev : JA,BK⊗UA→ B
(this is, the action of T is on the first variable) is strict (f̄1 = 1).

(2) Since J : T -Algs(A,B) → JA,BK trivially factors through T -Algs(A,B),
we deduce that the associated parametrised morphism is strict (action
on the first variable). Moreover, this parametirsed morphism is the
composite

T -Algs(A,B)⊗ A
J⊗B−−→ UJA,BK ⊗ A

ev−→ B.

Example 6.5. The main example of a multilinear map for us will be the
composition

comp : JB,CK ⊗ JA,BK → JA,CK (27)

The reason why comp is a multilinear map is explained in [10]: any multi-
linear map (27) corresponds to a unique multilinear mapJB,CK ⊗ JA,BK ⊗ A→ C;

comp will correspond to the composite of multilinear mapsJB,CK ⊗ JA,BK ⊗ A
1⊗ev−−−→ JB,CK ⊗B

ev−→ C (28)

where ev is the multilinear map of the preceding Example 6.4.

The following lemma says that the endo-W -functor JA,−K of T -Alg re-
stricts to the sub-W -category T -Algs.

Lemma 6.6. Let k : JB,CK → JJA,BK, JA,CKK be the pseudomorphism of
T -algebras associated to the composition multilinear map of Example 6.5.
Then, kJ factors through T -Algs(JA,BK, JA,CK).
Proof : An equivalent condition to the thesis is that the parametrised mor-
phism

T -Algs(B,C)⊗ JA,BK J⊗1−−→ T -Alg(B,C)⊗ JA,BK comp−−−→ JA,CK
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be strict. This will happen exactly when the parametrised morphism below
(T -action on the middle variable) is strict,

T -Algs(B,C)⊗ JA,BK ⊗ UA
J⊗1⊗1−−−−→ T -Alg(B,C)⊗ JA,BK ⊗ UA

1⊗ev−−−→ T -Alg(B,C)⊗B
ev−→ C

If we rewrite this composite as

T -Algs(B,C)⊗ JA,BK ⊗ UA
1⊗ev−−−→ T -Algs(B,C)⊗B

J⊗1−−→ T -Alg(B,C)⊗B
ev−→ C

which is strict by the two observations in Example 6.4.

The following observation will be used in Corollary 7.5 and re-interpreted
in section 8 as a familiar fact about functors that are right exact in each
variable.

Proposition 6.7. If the forgetful 2-functor T1-Alg → W1 is full on invertible
2-cells, then every partial map in each variable f : A1 ⊗ · · · ⊗ An → C is
automatically a multilinear map.

Proof : We briefly provide the proof in the case of n = 2. Given a partial
map in each variable f : A⊗B → C and the corresponding pseudomorphism
h : A → [B,C], the commutation condition between both left and right
structures is equivalent to the 2-cell corresponding to the right structure
h2 : c.Tf.tA,B ⇒ f.(A⊗ b)

ĥ : σB,C .h⇒ [b, C].h

being a 2-cell in T1-Alg (this is (24)). This condition is automatic from our
assumption that the forgetful 2-functor is locally full.

The condition in the proposition above that the forgetful 2-functor T1-Alg →
W1 be full on invertible 2-cells was shown in [20, Proposition 5.1] to be equiv-
alent to requiring that any 1-cell in W1 have at most one lax morphism struc-
ture. In particular, K-Z monads satisfy this condition.

6.3. Pseudo-closed structure on T -Alg. Now we exhibit the pseudo-
closed structure on T -Alg induced by a pseudo-commutativity on T , keeping
the details to a minimum as this description is completely analogous to the
case of 2-monads considered in [10].
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The internal hom J−,−K is the W -functor described in the previous sec-
tion, with unit object will be FI, the free T -algebra on the neutral object I
of W . The 1-cell jA : FI → JA,AK is the unique strict morphism correspond-
ing to the identity I → T -Alg(A,A). Next we have to provide the retract
equivalence iA ⊣ eA : JFI,AK → A in T -Alg1:

eA : JFI,AK UFI,A−−−→ [FI,A]
[ηI ,A]−−−→ [I, A]

∼=−→ A (29)

iA : A
∼=−→ [I, A]

FI,A−−→ JFI, FAK JFI,aK−−−→ JFI,AK (30)

Since U1 reflects adjoint equivalences and retract equivalences, it is enough
to show that there is a retract equivalence U1(iA) ⊣ U1(eA) in W1 and that
eA is a pseudomorphism of T -algebras. The latter is trivial, eA being a strict
morphism, while the existence of the retract equivalence in W1 is a particular
case of Corollary 9.5.
The composition k : JB,CK → JJA,BK, JA,CKK will be the pseudomor-

phism of T -algebras associated (see Section 6.2) to the multilinear map (27)
of Example 6.5.
The verification of the axioms of a pseudo-closed W -category is left to the

reader; it is mostly straightforward, and uses Corollary 9.5.

Remark 6.8. For a pseudo-commutative W -monad T , the 2-category T1-Alg
inherits a pseudo-closed structure from T -Alg.

6.4. Tensor products. Given a pseudo-commutative 2-monad T , under a
mild assumption on T [10, Theorem 14] ensures the existence of an induced
tensor product on T -Alg. However, can obtain more information than simply
that.
We shall assume that T is a W -monad with a rank on W ; e.g., T is finitary.

The 2-monad of Examples 2.1 and 2.2 are finitary; see also Lemma 8.2.
The construction of the tensor product, always following [10], proceeds in

the following manner. The assumption that T has a rank ensures that the
W -category T -Algs is cocomplete (see Lemma 9.6) and in particular T -Algs
will admit tensor products with objects of W : given X in V -Cat and A,B
in T -Algs, there is a T -algebra X ∗ A and a W -natural isomorphism

T -Algs(X ∗ A,B) ∼= [X,T -Algs(A,B)].

In Section 9.1 we will see that the 2-adjoint (−)′ to the inclusion J : T -Algs →
T -Alg lifts to a W -enriched adjoint, and the counit of this adjunction, with
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components strict morphisms

qA : A′ → A (31)

is an equivalence (in T -Alg1) and a retract. The existence of this left adjoint
was further studied and clarified in [29]. Some of the fundamental facts about
it are recalled in Section 9.1.
As we saw in Lemma 6.6, for each T -algebra A the W -functor JA,−K :

T -Alg → T -Alg restricts to a W -functor T -Algs → T -Algs, and we have a
commutative diagram

T -Algs
JA,−K

//

J
��

T -Algs

Us

��
T -Alg

T -Alg(A,−)
// W

(32)

Now we show that JA,−K : T -Algs → T -Algs has a left adjoint. The compo-
sition UsJA,−K preserves cotensor products because T -Alg(A,−) and J do
(see Lemma 9.2); as Us creates cotensor products, this means that JA,−K pre-
serves cotensor products. This implies, by a basic fact of enriched category
theory, that JA,−K has a left adjoint precisely when its underlying ordinary
functor has one. This observation, together with the adjoint triangle theo-
rem [7] and the fact that Us is monadic and T -Algs cocomplete (Lemma 9.6),
implies that JA,−K has a left adjoint if and only if T -Alg(A, J−) does. And
it indeed does, the left adjoint being − ∗ A′ : W → T -Algs. So we have a
2-functor −⊘ A : T -Algs → T -Algs and W -natural isomorphisms

T -Algs(−⊘ A,C) ∼= T -Algs(−, JA,CK). (33)

As usual, (33) combines all the W -functors − ⊘ A into a W -functor ⊘ :
T -Algs ⊗ T -Algs → T -Algs.

Lemma 6.9. The W -functor ⊘ preserves all colimits in the first variable.
It preserves ϕ-colimits on the second variable, for a weight ϕ, if T preserves
ϕ-colimits.

Proof : The first assertion is obvious as each − ⊘ A has a right adjoint. To
prove the second assertion, observe that A ⊘ − preserves a certain colimit
for all A if and only if for each T -algebra C the 2-functor J−, CK sends this
colimit into a limit, if and only if UsJ−, CK have the same property, since Us
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creates limits. The isomorphism

UsJ−, CK = T -Alg(J−, C) ∼= T -Algs((J−)′, C)

transforms the problem into showing that T -Algs((J−)′, C) sends colimits
that are preserved by T into limits. This holds by Corollary 9.4 of the
Appendix.

For the rest of this section we will work upon the pseudo-closed 2-category
T1-Alg (see Remark 6.8). We do no attempt to obtain a W -enriched version
of the monoidal structure on this 2-category, which is pseudo or weak in
nature.
After obtaining the functor ⊘, [10] constructs a tensor product � in T1-Alg

by applying [3, Theorem 5.1]. To summarise the details needed here,

A�B = J(A′ ⊘B) (34)

with unit object FI the free T -algebra on the unit object of W . The rela-
tionship between monoidal and pseudo-closed structure can be expressed as
the existence of pseudonatural equivalences

T1-Alg(A�B,C) ≃ T1-Alg(A, JB,CK). (35)

These equivalences are given by the composite

T1-Alg(J(A
′ ⊘B), C)

JB,−K−−−→ T1-Alg(JB, J(A′ ⊘B)K, JB,CK)
T1-Alg(sA,B ,1)−−−−−−−−→ T1-Alg(A, JB,CK) (36)

where sA,B : A → JB, J(A′ ⊘ B)K is the unit of the adjunction (−)′ ⊘ B ⊣JB, J−K.
The observations above are the basic ingredients of Hyland-Power’s result:

Theorem 6.10 ([10]). A pseudo-commutativity on a W -monad T on W
induces a monoidal structure on T1-Alg. Moreover, the biadjunction F ⊣b

U : T -Alg → W is monoidal.

The last assertion that F ⊣b U is monoidal means the following. Firstly, U
is, in the terminology of [5], weak monoidal. This means that it is equipped
a pseudonatural transformation

χA,B : U(A)⊗ U(B) → U(A�B) (37)

and a 1-cell I → UFI (in this case the unit of T ) satisfying a higher version
of the usual axioms of a monoidal functor. See [5, Definition 2]. Secondly, F
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is strong monoidal; that is, it is weak monoidal and the morphisms F (X)�
F (Y ) → F (X ⊗ Y ), FI → FI are equivalences (the latter can be taken to
be the identity). The unit n : 1 ⇒ UF and the counit e : FU ⇒ 1 are
monoidal pseudonatural transformations [5, Definition 3], and the invertible
modifications Ue.nU ∼= 1 and eF.Fn ∼= 1 are monoidal.

Remark 6.11. The equivalences (35) show that the tensor product A � B
classifies multilinear maps with domain A,B, in the sense that the 1-cell
(37) induces equivalences

T1-Alg(A,B;C) ≃ T1-Alg(A�B,C). (38)

Next we show that the constructed tensor product pseudofunctor is 2-
natural when restricted to strict morphisms of algebras. This result will be
useful in a forthcoming paper, allowing us to speak of the preservation by
the tensor product � of certain 2-categorical colimits in T1-Algs.

Theorem 6.12. The 1-cells (36) are 2-natural not only in A,C ∈ T1-Alg
but also in B ∈ T1-Algs.

Proof : The result is obtained by setting in Theorem 9.7: P = T1-Algs,
L = T1-Alg, G(B,C) = JB,CK, H(B,A) = A′ ⊘B. The isomorphisms (33)
exhibit H as a left parametrised left adjoint of G.

Corollary 6.13. The restriction of the tensor product pseudofunctor to strict
morphisms in the second variable

T1-Alg × T1-Algs
1×J−−→ T1-Alg × T1-Alg

�−→ T1-Alg

is (isomorphic to) a 2-functor.

Proof : By Theorem 6.12 above, for any strict morphism of T -algebras f :
B → D we have a commutative diagram

T1-Alg(J(A
′ ⊘B), C) //

T1-Alg(J(A
′⊘f),C)

��

T1-Alg(A, JB,CK)
T1-Alg(A,Jf,CK)

��

T1-Alg(J(A
′ ⊘D), C) // T1-Alg(A, JD,CK)

that is 2-natural on A,C ∈ T1-Alg, where the horizontal functors are the
retract equivalences (36). This means that the strict morphism J(A′ ⊘ f)
satisfies the defining condition of A� f . Thus the pseudofunctor (A� J−)
is isomorphic to the 2-functor J(A′ ⊘ −), and letting A vary, (? � J−) is
isomorphic to the 2-functor J(?′ ⊘−) : T1-Alg × T -Algs → T1-Alg.
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We leave the examples for the next and subsequent sections.

7. K-Z monads
With cocomplete categories as an example, Kock [27] (published in the

form of [28]) and Zöberlein [36] introduced a special kind of 2-monad, with
later contributions by Street [35, 34] and more recently Lack and Kelly [20].
A 2-monad (T, η, µ) on a 2-category K is Kock-Zöberlein, abbreviated K-

Z, or lax-idempotent, when any 1-cell f : A → B in K between T -algebras
has a unique structure of a lax morphism of T -algebras. This is equivalent
to the condition that a 1-cell a : TA → A is a T -algebra structure if and
only if there exists an adjunction a ⊣ ηA whose counit is an identity. Another
equivalent condition is the existence of a modification δ : Tη V ηT : T ⇒ T 2

satisfying
δη = 1 and µδ = 1. (39)

Many more equivalent conditions are given in [20, Theorem 6.2]. If T is a
K-Z monad the forgetful 2-functor Uℓ : T -Alg → K is locally fully faithful.
If A,B are T -algebras, the unique lax morphism structure on a 1-cell f :

A → B in K is given by the following 2-cell, where the unlabelled 2-cell
denotes the counit of the adjunction a ⊣ ηA.

TA

a
��

� �� �KS TA
Tf

// TB

b
��

A
ηA

<<xxxxxxxxx

f
// B

ηB
=={{{{{{{{

B

(40)

It follows that a 1-cell f : A → B has a (unique) structure of a pseudo-
morphism of T -algebras if and only if (40) is invertible. Also, the forgetful
2-functor U : T -Alg → K is injective on 1-cells and locally fully faithful.
In [28] it is shown that left adjoint morphisms between algebras are pseu-

domorphisms. If A,B are T -algebras and f ⊣ f ∗ : B → A is an adjunction
in K , then f ∗, just as any 1-cell, is a lax morphism and hence f has a
structure of an oplax (or colax) morphism of T -algebras. It follows from [20,
Lemma 6.5] that the oplax structure fa ⇒ bTf is invertible and its inverse
is a pseudomorphism structure on f .

Definition 7.1. We say that a W -monad T on K is a K-Z or lax idempotent
W -monad if its underlying 2-monad T1 on the 2-category K1 is a K-Z 2-
monad in the usual sense.
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Lemma 7.1. Let T : W → W be a K-Z W -monad Then the 1-cell

σX,B : [X,B]
T−→ [TX, TB]

[TX,b]−−−→ [TX,B]

is part of a coretract adjunction with right adjoint [ηX , B] : [TX,B] → [X,B].
In particular, it is a pseudomorphism.

Proof : We have [ηX , B].[TX, b].T = [X, b].[ηX , TB].T = [X, b].[X, ηX ] = 1 by
2-naturality of η, so indeed we can define the unit of our adjunction as the
identity. Now define the counit as the following 2-cell

[X,B] T

��

[TX,B]

[ηX ,1]
66nnnnnnnnnnnn

T //

[1,ηB ]

99
[T 2X,TB]

[TηX ,1] --

[ηTX ,1]
11

�� ��
�� [TX, TB]

[1,b]
// [TX,B]

where the unlabelled 2-cell is [δX , 1]. Now we check the axioms of an adjunc-
tion. First, [ηX , B].[TX, b].[δX , TB].T = [X, b].[δXηX , TB].T = 1 by (39).
The other triangular identity of an adjunction follows from (39):

[TX, b].[δX , TB].T.[TX, b].T = [δX , B].[T 2X, b].[T 2X,Tb].T.T

= [δX , B].[T 2X, b].[T 2X,µB].T.T

= [δX , B].[T 2X, b].[µX , TB].T

= [δX , B].[µX , B].[TX, b].T

= 1.

Theorem 7.2. Every K-Z W -monad T : W → W is pseudo-commutative.
Moreover, the pseudo-commutativity is unique.

Proof : We have to check the conditions in Proposition 5.1. By Lemma 7.1 σ
lifts to a pseudonatural transformation [−,−] ⇒ [T−,−] : W op

1 × T1-Alg →
T1-Alg. Moreover this lifting is unique because U1 : T1-Alg → W1 is injective
on 1-cells and locally fully faithful. The conditions (1) to (4) in Propo-
sition 5.1 hold trivially, because U1 is injective in 1-cells; in other words,
these conditions hold if and only if they hold in W . The uniqueness of
the pseudo-commutativity is equivalent to the uniqueness of the pseudomor-
phism structure on each σX,B, which holds by the properties of U1 already
mentioned.
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Corollary 7.3. If T : W → W is a K-Z W -monad, then T -Alg has a
canonical structure of a pseudo-closed W -category. Moreover, if T has a
rank, the induced pseudo-closed structure on the 2-category T1-Alg has an
associated monoidal structure with unit object FI and whose tensor product
satisfies (35).

Proof : It is a consequence of Theorem 7.2 together with section 6.

Example 7.4. There are pseudo-commutative 2-monads which are not K-
Z. For example, the 2-monad T on Cat whose algebras are the symmetric
strict monoidal categories. See [10] for a detailed description of the pseudo-
commutativity for this 2-monad. One of the several possible ways of seeing
that this T is not lax-idempotent is to show that there can not be a 2-natural
transformation δX : TηX ⇒ ηTX : TX → T 2X.

We record the following easy consequence of Proposition 6.7 that will be re-
interpreted in the next section as the familiar fact about colimits of functors
of several variables.

Corollary 7.5. In the case of K-Z monads there is no distinction between
partial maps in each variable and multilinear maps.

Remark 7.6. When W is locally a preorder any pseudo-commutativity is just
a commutativity in the sense of [24, 26, 25], but the monad could still be
K-Z and not an idempotent monad. See Example 8.8.

8. Categories with finite colimits
We now turn to our main example of K-Z monads, and thus pseudo-

commutative 2-monads; namely, monads on V -Cat whose algebras are V -
categories with a given class of chosen colimits. These monads are enriched
in V -Cat, which is essential in order to endow the V -categories of pseu-
domorphisms with an algebra structure, as shown in the previous sections.
This is just the familiar fact that given V -categories A,B admitting colimits
of a certain class Φ, Φ-cocontinuous V -functors A→ B form not only an or-
dinary category but a Φ-cocomplete V -category Φ-Cocts[A,B]. This family
of monads expands the examples of pseudo-commutative 2-monads provided
in [10].
When the class of colimits in question is a class of finite colimits, the

corresponding monad is finitary and thus we can construct a corresponding
tensor product.
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Let Φ be a small class of colimits, by which we understand a small class
of weights ϕ : D → V . Recall from [17, Section 5.5] that the free com-
pletion of a V -category A under Φ-colimits, denoted by ΦA, can be ob-
tained as the closure under Φ-colimits of the representables in [Aop,V ].
The Yoneda embedding yA : A → ΦA induces equivalences of V -categories
Φ-Cocts[ΦA,B] ≃ [A,B] for all Φ-cocomplete V -category B, with pseudoin-
verse given by left Kan extension along yA. Here Φ-Cocts[C,D] denotes the
V -category of Φ-cocontinuous V -functors C → D; these are the enriched
homs of a V -Cat-category Φ-Cocts with objects the Φ-cocomplete small
V -categories.
Let us denote by Φ-Colim be the 2-category of V -categories with chosen Φ-

colimits, V -functors strictly preserving these and V -natural transformations.
The hom V -category Φ-Colim(A,B) is the full sub-V -category of [A,B]
determined by the V -functors that strictly preserve Φ-colimits. There is
an obvious forgetful 2-functor Us : Φ-Colim → V -Cat. The main result
of [21] is the monadicity of Us (as a 2-functor) in the strong sense that is
an adjunction Fs ⊣ Us and the canonical comparison 2-functor Φ-Colim →
TΦ-Algs is an isomorphism, where TΦ = UsFs. If η : 1 ⇒ TΦ is the unit of the
monad, there is an equivalence of V -categories making the following diagram
commutative.

A
ηA //

yA !!DD
DD

DD
DD

D TΦA

≃
��

ΦA

Corollary 8.1. The 2-monad TΦ on V -Cat whose algebras are V -categories
with chosen Φ-colimits is pseudo-commutative. Therefore, the 2-category
TΦ-Alg is pseudo-commutative.

Proof : Theorem 6.3 of [21] asserts that the 2-monad TΦ is a K-Z 2-monad.
The result follows from Theorem 7.2. For the last part apply Corollary 7.3.

Still following [21], the canonical “inclusion” 2-functor from Φ-Colim to
the 2-category Φ-Cocts of Φ-cocomplete V -categories and Φ-cocontinuous
V -functors can be factored as

Φ-Colim → Φ-Coctsc → Φ-Cocts

where the first 2-functor is bijective on objects and the second is fully faith-
ful. In other words, the 2-category in the middle has objects V -categories
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with chosen Φ-colimits and 1-cells Φ-cocontinuous V -functors. [21, Theorem
6.2] shows that there is a canonical isomorphism TΦ-Alg ∼= Φ-Coctsc that
commutes with the corresponding forgetful 2-functors into V -Cat.
Although the following results hold for any class of finite colimits, for sim-

plicity we restrict ourselves to the class of all finite colimits Fin.

Lemma 8.2. The 2-monad R on V -Cat whose algebras are V -categories
with chosen finite colimits is finitary. Equivalently, the forgetful 2-functor
Us : Fin-Colim → V -Cat is finitary.

For a proof of this Lemma see Section 9.3.
From the results and remarks of Section 6.4 we deduce:

Corollary 8.3. R1-Alg, and hence Fin-Coctsc, are monoidal 2-categories,
with the the monoidal structure induced by the canonical pseudo-closed struc-
ture. Moreover, the biadjunction F ⊣b U : T1-Alg → V -Cat is monoidal.

The tensor product � in R-Alg satisfies (35), which could be rewritten as

Rex[A�B,C] ≃ Rex[A,Rex[B,C]].

This universal property can be expressed in terms of the monoidal constraint
(37) χA,B : A⊗B → A�B that classifies multilinear maps. By Corollary 7.5
multilinear maps are just partial maps in each variable, that in the present
case means simply V -functors that are right exact in each variable. Part
of the universal property of the tensor product asserts that every functor
A⊗B → C that is right exact in each variable factors as χA,B followed by a
unique up to isomorphism right exact functor A�B → C.

A⊗B
χA,B

//

%%LLLLLLLLLLL ∼=
A�B

��

C

The fact that multilinear f : A ⊗ B → C are simply the partial maps,
i.e., the right exact V -functors, can be rephrased as the familiar fact that if
ϕ : Dop

ϕ → V , ψ : Dop
ψ → V are finite weights and g : Dop

ϕ → A, h : Dop
ψ → B

two V -functors, then the following two isomorphisms are equal.

colim(ψ, colim(ϕ, f(g ⊗ h))
∼=−→ colim(ψ, f(colim(ϕ, g)⊗ h))

∼=−→ f(colim(ϕ, g)⊗ colim(ψ, h))
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colim(ψ, colim(ϕ, f(g ⊗ h))
∼=−→ colim(ϕ, colim(ψ, f(g ⊗ h))

∼=−→

colim(ϕ, f(g ⊗ colim(ψ, h)))
∼=−→ f(colim(ϕ, g)⊗ colim(ψ, h)). (41)

The first isomorphism in the composite (41) is induced by the pseudo-commuta-
tivity of R.

Remark 8.4. The fact that the free R-algebra functor F : V -Cat → R-Alg is
strong monoidal implies, as explained in the paragraph after Theorem 6.10,
that R(X)�R(Y ) is equivalent to R(X ⊗ Y ).

Example 8.5. Let k be a commutative ring and A a k-algebra, finitely pre-
sented as a k-module, and denote by ΣA the corresponding V -category with
one object. Then R(ΣA) is equivalent to A-Modf , the category of finitely
presented A-modules. The Remark 8.4 above can be reinterpreted as the
equivalence

A-Modf � B-Modf ≃ A⊗ B-Modf .

This can be of course shown directly, and in fact is one of the most basic
observations about� or any tensor product that might play its role, including
Deligne’s tensor product [6]. The universal functor

A-Modf ⊗ B-Modf → A⊗ B-Modf

is given by ⊗k, the tensor product over k.

Remark 8.6. The last section of Kelly’s book [17, 19] uses the extensive ma-
chinery developed therein to describe tensor products of Φ-cocomplete en-
riched categories. If A,B are two such categories, A � B is (equivalent to)
the closure under Φ-colimits of the representables in Φ-Cts[Aop, Bop;V ], the
V -category of V -functors Aop ⊗ Bop → V that are Φ-continuous in each
variable. In particular, when Φ = Fin the class of finite colimits, we have
that A � B is equivalent to the closure under finite colimits of the repre-
sentables in Lex[Aop, Bop;V ], and A ⊗ B → A � B is dense in the sense of
[17, 19, Chapter 5]. (Note that the inclusion functor from Lex[Aop, Bop;V ]
to [Aop ⊗Bop,V ] does not preserve colimits.)

Remark 8.7. Let A,B be two V -categories with chosen finite colimits and
χA,B : A ⊗ B → A � B the corresponding universal multilinear V -functor.
Remark 8.6 above implies

(1) χA,B is fully faithful.
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(2) χA,B is dense and each object of A�B is a finite colimit of a V -functor
χA,B.F , for some V -functor F into A ⊗ B (however this colimit is
not necessarily χA,B-absolute, i.e., preserved by all the representables
(A � B)(χA,B(a, b),−), so it is not part of a density presentation of
χA,B).

Example 8.8. Consider the example of V = 2, the category with two objects
⊤ and ⊥ and one non-identity arrow ⊥ → ⊤. The name of the objects
is chosen to make the cartesian product behave like the meet x ∧ y, the
coproduct as the meet x ∨ y, and the internal hom x⇒ y as the implication
of classical logic. It is known that 2-Cat is isomorphic to the 2-category
POrd of partially ordered sets: the partially ordered set corresponding to
a 2-category A is obA with ordering a ≤ b iff A(a, b) = ⊤. In fact, this
partially ordered set is just the underlying category of the 2-enriched category
A, and because ⊤ is a strong generator in 2 (this is 2(⊤,−) : 2 → Set is
conservative), there is no difference between 2-enriched conical limits and
ordinary conical limits. Hence, A has finite coproducts when it has finite
joins; coequalizers are trivial in the case of partially ordered sets. Tensor
products of the form ⊥ ∗ a always give an initial object and the other case
⊤ ∗ a ∼= a is always trivial. From these observations we deduce that a A
finitely cocomplete when it has finite joins and an initial object (a bottom
element).
Given a 2-category A, [Aop,2] can be identified with the partially ordered

set of order-ideals of A (subsets I of A such that if a ∈ I then any b ≤ a is
also in I). The representable presheaf A(−, a) is identified with the order-
ideal ↓ (a) = {b ∈ A : b ≤ a}. The free completion of A under finite colimits
can be identified with the partially ordered set of order-ideals of A of the
form ↓ (a1) ∪ · · · ∪ ↓ (an), for some finite subset {a1, · · · , an} of A. The
2-enriched monad R on 2-Cat whose algebras are partially ordered sets with
chosen finite joins (including bottom object) is the a monad corresponding
to completion under a class of finite colimits, and hence it is K-Z and pseudo
commutative. Since 2 is a partially ordered set, as observed in Remark 7.6,
R is in fact commutative. However, R is not idempotent.

Remark 8.9. We have decided to consider finite colimits to present the theory
above, but we could have chosen finite limits instead and obtained the same
results. There is a pseudo-commutative 2-monad L on V -Cat whose algebras
are V -categories with chosen limits, and thus the induced internal homs and
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tensor product. The neutral object of this tensor product is (equivalent to)
V op
f , the opposite of the category of finitely presented objects of V . The

2-monad L is related to R by LX ∼= (R(Xop))op, and is not K-Z or lax
idempotent but the dual notion of oplax idempotent.

9. Appendix
9.1. Flexible replacement. In this section we provide the, for the most
part routine, W -enriched versions of some of results concerning the left ad-
joint of J . This can be done by mimicking the constructions of [29]; instead
we choose a slightly less general setting in which we can deduce the results
from the case of 2-monads by means of well-known and easy results of en-
riched category theory.
Although the 2-categories of algebras and strict morphisms T -Algs are of

a theoretical importance, most of the examples of interesting 2-categories
associated to a 2-monad appear in the form 2-categories of (sometimes pseudo
or lax algebras) and lax or pseudo-morphisms. For simplicity, and because
it is the case relevant to this paper, we will only consider the 2-categories
T -Alg of strict algebras and pseudomorphisms.
Thanks to the classical theory of monads and algebras, we have a great

deal of control over the 2-categories T -Algs, so it is a good idea to try to
transform this knowledge to the most interesting 2-categories T -Alg via the
inclusion 2-functor J : T -Algs → T -Alg. This idea originally appears in
[14] and was pushed on in [3], where conditions are given that guarantee the
existence of a left adjoint to J , usually denoted by (−)′ : T -Alg → T -Algs.
Later Lack [29] gave necessary and sufficient conditions for the existence of
this left adjoint, greatly clarifying the situation.
According to [29], given a 2-monad T on a 2-category K , A′ can be con-

structed as a codescent object of of the (strict) codescent data in T -Algs

T 3A

µTA //
TµA //

Ta
// T

2A

µA //
oo
TηA

a
// TA

So J has a left adjoint whenever T -Algs admits codescent objects, which
are a special class of colimits, and in particular when K is complete and
cocomplete and T has a rank.

Remark 9.1. An easy consequence of this description of A′ is that if T pre-
serves ϕ-colimits for a certain weight ϕ then (−)′J does so too. This is
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equivalent to say that J : T -Algs → T -Alg preserves ϕ-colimits, because
T -Alg can be seen as the Kleisli construction for the comonad (−)′J ,

Lemma 9.2. If T is a W -monad on a cotensored W -category K , then T -Alg
has and J : T -Algs → T -Alg preserves cotensor products with objects of W .

Proof : It is standard that the W -functor Us : T -Algs → W creates cotensor
products. So the cotensor product of a T -algebra A with an object X of
W is the object {X,A} with algebra structure {X, a}.t̄X,A : T{X,A} →
{X,TA} → {X,A}. The W -natural isomorphism T -Algs(A, {X,B}) ∼=
[X,T -Algs(A,B)] is induced by a projection pB : X → T -Algs({X,B}, B)
(that corresponds under the isomorphisms above to the identity of {X,B}).
We will show that the 1-cell

X
pB−→ T -Algs({X,B}, B)

J−→ T -Alg({X,B}, B) (42)

induces isomorphisms T -Alg(A, {X,B}) ∼= [X,T -Alg(A,B)]. The existence
of these isomorphisms follows easily from the definition of T -Alg(A,B) as a
limit in W1 (Section 3.2), the fact that {X,−} preserves limits and Remark
3.1. It is not hard to see that these isomorphisms are W -natural in A. As
such, by Yoneda, they are induced by an arrow qB : X → T -Alg({X,B}, B).
To finish the proof we must show that qB is the arrow (42). The square (43)
commutes by the definition of J (which is just a comparison 1-cell resulting
from the universal property of the objects of pseudomorphisms) and the fact
that {X,−} preserves limits. Considering the case A = {X,B}, the arrow
qB is the result of applying the right vertical arrow of (43) to the identity
id : I → T -Alg({X,B}, {X,B}). Because identities are strict morphisms of
algebras, id factors through J , yielding JpB = qB.

T -Algs(A, {X,B}) J //

∼=
��

T -Alg(A, {X,B})
∼=

��

[X,T -Alg(A,B)s]
[X,J ]

// [X,T -Alg(A,B)]

(43)

Corollary 9.3. Suppose that T1 algebras admit a flexible replacement, that
is, there exists a left 2-adjoint (−)′ ⊣ J1. Then this 2-adjunction lifts to a
W -enriched adjunction

(−)′ ⊣ J : T -Algs → T -Alg. (44)
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Proof : Apply the standard fact that a cotensor product preserving enriched
functor from a category that admits cotensor products has a left adjoint if
and only if its underlying ordinary functor does.

The proof of the following fact is the same as what we indicated in Remark
9.1 but only for details.

Corollary 9.4. Assume that T preserves ϕ-colimits for a weight ϕ : D → W .
Then J preserves ϕ-colimits.

Corollary 9.5. If J has a left adjoint then there are canonical retract equiv-
alences in W1

T -Alg(FX,B) ≃ K (X,UB) (45)

Proof : Consider the following 1-cell in W1:

eX,B : T -Alg(FZ,B)
U−→ K (TZ, UB)

K (ηZ ,UB)−−−−−−→ K (Z,UB) (46)

The functor W1(I, eZ,B) : T1-Alg(F1Z,B) → K1(Z,U1B) is a retract equiv-
alence by Theorem 5.1 and Corollary 5.6 of [3]. Since U preserves cotensor
products with objects of W , we deduce that W1(X, eZ,B) is an equivalence for
all X in W , as this functor is, up to composing with canonical isomorphisms,
W1(I, eZ,{X,B}). It follows that eZ,B is an equivalence in W1. To prove that it
is a retract equivalence, it is enough to show that it has a right inverse (see
[11, A.1.1.1]), which will be provided by the composite

K (Z,UB)
Fs−→ T -Algs(FZ, FUB)

T -Algs(FZ,b)−−−−−−−→ T -Algs(FZ,B)
J−→ T -Alg(FZ,B).

The fact that this is a right inverse is just a consequence of the adjunction
Fs ⊣ Us.

We finish the section with an enriched version of [3, Theorem 3.8]. The en-
richment can be in any complete and cocomplete symmetric monoidal closed
category V , not necessarily a 2-category.

Lemma 9.6. Let T be a V -enriched monad with a rank on a V -category
cocomplete K . If K has cotensor products, then T -Algs is cocomplete.

Proof : We only give a sketch of a proof, that is completely analogous to the
2-categorical case in [3]. The comma V -category T/K can be easily seen to
have cotensor products constructed from those of K . Then one can copy the
proof of [3, Proposition 3.4] to show that T/K has colimits; in the presence
of cotensor products only the one-dimensional part of the colimit definition
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need to be verified. The V -category T -Algs can be identified with a full sub-
V -category of T/K and this inclusion preserves cotensor products. Hence
the inclusion has a left adjoint if its underlying functor does, and this is
guaranteed by [16, Theorem 25.2].

9.2. A parametrised biadjunction. A consequence of the existence of
flexible replacements, and one of the main results of [3] is its Theorem 5.1.
This is exactly the result used to show the existence of a tensor product
associated to a pseudo-closed structure on T -Alg. As we explain below, we
need the a parametrised version of Blackwell-Kelly-Power’s result.
Recall that given 2-categories P,L ,M and 2-functors H : P × L →

M and G : Pop × M → L , a left parametrised adjunction is a 2-natural
isomorphism

π∗,?,− : M (H(∗, ?),−) ∼= L (?, G(∗,−)) (47)

For each object P of P we obtain an adjunction

πP,?,− : M (H(P, ?),−) ∼= L (?, G(P,−))

We shall work under the blanket assumptions of [3]: T is a 2-monad with
a rank on a complete an cocomplete 2-category K .

Theorem 9.7. Let G : Pop × T -Alg → L be a 2-functor such that the
composite G(Pop × J) : Pop × T -Algs → L has a left parametrised left
adjoint H : P × L → T -Algs, with unit sP : 1 ⇒ G(P,H(P,−)). Then the
2-natural transformation

T -Alg(JH(∗, ?),−)
G(∗,−)−−−−→ L (G(∗, JH(∗, ?)), G(∗,−))

L (s∗,1)−−−−→ L (?, G(∗,−))
(48)

is a retract equivalence.

9.3. The monad for finite colimits is finitary. In this section we prove
that the 2-monad on V -Cat whose algebras are V -categories with chosen
finite colimits is finitary. The observation that the category of (small) cate-
gories with certain chosen (co)limits is monadic over Cat is attributed in [1]
to C. Liar [31]. The fact that the monad for certain finite (co)limits is finitary
can be considered to be present in [4], modulo the subtleties mentioned in [1].
As the case of enriched categories seems to be missing from the literature we
feel necessary to provide a complete proof that the 2-monad constructed in
[21] associated to a class of finite colimits is finitary. In addition to the usual
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hypotheses on V , in order to have a good theory of enriched finite limits and
colimits one has to require V to be locally finitely presentable as a monoidal
category [18].
We want to show that the forgetful 2-functor Us : Φ-Colim → V -Cat

creates filtered colimits. The forgetful 2-functor V -Cat0 → V -Gph0 into
the category of V -graphs is finitarily monadic, as shown in [22]. Colimits
in V -Gph0 have the following simple description. If D : J → V -Gph0

is a functor with J small, write Gj = D(j). Define obG as colimj obGj,
with universal cocone qj : obGj → obG. Define G(x, y) as the colimit
in V of the functor G : J → V defined on objects by sending j ∈ J to∑

qj(u)=x,qj(v)=y
Gj(u, v) and on arrows in the obvious way. We obtain mor-

phisms of V -graphs qj : Gj → G forming a colimiting cocone. Details,
along with a more conceptual description using the bicategory V -Mat of
V -matrices, can be found in [22].
Let D : J → Φ-Colim0 be an ordinary functor with J filtered. We shall

also denote by D the functor J → V -Cat0 resulting from composing with
(Us)0. To abbreviate, we denote D(j) by Cj. We know that D has a colimit
since the 2-category V -Cat is cocomplete; that is, there exists a V -category
C and a natural transformation qj : Cj → C inducing an isomorphism
V -Cat(C,B) ∼= limj V -Cat(Cj, B) 2-natural in B. Then C is a fortiori
a colimit in the ordinary category V -Cat0 and hence in V -Gph0. As J is
filtered, the V -enriched homs C(x, y) have a simpler description than in the
general case. Pick j ∈ J such that there exist and define a functor

Hj : (j ↓ J) −→ [Cop
j ⊗ Cj,V ]0 (49)

by Hj(α : j → k) = Ck((Dα)−, (Dα)?); Hj is defined on an arrow γ : (α :
j → k) → (β : j → ℓ) by the the effect on enriched homs of the V -functor
Dγ : Ck → Cℓ.

Lemma 9.8. colimHj ∼= C(qj−, qj?) : Cop
j ⊗ Cj → V .

Proof : The category (j ↓ J) is filtered because J is so, and the projection
functor P : (j ↓ J) → J is final. Since the forgetful V -Cat → V -Gph is
finitary, as previously mentioned C(x, y) is the colimit of a functor Gx,y :
J → V0

Gx,y(k) =
∑

qk(u)=x,qk(v)=y

Ck(u, v) (50)
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and using the fact that P is final, C(x, y) ∼= colimGx,yP . Now we show that

(colimHj)(x, y) ∼= C(qj(x), qj(y)) (51)

for all x, y ∈ Cj by exhibiting a bijection between cocones ρ : Hj(−)(x, y) ⇒
z and cocones τ : Gqj(x),qj(y)P ⇒ z. To give τ is to give for each object
α : j → k in (j ↓ J) and u, v ∈ Ck such that qk(u) = qj(x), qk(v) = qj(y),
arrows in V0

τu,vα : Ck(u, v) → z (52)

The naturality of τ with respect to α means that for any β : k → ℓ in J we
have

Ck(u, v)
Dβ

//

τu,vα $$HHHHHHHHH
Cℓ((Dβ)u, (Dβ)v)

τ
(Dβ)u,(Dβ)v
βαvvnnnnnnnnnnnnnn

z

(53)

On the other hand to give ρ is equivalent to giving for each α : j → k in
(j ↓ J) an arrow

ρα : Ck((Dα)x, (Dα)y) → z (54)

satisfying the following naturality condition for each arrow γ : (α : j → k) →
(β : j → ℓ) in J .

Ck((Dα)x, (Dα)y)
Dγ

//

ρα
((PPPPPPPPPPPPPP

Cℓ((Dβ)x, (Dβ)y)

ρβ
vvnnnnnnnnnnnnnn

z

(55)

Given ρ define (52) in the following way. Choose a arrow β : k → k′ in J
such that (Dβ)u = D(βα)x and (Dβ)v = D(βα)y and set

τu,vα : Ck(u, v)
Dβ−−→ Ck′((Dβ)u, (Dβ)v) = Ck′(D(βα)x,D(βα)y)

ρβα−−→ z. (56)

Using the fact that J is filtered and the naturality of ρ (made explicit
in (55)) its routine to verify that (56) does not depend on the choice of

β : k → k′. Conversely, given τ we can define ρα (54) as τ
(Dα)x,(Dα)y
α :

Ck((Dα)x, (Dα)y) → z. The naturality condition (55) is immediately im-
plied from the naturality of τ (53). The correspondence between τ and ρ just
described is a bijection, yielding an isomorphism (51) that is induced by the
cocone

Hj(α)(x, y) = Ck((Dα)x, (Dα)y)
qk−→ C(qk(Dα)x, qk(Dα)y) = C(qjx, qjy).

(57)
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Now we turn out attention to the matter of the V -naturality (in x, y) of
the isomorphisms (51). We shall show the V -naturality on one of the two
variables, namely the commutativity of the square

(colimHj)(x, y)⊗ Cj(y, y
′) //

��

C(qjx, qjy)⊗ Cj(y, y
′)

��

(colimHj)(x, y′) // C(qjx, qjy
′)

(58)

with horizontal arrows induced by the isomorphism (51) and vertical arrows
given by the respective V -functor structures. The case of the other variable
is completely analogous. The diagram (58) commutes if for each α : j → k
in J the following diagram commutes:

Ck((Dα)x, (Dα)y)⊗ Cj(y, y
′)

qk⊗1
//

1⊗Dα
��

C(qjx, qjy)⊗ Cj(y, y
′)

1⊗Dα
��

Ck((Dα)x, (Dα)y)⊗ Ck((Dα)y, (Dα)y
′)

qk⊗1
//

comp
��

C(qjx, qjy)⊗ Ck((Dα)y, (Dα)y
′)

comp
��

Ck((Dα)x, (Dα)y
′)

qk // C(qjx, qjy
′)

which does because qk is a V -functor. This finishes the proof of the lemma.

Theorem 9.9. For any class of finite weights Φ, the forgetful V -Cat-functor
Us : Φ-Colim → V -Cat creates filtered colimits. Equivalently, the V -Cat-
monad TΦ on V -Cat whose algebras are V -categories with chosen Φ-colimits
is finitary.

Proof : The the theorem can be equivalently expressed as asserting that the
ordinary functor (Us creates filtered colimits; for Φ-Colim has cotensor prod-
ucts and hence any ordinary conical colimit in it is automatically an enriched
colimit (see [17, Section 3.8]).
We follow the notation employed in Lemma 9.8: J will be a filtered cat-

egory, D : J → Φ-Colim0 a functor whose composition with (Us)0 will be
also denoted by D, D(j) will be abbreviated by Cj and colimD ∈ V -Cat0
by C, with colimiting cocone qj : Cj → C.
First we must equip C with chosen Φ-colimits. Let ϕ : P op → V be a weight

in Φ, and in particular a finite weight, and G : P → C a V -functor. The
V -category P is finite, and then finitely presented in V -Cat0, so G factors
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as Gj : P → Cj followed by qj : Cj → C, for some j ∈ J . Consider the
chosen colimit colim(ϕ,Gj) in Cj, with unit ηj : ϕ ⇒ Cj(G−, colim(ϕ,Gj)).
We shall show that qj(colim(ϕ,Gj)) is a colimit of G weighted by ϕ, or in
other words that there exists an isomorphism in in V -Cat1(C,V )

[P op,V ](ϕ−, C(G−, ?)) ∼= C(qj(colim(ϕ,Gj), ?). (59)

Since C is a colimit of the functor D into V -Cat0 and P : (j ↓ J) → J is
final, C is a colimit of DP . This is not only but also a 2-categorical colimit
of the associated 2-functor into the 2-category V -Cat1, it will be enough to
exhibit V -natural isomorphisms between functors Ck → V

[P op,V ](ϕ−, C(G−, qk?)) ∼= C(qj(colim(ϕ,Gj), qk?)) (60)

for each α : j → k in J , and natural with respect to arrows in j ↓ J . We
define (60) by the following string of isomorphisms:

[P op,V ](ϕ−,C(G−, qk?)) = [P op,V ](ϕ−, C(qk(Dα)Gj−, qk?))
∼= [P op,V ](ϕ−, colim

β:k→ℓ
Cℓ(D(βα)Gj−, (Dβ)?)) (61)

∼= colim
β:k→ℓ

[P op,V ](ϕ−, Cℓ(D(βα)Gj−, (Dβ)?)) (62)

∼= colim
β:k→ℓ

Cℓ(colim(ϕ,D(βα)Gj), (Dβ)?) (63)

∼= colim
β:k→ℓ

Cℓ(D(βα)(colim(ϕ,Gj)), (Dβ)?) (64)

∼= C(qℓD(βα)(colim(ϕ,Gj)), qℓ(Dβ)?) (65)

= C(qj(colim(ϕ,Gj)), qk?) (66)

We briefly explain each isomorphism: (61) is an application of Lemma 9.8;
ϕ is finitely presented in [P op,V ] because it is a finite weight (see [23,
section 3]), hence the isomorphism (62); (63) is just the definition of col-
imit and (64) is the isomorphism resulting from using the fact that D(βα)
(strictly) preserves colimits; (65) is another application of Lemma 9.8 and
finally the equality (66) holds by naturality of the cocone qk. This shows
that qj(colim(ϕ,Gj) is a colimit of G weighted by ϕ. To find the unit
η : ϕ ⇒ C(G−, qj(colim(ϕ,Gj)) of this colimit it is enough to take the
α = 1 : j → j and from the identity morphism of qj(colim(ϕ,Gj) in (66)
work our way up through the isomorphisms to obtain

η : ϕ
ηj−→ Cj(Gj−, colim(ϕ,Gj))

qj−→ C(G−, qj(colim(ϕ,Gj)).
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A standard argument using the fact that J is filtered proves that neither
qj(colim(ϕ,Gj)) nor η depend on the choice of j. So we can now stipulate
this object with the named unit as the chosen colimit in C of G weighted by
ϕ, and furthermore, these choices make the V -functors qj : Cj → C strictly
preserve colimits.
The definition colimits in the previous paragraph makes qj : Cj → C a

colimiting cocone in Φ-Colim0. Indeed, given another cocone tj : Cj → B
the respective induced V -functor t : C → B strictly preserves Φ-colimits.
For, any such colimit in C is of the form qj(colim(ϕ,Gj)) as above, and then

t(colim(ϕ,G)) = tqj(colim(ϕ,Gj)) = tj(colim(ϕ,Gj))

= colim(ϕ, tjGj) = colim(ϕ, tqjGj) = colim(ϕ, tG).
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