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Dedicated to Eraldo Giuli on his seventieth birthday

Abstract: We investigate a Galois connection in poset enriched categories between
subcategories and classes of morphisms, given by means of the concept of right-
Kan injectivity, and, specially, we study its relationship with a certain kind of
subcategories, the KZ-reflective subcategories. A number of well-known properties
concerning orthogonality and full reflectivity can be seen as a particular case of
the ones of right-Kan injectivity and KZ-reflectivity. On the other hand, many
examples of injectivity in poset enriched categories encountered in the literature
are closely related to the above connection. We give several examples and show
that some known subcategories of the category of T0-topological spaces are right-
Kan injective hulls of a finite subcategory.

1. Introduction

In the realm of poset enriched categories there are several studies on in-
jectivity (in particular, in the category of T0 topological spaces and in the
category of locales) and, dually, on projectivity (as, for example, in the cat-
egoy of frames and in the category of quantales). Some of that work can be
found in [2, 3, 6, 7, 8, 9, 12, 13, 14, 17, 19] and in references there. In this
paper we deal with a special type of injectivity, which, in fact, is associated
with many of the injectivity occurrences investigated in the above mentioned
literature: the right-Kan injectivity. In a poset enriched category, an object
Z is said to be right-Kan injective with respect to a morphism f : X → Y if,
for every g : X → Z, there is a morphism g/f : Y → Z such that g/f · f = g
and g/f is the supremum of all morphisms t : Y → Z such that tf ≤ g. In
a series of papers, Escardó, also with Flagg, observed that several injectivity
situations are instances of a general pattern: in a poset enriched category,
the objects injective with respect to T -embeddings, for T a KZ-monad over
the category, are just the T -algebras of the monad. More precisely, a monad
T = (T, η, µ) over a poset enriched category X is said to be of Kock-Zöberlein
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type, briefly, a KZ-monad, if T is locally monotone, i.e., the restriction of
T to every hom-set is order-preserving, and ηTX ≤ TηX for every object X.
(Indeed, this is a particular case of a Kock-Zöberlein doctrine, see [15].) A
morphism f : X → Y of X is called a T -embedding if Tf has a reflective left-
adjoint, that is, there exists (Tf)∗ : TY → TX such that (TF )∗ · Tf = 1TX
and 1TY ≤ Tf ·(Tf)∗. In [7] it is shown that the Eilenberg-Moore algebras of
a KZ-monad T coincide with the objects of X injective w.r.t. T -embeddings,
and, moreover, they are also precisely the objects of X right-Kan injective
w.r.t. T -embeddings. It is clear that the category of the Eilenberg-Moore
algebras of a KZ-monad over X is a reflective subcategory of X whose reflec-
tor F is locally monotone and fulfils the inequalities ηFX ≤ FηX for η the
corresponding unit. In the present paper, the subcategories of X endowed
with a reflector with these properties are called KZ-reflective.
Here we consider the notion of right-Kan injectivity between morphisms

too: a morphism k : Z → W is right-Kan injective w.r.t. f : X → Y if Z
and W are so and, moreover, k(g/f) = (kg)/f for all morphisms g : X →
Z. In this way, the objects and morphisms which are right-Kan injective
w.r.t. a given subclass H of Mor(X ) constitute a subcategory of X , denoted
by H , and we obtain a Galois connection between classes of morphisms
and subcategories. When X is an arbitrary category seen as an enriched
poset category via the equality partial order, right-Kan injectivity just means
orthogonality, and a subcategory is KZ-reflective iff it is reflective and full.
There are many papers exploring the relationship between orthogonality and
full reflectivity (see, for instance, [11] and [1], and references there, and also
[4]). We show that right-Kan injectivity mantains the good behaviour of
orthogonality. Particularly, this is clear in what concerns limits. In fact,

let a limit cone ( L
li // Xi )i∈I be said jointly order-monic provided that

the inequalities lif ≤ lig, i ∈ I, imply that f ≤ g. It is worth noting
that in several everyday poset enriched categories all limits are jointly order-
monic (see 2.8). We prove that every subcategory of the form H , for H
a class of morphisms, is closed under jointly order-monic limits, and every
KZ-reflective subcategory closed under coreflective right adjoints (see 2.11)
is of that form, hence, closed under those limits. Moreover, the categories
of Eilenberg-Moore of a KZ-monad over X coincide with the KZ-reflective
subcategories of X closed under coreflective right adjoints. As a byproduct,
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we complete Escardó’s result on the relationship between T -algebras and T -
embeddings: Let A be the Eilenberg-Moore category of a KZ-monad T ; we
show that the class E of T -embeddings is the largest one such that A = E .
A characterization of the KZ-reflective subcategories in a poset enriched

category X , which is very useful to achieve some of the results of this paper,
is given in 3.4: they are exactly those subcategories A of X such that, for
every X ∈ X , there is a morphism ηX : X → X with X in A satisfying the
conditions:

(i) A ⊆ {ηX |X ∈ X} and, for every morphism g : X → A with A ∈ A,
g/ηX belongs to A;

(ii) for every f : X → A in A and g : X → A in X , if gηX ≤ fηX then
g ≤ f .

In the last section, we show that some KZ-reflective subcategories of the
category Top0 of T0-topological spaces and continuous maps are right-Kan
injective hulls of finite subcategories. This is the case of the category of con-
tinuous lattices and maps which preserve directed supremums and infimums,
and of the category of continuous Scott domains and maps which preserve
directed supremums and non empty infimums, both of them regarded as sub-
categories of Top0 via the Scott topology. It is also the case of the category
of stably compact spaces and stable continuous maps.

2. Right-Kan injectivity

Throughout we work in a poset enriched category X : the hom sets of X
are endowed with a partial order for which the composition is monotone, i.e.,
if f, g : A → B are morphisms such that f ≤ g then jfh ≤ jgh whenever
the compositions are defined. Of course, the category Pos of posets and
monotone maps, as well as several subcategories of Pos, in particular the
category Frm of frames and frame homomorphisms, are poset enriched via
the pointwise order. Also the category Top0 of T0 topological spaces and
continuous maps is so: take the pointwise specialization order.
In a poset enriched category, a morphism r : X → Y is said to be right

adjoint to the morphism l : Y → X (and l is said to be left adjoint to
r) if lr ≤ 1X and 1Y ≤ rl. This forms an adjunction, denoted by l ⊣ r.
This adjunction is said to be reflective if lr = 1X (notation: l ⊣R r), and
coreflective if 1Y = rl (notation: l ⊣C r).
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Definition 2.1. Given a morphism X
f
→ Y and an object A, we say that A

is right-Kan-injective w.r.t. f , symbolically A f , provided that, for every
morphism g : X → A, there exists g′ : Y → A such that:

(1) g′f = g
(2) tf ≤ g =⇒ t ≤ g′, for each morphism t : Y → A

When such morphism g′ exists, we denote it by g/f .

A morphism h : A → B is said to be right-Kan-injective w.r.t. f : X → Y ,
briefly h f , if A and B are both right-Kan injective w.r.t. f and, for every
g : X → A, we have

(hg)/f = h(g/f).

Remark 2.2. Recall that an object A is injective w.r.t. a morphism f (re-
spectively, orthogonal to f) if the map hom(f, A) : hom(Y,A) → hom(X,A)
is surjective (respectively, bijective). We have the following properties:

(1) An object A is right-Kan injective w.r.t. a morphism f : X → Y iff
A is injective w.r.t. f and every morphism g : X → A admits a right
Kan extension along the morphism f (that is, there is g′ : Y → A such
that g′f ≤ g and g′ fulfils condition 2 of 2.1). To show the sufficiency,
let ḡ : Y → A be such that ḡf = g and let g′ : Y → A be the right
Kan extension of g along f . Then ḡ ≤ g′, so g = ḡf ≤ g′f ; since
g′f ≤ g, we get g′f = g. Consequently, g′ = g/f .

(2) Another equivalent way of defining the right-Kan injectivity of an
object A w.r.t. a morphism f : X → Y is the following: A f iff
hom(f, A) has a reflective right adjoint (hom(f, A))∗ in Pos. Fur-
thermore, if it is the case, it holds that (hom(f ;A))∗(g) = g/f for
every g : X → A. To see that, let A f , and define (hom(f, A))∗ :
hom(X,A) → hom(Y,A) in that way. Then, it is order-preserving,
since, for g, g′ ∈ hom(X,A), with g ≤ g′, we have that g = g/f ·f ≤ g′

implies, by definition of g′/f , that g/f ≤ g′/f . Now, on one hand,
for every k ∈ hom(Y,A), we have that (hom(f, A))∗ · hom(f, A)(k) =
(hom(f, A))∗(kf) = (kf)/f ≥ k = idhom(Y,A)

(k), where the inequal-

ity derives from 2 of Definition 2.1. On the other hand, for every g ∈
hom(X,A), we get hom(f, A) · (hom(f, A))∗(g) = hom(f, A)(g/f) =
(g/f) · f = g = idhom(X,A)

(g). Therefore hom(f, A) ⊢R (hom(f, A))∗.

Conversely, suppose that hom(f, A) has a reflective right adjoint (hom(f, A))∗.
Then, for every g : X → A, we have that (hom(f, A))∗(g) · f =
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hom(f, A)((hom(f, A))∗(g)) = g. And, given k : Y → A such that
kf ≤ g, we obtain kf ≤ g ⇔ hom(f, A)(k) ≤ g ⇒ (hom(f, A))∗ ·
hom(f, a)(k) ≤ (hom(f, A))∗(g) ⇒ k ≤ (hom(f, A))∗(g). Hence
(hom(f, A))∗(g) = g/f .

(3) It is immediate from Definition 2.1 that if X is an arbitrary category,
regarded as being enriched with the trivial ordering (i.e., equality),
an object A is orthogonal to a morphism f iff it is right-Kan-injective
w.r.t. f .

(4) Let H be a class of morphisms of X , and let C consist of all objects
and morphisms of X which are right-Kan injective w.r.t. f for all
f ∈ H. Then it is easy to see that C is a subcategory of X .

Notations 2.3. Let H ⊆ Mor(X ). We will denote by

H

the subcategory of all objects and morphisms of X which are right-Kan
injective w.r.t. f for all f ∈ H.
Given a subcategory A of X , we denote by

A

the class of all morphisms f of X such that all objects and morphisms of A
are right-Kan injective w.r.t. f .

Remark 2.4. The pair of maps
(

( ) , ( )
)

establishes a (contra-variant)

Galois connection between the classes of X -morphisms and the subcategories
of X .

Remark 2.5. If all morphisms of H are epimorphisms then the subcategory
H is full. In fact, in that case, given objects A and B in H and an X -
morphism f : A → B, then, for every h : X → Y ∈ H and g : X → A, we
have that the equality ((fg)/h)h = fg = f(g/h)h implies (fg)/h = f(g/h).

Examples 2.6. In Section 4 we will provide several examples of H and
A . Here we describe two simple ones.

(1) Let X = {0} and Y = {0, 1} be ordered by the natural order, let
h : X → Y be the inclusion map, and let H consist of just h. Then,
in the category Pos, the subcategory H has, as objects, the posets
A for which every upper set x ↑= {z ∈ A |x ≤ z} has a supremum,
and, as morphisms, the order-preserving maps f : A → B such that



6 MARGARIDA CARVALHO AND LURDES SOUSA

f(sup(x ↑)) = sup(f(x) ↑), for every x ∈ A. It is clear that all those
objects A belong to H : given a morphism g : X → A, the morphism
g/h is defined by (g/h)(0) = g(0) and (g/h)(1) = sup(g(0) ↑). The
other way round, let A be a poset belonging to H , let x ∈ A, and
define g : X → A by g(0) = x. Then g/h(1) = sup(x ↑). The
characterization of the morphisms of H is also easily verified.

(2) Consider now Pos enriched with the pointwise dual order ≥. In this
case, for the morphism h as above, it is easy to see that H coincides
with Pos, and, for each morphism f with the same domain as h, f/h
is a constant map.

In the next propositions we will enumerate some properties of H and
A . First we need some definitions.

Definition 2.7. We say that a family of morphisms

(

X
fi // Xi

)

i∈I

is

jointly order-monic if the inequalities fi · g ≤ fi ·h, for all i ∈ I, imply g ≤ h.

Dually, a family

(

X
fi // Xi

)

i∈I

is jointly order-epic if g ≤ h whenever

g · fi ≤ h · fi, i ∈ I.

In particular, a morphism X
f
→ Y is said to be order-monic (respectively,

order-epic) if fg ≤ fh implies g ≤ h (respectively, gf ≤ hf implies g ≤ h).
We say that a limit is jointly order-monic if the corresponding cone limit

is so. Analogously we speak of jointly order-epic colimits.

Examples 2.8. (1) In the categoryPos a family of morphisms

(

X
fi

// Xi

)

i∈I
is jointly order-monic iff, for every x, x′ ∈ X, x ≤ x′ whenever
fi(x) ≤ fi(x

′) for all i. Thus, jointly order-monic families of mor-
phisms are also jointly monic (i.e., fi(x) = fi(x

′) for all i implies
that x = x′). Clearly, in this category, limits are jointly order-monic.

On the other hand, families of morphisms

(

Xi
fi // X

)

i∈I

which are

jointly surjective (i.e., X = ∪i∈Ifi[Xi]) are also jointly order-epic, and,
hence, they comprehend colimit cocones.
Several everyday subcategories of Pos are closed under limits in

Pos, including Frm, and, then, they have also jointly order-monic
limits.
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(2) Similarly, in Top0, enriched with the usual order (that is, with the
pointwise specialization order), every initial family of morphisms –
and, in particular, every limit – is jointly order-monic, and, then,
also jointly monic. As before, jointly surjective families – and, in
particular, colimits – are jointly order-epic.

(3) Let SLat denote the category whose objects are meet-semilattices
and whose morphisms are maps preserving meets of finite sets (in-
cluding the meet 1 of the empty set). In this category, coequalizers
are always surjective, then order-epic. On the other hand, recall that
the injections of the coproduct of a family of objects Ai, i ∈ I, in

SLat0, is given by Aj
γj

// Π′
i∈IAi , where Π′

i∈IAi = {(ai)i∈I | ai 6=

1 only for a finite number of i’s} and γj(a) = (ai)i∈I with aj = a and
ai = 1 for all i 6= j (see, for instance, [18]). It is easily seen that the
family (γi)i∈I is jointly order-epic. Therefore, in SLat, colimits are
jointly order-epic.

(4) In Frm, colimits are also jointly order-epic. For coequalizers it follows
immediately, since they are surjective. In order to show that also
coproducts are jointly order-epic, we recall briefly a description of
them, whose details may be found, for instance, in [18] (see also [?]).
It is well-know that the inclusion functor of Frm into SLat is a right
adjoint and, for each object S of SLat, the universal morphism is

given by S
λS // D(S) , where D(S) is the set of the lower subsets of

S with the inclusion order, and λS(s) =↓ s for each s ∈ S. Moreover,
as it is going to be shown in the second example of Examples 3.5,
this reflection is a KZ-reflection in the sense of Definition 3.1; by
Theorem 3.4, this implies that the universal morphism λS sastifies the
implication g · λS ≤ f · λS ⇒ f ≤ g for every pair of morphisms
f, g : DS → L in Frm. The injections of the coproduct of a family of
objects Ai, i ∈ I, in Frm, are of the form

Aj
γj

// Π′
i∈IAi = S

λS // D(S)
ν // D(S)/R

where the γj morphisms are the injections of the coproduct in SLat

and ν is a certain onto frame homomorphism. Let now f, g : D(S)/R →
L be two morphisms in Frm such that

g · (ν · λS · γi) ≤ f · (ν · λS · γi) for all i ∈ I.
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Then, as coproducts in SLat are jointly order-epic, we obtain g · (ν ·
λS) ≤ f · (ν · λS). From this inequality, since the reflection of SLat
into Frm is KZ, we get g · ν ≤ f · ν. Finally, being surjective, ν is
order-epic, and it follows that g ≤ f .

In the next proposition we collect some properties of the classes A for
A a subcategory. In particular we are going to see that these classes are
stable under jointly order-epic pushouts and wide pushouts. Recall that a
class H of morphisms is said to be stable under pushouts if when a pair of
morphisms (f ′, g′) is the pushout of (f, g) with f ∈ H, also f ′ ∈ H. And H

is stable under wide pushouts provided that the wide pushout X
f

// Y =

( X
fi // Xi

ti // Y ) of a family of morphisms ( X
fi // Xi )i∈I belongs to H

whenever all fi do.
In the Proposition 2.10 we will see that subcategories of the form A = H

are closed under jointly order-monic limits. That is, every jointly order-

monic limit cone in X of a composition functor I
D // A �

� I // X , with I the
inclusion of A into X , is a limit cone in A. This means that the limit cone is
formed by morphisms of A and, moreover, that, every other cone of ID has
the unique factorizing morphism in A.

Proposition 2.9. Let A be a subcategory of X . Then A has the following
properties:

(1) Iso (X ) ⊆ A .
(2) A is closed under composition. Moreover, if f : X → Y and g :

Y → Z belong to A and h : X → A is a morphism with codomain
in A then h/(gf) = (h/f)/g.

(3) If X
f

// Y and r, s : X → A are morphisms such that f ∈ A and
A is an object of A, then r ≤ s =⇒ r/f ≤ s/f .

(4) A is stable under those pushouts and wide pushouts which are jointly
order-epic.

Proof 1. It is obvious. In particular, if f : X → Y is an isomorphism then,
for every g : X → A, it holds that gf−1 = g/f .
2. For morphisms f, g and h as in the statement 2, we have that:

((h/f)/g) · (g · f) = (((h/f)/g) · g) · f = (h/f) · f = h.
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Moreover, if j : Z → A is such that j(gf) ≤ h, then jg ≤ h/f , and,
consequently, j ≤ (h/f)/g. Hence, (h/f)/g = h/(gf). Now, taking into
account this property of the composition, it is immediate that also every
morphism of A is right-Kan injective w.r.t. gf .
3. It is immediate from Definition 2.1.
4. Let f : X → Y belong to A and let the square

X
f

//

g
��

Y

g′

��

Z
f ′

// W

represent a pushout such that the pair (f ′, g′) is jointly order-epic. We want
to show that, then, f ′ ∈ A . Given h : Z → A, with A ∈ A, we have

(h · g)/f · f = h · g.

Then there exists t : W → A such that t · f ′ = h and t · g′ = (h · g)/f . We
show that

t = h/f ′. (2.1)

Let k : W → A be such that k · f ′ ≤ h. Then

k · f ′ ≤ t · f ′. (2.2)

On the other hand, from the following implications

k · f ′ ≤ h ⇒ k · f ′ · g ≤ h · g
⇒ k · g′ · f ≤ h · g
⇒ k · g′ ≤ (h · g)/f = t · g′.

we obtain that

k · g′ ≤ t · g′. (2.3)

Since the pushout (f ′, g′) is jointly order-epic, (2.2) and (2.3) implies that
k ≤ t. Thus every object of A is right-Kan injective w.r.t. f ′.
Concerning the right-Kan-injectivity of the morphisms of A w.r.t. f ′, let

a : A → B be a morphism of A and h : Z → A. Put t = h/f ′, as in (2.1),
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and u = (a · h)/f ′.

X
f

//

g
��

Y

g′

��

Z
f ′

//

h
��

W

t~~||
||

||
||

u
��

A a
// B

We know that, as it holds for t in (2.1), u is the morphism such that u·f ′ = a·h
and u · g′ = (a · h · g)/f . We want to show that at = u. On one hand,
(at)f ′ = ah = uf ′; on the other hand, (at)g′ = a(hg)/f = (ahg)/f = ug′,
by using the fact that f ∈ A . Consequently, by the pushout universal
property, at = u, i.e., a · (h/f ′) = (a · h)/f ′.

The proof that A is stable under jointly order-epic wide pushouts uses a

technique similar to the one used for pushouts: Let
(

X
fi→ Xi

)

i∈I
be a family

of morphisms in A and let the diagram

X
fi //

f   A
AA

AA
AA

A
Xi

ti
��

Y

represent a jointly order-epic wide pushout. Given a morphism g : X → A,
with A ∈ A, let t : Y → A be the unique morphism such that tf = g
and tti = g/fi, for all i ∈ I. It is easy to see that t = g/f , thus A is
right-Kan-injective w.r.t. f . Furthermore, given a morphism a : A → B
in A, analogously to the case of pushouts, we obtain that at = (ag)/f , i.e.,
a(g/f) = (ag)/f . Therefore f ∈ A . 2

Proposition 2.10. Every subcategory of the form A = H , forH ⊆ Mor(X ),
is closed under jointly order-monic limits.

Proof Let (li : X → Ai)i∈I be a jointly order-monic limit cone in X with
all connecting morphisms m : Ai → Aj in A.
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(1) First we show that X ∈ A. In fact, given h : Z → W in H, and
g : Z → X,

Z
h //

g
��

W

(lig)/h
��

X
li // Ai

the family

((li · g)/h : W → Ai)i∈I

forms a cone, since, for every connecting morphism m : Ai → Aj we have
that:

m · (li · g)/h = (m · li · g)/h = (lj · g)/h.

Hence, there is a unique morphism g : W → X such that li ·g = (li ·g)/h (i ∈
I). The equalities ligh = ((lig)/h)h = lig imply that gh = g. Furthermore,
if k : W → X is a morphism such that kh ≤ g, we obtain likh ≤ lig, so
lik ≤ (lig)/h = lig; consequently, since the given limit is jointly order-monic,
k ≤ g. Thus, g = g/h.
(2) The projections li belong to A. This is immediate from (1) where we

saw that, for each morphism g : Z → X, li · (g/h) = li · g = (lig)/h.
(3) In order to conclude that the cone (li : X → Ai)i∈I is a limit in A,

let (di : B → Ai)i∈I be a cone in A for the given diagram. Then there is
a unique morphism b : B → X in X satisfying the equalities lib = di. It
remains to show that b belongs to A. Let h : Z → W be a morphism of H,
and consider a morphism t : Z → B:

Z
h //

t
��

W

t/h~~}}
}}

}}
}}

(bt)/h
��

B
b

//

di   A
AA

AA
AA

X

li
��

Ai

Then, for every i ∈ I,

lib(t/h) = di(t/h)
= (dit)/h, because di belongs to A
= (libt)/h
= li((bt)/h), since, by (2), li belongs to A.
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Therefore, b(t/h) = (bt)/h, i.e., b ∈ A. 2

We finish this section by showing that the subcategories of the fom H are
closed under a certain kind of retracts. This will be useful in the following.

Definition 2.11. A subcategory A of the category X is said to be closed
under corefletcive right adjoints if, whenever r : A → X and r′ : B → Y
are coreflective right adjoint morphisms, f : A → B is a morphism of A and
g : X → Y is a morphism which makes the square

A
f

//

r
��

B

r′
��

X g
// Y

(2.4)

commutative, then g is a morphism of A.

Remark 2.12. If A is a subcategory closed under coreflective right adjoints,
then every coreflective right adjoint morphism r : A → X with domain in A
belongs to A: in the above diagram, put f := 1A, r := 1A, r

′ := r and g := r.

Proposition 2.13. For every H ⊆ Mor(X ), the subcategory H is closed
under coreflective right adjoints.

Proof Put A = H and consider the commutative diagram (2.4) with
f ∈ A, and r and r′ coreflective right adjoints morphisms. Let l : X → A be
the left adjoint of r : A → X, so r · l = 1X and l · r ≤ 1A. First we show that
if A ∈ H also X ∈ H . Let j : Z → W belong to H. Given a : Z → X, it
is easy to see that

a/j = r · ((l · a)/j). (2.5)

In fact we have that (r · ((l · a)/j))·j = r ·l ·a = a; and, moreover, k ·j ≤ a ⇒
(l · k) · j ≤ l · a ⇒ l · k ≤ (l · a)/j ⇒ r · l · k ≤ r · ((l · a)/j) ⇒ k ≤ r · ((l · a)/j).
Consequently, X belongs to A and the same happpens to Y .
Now, we show that r is right-Kan-injective w.r.t. H. Given j : Z → W

in H, consider a morphism d : Z → A. The inequaltity r · (d/j) ≤ (r · d)/j
holds by definition of (r · d)/j. Conversely,

(r · d)/j = r · ((l · r · d)/j), using the property (2.5)
≤ r · (d/j), by 3 of 2.9, since l · r ≤ 1A.

Thus, r (and, analogously, r′) belongs to H .
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Finally, we show that g is right-Kan injective w.r.t. H. Given u : Z → X,
we have:

g · (u/j) = g · (r · ((l · u)/j)), by (2.5)
= g · r · ((l · u)/j), because r ∈ H
= r′ · f · ((l · u)/j)
= (r′ · f · l · u)/j, because r′ · f ∈ Mor(H )
= (g · r · l · u)/j
= (g · u)/j. 2

Remark 2.14. From the proof of 2.13 it follows that, moreover, in what
concerns objects, H is closed under arbitrary retracts, that is, if r : A → X
is a retract with A in H then X belongs to H too.

3. KZ-reflective subcategories

A functor F : X → Y between poset enriched categories is said to be locally
monotone if, for all morphisms f and g with common domain and codomain,
f ≤ g implies Ff ≤ Fg.

Definition 3.1. A subcategory A of X is said to be KZ-reflective in X
provided that the inclusion of A in X has a left-adjoint F such that:

(1) F is locally monotone;
(2) ηFX ≤ FηX , for all objects X of X .

Remark 3.2. Let X be an arbitrary category and consider it enriched with
the trivial order, i.e., equality. Then for subcategories A of X (closed under
isomorphisms) to be KZ-reflective just means to be reflective and full. Indeed,
in this case, the equality ηF = Fη implies that, for every object A of A, ηA
is an isomorphism, since, together with εAηA = 1A (for ε the counit) we have
that ηAεA = FεA ·ηFA = FεAFηA = F (εAηA) = 1FA. Now, given a morphism
f : A → B with A and B in A, f = η−1

B · Ff · ηA, thus it belongs to A.

Remark 3.3. Let A be a reflective subcategory of X with left adjoint F ,
unit η and counit ε. Then the condition 2 of Definition 3.1 is equivalent to

2′. εFA ≥ FεA, for all objects A of A.

In fact, given 2., we have that FεA = FεA · εF 2A · ηF 2A ≤ FεA · εF 2A ·F
2ηA =

FεA · FηA · εFA = εFA. The other way round is dual.

The next theorem provides a characterization of the KZ-reflective subcat-
egories of X .
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Theorem 3.4. A subcategory A of X is KZ-reflective if and only if, for every
object X of X , there is an object X in A and a morphism ηX : X → X such
that
(i) ηX belongs to A and, for every morphism g : X → A with A ∈ A,

g/ηX belongs to A;
(ii) for every f : X → A in A and g : X → A in X , if gηX ≤ fηX then

g ≤ f .

In that case, the corresponding reflector is given on objects by FX = X, and

on morphisms by F ( X
f

// Y ) = (ηY f)/ηX.

Proof Let A be a KZ-reflective subcategory of X , with left adjoint F and
unit η. We show that, then, (i) and (ii) are fulfilled with FX = X . First we
observe that the property

(ii)′ gηX ≤ fηX ⇒ g ≤ f , for every pair of morphisms f, g : FX → A
of A ,

which is a weaker version of (ii), follows from the following obvious impli-
cations:

g · ηX ≤ f · ηX ⇒ εA · Fg · FηX ≤ εA · Ff · FηX
⇒ g · εFX · FηX ≤ f · εFX · FηX
⇒ g ≤ f.

(i) For X ∈ Obj(X ), A ∈ Obj(A) and g : X → A, let g be the unique A-

morphism such that g = g · ηX . We want to show that g =
∨

{ FX
t // A :

t · ηX ≤ g}. For morphisms t : FX → A and t : F 2X → A in X and A,
respectively, such that t · ηX ≤ g and t · ηFX = t, we have:

(t · FηX) · ηX = t · (FηX · ηX)
= t · (ηFX · ηX)
= t · ηX ≤ g = g · ηX

i.e.,
(t · FηX) · ηX ≤ g · ηX .

Consequently, by (ii)′, t · FηX ≤ g. Hence, t = t · ηFX ≤ t · FηX ≤ g.
To show the right-Kan injectivity of ηX w.r.t. the morphisms ofA, consider

morphisms g : X → A and f : A → B, with f in A. We have, from above,
and using the same notation, that

f(g/ηX)ηX = f · g · ηX = fg = fg · ηX = ((fg)/ηX)ηX
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with both morphisms f(g/ηX) and (fg)/ηX in A; by (ii)′, this implies that
f(g/ηX) = (fg)/ηX.

(ii) It is immediate from (i): Let f and g be under the assumed conditions.
Then, the equality fηX = ((fηX)/ηX) · ηX , with f and (fηX)/ηX belonging
to A, implies f = (fηX)/ηX. Then, by definition of (fηX)/ηX , we get the
inequality g ≤ f .

Concerning the sufficiency, define F : X → A by FX = X and F ( X
f

// Y ) =
(ηY f)/ηX. It is easy to see that F is a functor:
(a) For every X, F1X = (ηX1X)/ηX = ηX/ηX , by definition. But 1XηX =

ηX and, moreover, for every g : X → X such that gηX ≤ 1XηX , it holds that
g ≤ 1X , by (ii). Consequently, 1X = ηX/ηX and, thus, 1FX = F1X .

(b) Given a composition of morphisms X
f

// Y
g

// Z , taking into ac-
count that the morphism ((ηZg)/ηY ) belongs to A, we have:

FgFf = ((ηZg)/ηY )·((ηY f)/ηX) = (((ηZg)/ηY )·ηY )·f)/ηX = (ηZgf)/ηX = F (gf).

The local monotonicity of F follows from (ii): Given f, g : X → Y such
that f ≤ g, we have that Ff ·ηX = ηY f ≤ ηY g = Fg ·ηX , and, as Fg belongs
to A, this implies that Ff ≤ Fg.
In order to conclude that F is a left adjoint of the inclusion functor of A

into X , it suffices to show that, for every f : X → A, with A in A, f/ηX is the
unique morphism in A such that (f/ηX) · ηX = f . Let f ′ : FX = X → A be
an A-morphism such that f ′ηX = f . Then, by (ii), we have simultaneously
that f ′ ≤ f/ηX and f/ηX ≤ f ′, so f ′ = f/ηX.
The inequality ηFX ≤ FηX follows immediately from the equality ηFX ·ηX =

FηX · ηX and property (ii), taking into account that the morphism FηX
belongs to A. 2

Examples 3.5. (1) In Pos, let H = {h} be as in Example 2.6.1. Us-
ing 3.4, we can conclude that H is KZ-reflective. To see that,
we observe first that, as it is easy to verify, if C is a connected
component of a poset A, then it has a supremum iff all upper sets
x ↑ with x ∈ C do, and, in this case, all these supremums coin-
cide with the supremum of C. Now, for every poset X, consider
X = X ∪ {C, C is a connected component of X} with the partial or-
der generated by the one inherited from X together with x ≤ C if
x ∈ C for every x ∈ X and every connected component C. Then, a
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straight computation shows that the morphism ηX given by the em-
bedding of X intoX fulfils (i) and (ii). Moreover, for every f : X → A
with codomain in A, the morphism f/ηX is defined by (f/ηX)(x) = x,
for x ∈ X, and (f/ηX)(C) is the supremum of the connected compo-
nent containing f [C], for every connected component C of X.

(2) Let SLat be the category of meet-semilattices (see 2.8) enriched with
the pointwise dual order ≥. Then Frm is a KZ-reflective subcategory
of SLat. Indeed, it is well-known that Frm is reflective in SLat, with
the reflection of every S ∈ SLat done by λS : S → D(S), where
D(S) = ({U ⊆ S |U =↓ U}, ⊆) and λS(s) =↓ s for each s ∈ S.
Moreover, if g : S → L is a morphism of SLat with codomain in
Frm, the unique morphism g : D(S) → L of Frm such that gλS = g
is defined by g(U) = sup(g[U ]). To conclude that the reflection is KZ,
we show that λS verifies the conditions of 3.4 (for the ordering ≥).
We begin by (ii).
Let then k, f : D(S) → L be morphisms such that f is a frame

homomorphism and kλS ≥ fλS. Using the symbol ∨ to denote the
supremum, for every U ∈ D(S), we have that

k(U) = k

(

⋃

u∈U

(↓ u)

)

≥
∨

u∈U

k(↓ u) =
∨

u∈U

kλS(u)

≥
∨

u∈U

fλS(u) =
∨

u∈U

f(↓ u) = f(
⋃

u∈U

↓ u) = f(U),

the last but one equality holding because f belongs to Frm.
Moreover, Frm is right-Kan injective w.r.t. every λS. Indeed, if

g : S → L is a morphism with codomain in Frm, taking into account
that gλS = g with g ∈ Frm, and the property (ii), we conclude that
g = g/λS. The right-Kan injectivity of the morphisms of Frm is also
easy: if f : L → M is a frame homomorphism, then we have that
f(
∨

g[U ]) =
∨

fg[U ], that is, f(g/λS)(U) = (fg/λS)(U).

Other examples of KZ-reflective subcategories will be described in Section
4.

Next we go further on the relationship between KZ-reflectivity and right-
Kan-injectivity.
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Definition 3.6. Let F : X → A be a locally monotone functor between
poset enriched categories. A morphism f of X is said to be an F -embedding
if Ff has a reflective left-adjoint morphism in A.

Proposition 3.7. If A is a KZ-reflective subcategory of X , with left adjoint

F , then A is just the class of all F -embeddings.

Proof

Let f : X → Y belong to A . Consider the diagram

X
f

//

ηX
��

Y
ηY
��a

uukkkkkkkkkkkkkkkkkkkk

FX
Ff

// FY

Fa{{ww
ww

ww
ww

w

F 2X

εFX

ccHHHHHHHHH

where a = ηX/f . We show that εFX · Fa is a reflective left-adjoint of Ff ,
i.e., that

(εFX · Fa) · Ff = 1FX and 1FY ≤ Ff · (εFX · Fa).
The equality is clear:

(εFX · Fa) · Ff = εFX · F (a · f) = εFX · FηX = 1FX .

Concerning the inequality, first we observe that, since f ∈ A , (Ff ·ηX)/f =
Ff(ηX/f) = Ff ·a; now, since ηY ·f = Ff ·ηX , by the definition of (Ff ·ηX)/f ,
we have that ηY ≤ Ff · a, and, consequently,

1FY · ηY ≤ Ff · a = Ff · εFX · ηFX · a = Ff · εFX · Fa · ηY .

Then, by (ii) of Theorem 3.4, we obtain 1FY ≤ Ff · εFX · Fa.

Conversely, let f : X → Y be such that Ff has the morphism l : FY →
FX as a reflective left-adjoint, that is, l · Ff = 1FX and 1FY ≤ Ff · l. We
want to show that f ∈ A .
Let g : X → A be a morphism with codomain in A. We are going to see

that g/f exists and is given by

g/f = εA · Fg · l · ηY . (3.1)

In fact,

(εA · Fg · l · ηY ) · f = εA · Fg · l · Ff · ηX = εA · Fg · ηX = εA · ηA · g = g.
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Let now k : Y → A be such that k · f ≤ g, and let k : FY → A be
the A-morphism which fulfils the equality k · ηY = k. We show that then
k ≤ εA · Fg · l · ηY :

k · f ≤ g ⇒ k · f ≤ εA · ηA · g
⇒ k · ηY · f ≤ εA · Fg · ηX
⇒ k · Ff · ηX ≤ εA · Fg · ηX
⇒ k · Ff ≤ εA · Fg, by (ii) of Theorem 3.4
⇒ k ≤ k · Ff · l ≤ εA · Fg · l, because l is a left-adjoint of Ff
⇒ k = k · ηY ≤ εA · Fg · l · ηY .

It remains to show that the morphisms of A are also right-Kan injective
w.r.t. f : X → Y . Let b : A → B be a morphism of A. Then

b · (g/f) = b · εA · Fg · l · nY , by (3.1)
= εB · Fb · Fg · l · nY = (b · g)/f, again by (3.1). 2

We have just characterized the class A for A a KZ-reflective subcategory.
We are going to see that, whenever A is KZ-reflective and closed under
coreflective right adjoints, then it coincides with its right-Kan injective hull
(A ) .

Remark 3.8. If A is a KZ-reflective subcategory and A ∈ A, then the
reflection morphism ηA is a coreflective left-adjoint. Indeed, we know that
1FA = ηA/ηA, from Theorem 3.4, and (ηA · εA) · ηA = ηA. Consequently
ηA · εA ≤ 1FA. Since εA · ηA = 1A, it follows that εA is a coreflective right-
adjoint of ηA.

Theorem 3.9. If A is a KZ-reflective subcategory closed under coreflective
right adjoints then

A = (A )

and, consequently, A is closed under jointly order-monic limits.

Proof Of course, A ⊆ (A ) , so we need just to prove the converse
inclusion. Denote by F the corresponding left adjoint functor from X to A.
We know, from (i) of Theorem 3.4, that {ηX , X ∈ X} ⊆ A .
In order to prove the inclusion (A ) ⊆ A for objects, let X ∈ (A ) .

Then, since ηX ∈ A , there exists a morphism x = 1X/ηX : FX → X
such that x · ηX = 1X . Moreover, the equality (ηX · x) · ηX = ηX assures
that ηX · x ≤ ηX/ηX = 1FX , by Theorem 3.4. Thus ηX ⊣C x, i.e., x is a
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coreflective right adjoint of ηX . Since A is closed under coreflective right
adjoints, X ∈ Obj(A) and x ∈ Mor(A) (see Remark 2.12).
Let now f : X → Y belong to (A ) . As we have just seen, the objects

X and Y belong to A, and the morphisms x = 1X/ηX and y = 1Y /ηY
are coreflective right adjoints and also belong to A. Consider the following
diagram:

X ηX
//

f
��

1X
,,

FX x
//

Ff
��

X

f
��

Y
ηY

//

1Y

22FY
y

// Y

We show that the right square is commutative:

y · Ff = y · ((ηY · f)/ηX), by Theorem 3.4

= (y · ηY · f)/ηX, since y ∈ A and ηX ∈ A
= f/ηX , since y · ηY = 1Y
= (f · 1X)/ηX
= f · (1X/ηX), since f ∈ A and ηX ∈ A
= f · x

Since A is closed under coreflective right adjoints, we conclude that f ∈
Mor(A).
Now, from Proposition 2.10, it turns out that A is closed under jointly

order-monic limits. 2

Remark 3.10. Let A be a KZ-reflective subcategory closed under coreflec-
tive right adjoints. From the proof of 3.9, it follows thatA = {ηX , X ∈ X} .
Consequently, taking into account Remark 2.5, if the reflections are all epi-
morphisms then the subcategory A is full.

Remark 3.11. From the above theorem, we know that in several everyday
poset enriched categories, where limits are jointly order-monic (see 2.8), KZ-
reflective subcategories which are closed under coreflective right-adjoints are
closed under all limits.
Let X be an arbitrary category enriched with the trivial order (=). In

this case, the above theorem states the well-known fact that every full and
isomorphism-closed reflective subcategory A of X coincides with its orthog-
onal hull (A⊥)⊥ and is closed under limits.
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Remark 3.12. Recall from [7] and [9] that a Kock-Zöberlein monad (shortly,
KZ-monad) on a poset enriched categoryX is a monad T = (T, η, µ) : X → X
such that T is locally monotone and ηTX ≤ TηX for all objects X. A KZ-
monad is a special case of the notion of Kock-Zöberlein doctrine introduced
by Anders Kock in [15]. In [7] Mart́ın H. Escardó has observed that, for each
object X of X there is at most one T -algebra structure map mX : TX → X
associated to X, and that, if it is the case, ηX ⊣C mX . So we can identify
each T -algebra with its underlying object. Moreover, Escardó has shown
that the Eilenberg-Moore algebras of a KZ-monad are precisely the objects
of X which are injective w.r.t. all T -embeddings (see Definition 3.6), and
that they also coincide with those objects of X which are right-Kan injective
w.r.t. T -embeddings.

The next theorem establishes the relationship between KZ-reflective sub-
categories and KZ-monads.

Theorem 3.13. The KZ-reflective subcategories of X closed under coreflec-
tive right adjoints coincide, up to isomorphism of categories, with the cate-
gories of T-algebras for T a KZ-monad over X .

Proof It is clear that if T = (T, η, µ) : X → X is a KZ-monad (see remark
above) then X T is a KZ-reflective subcategory of X . Next we show that,
furthermore, X T is closed under coreflective right adjoints in the sense of
2.11. Consider the commutative diagram (2.4) of the Definition 2.11 , with
f ∈ X T, l ⊣C r and l′ ⊣C r′, and let mA and mB be the corresponding
structure maps of A and B. Thus, r and r′ are retractions with right inverses
l and l′, respectively; then, it easily follows that X and Y belong to X T with
mX = rmAT l and mY = r′mBT l

′ (see [6]). It remains to show that g is a
T-morphism, that is, that mY Tg = gmX . First, observe that

mY · Tg = (r′ ·mB · T l′) · Tg · (Tr · T l) = r′ ·mB · T l′ · Tr′ · Tf · T l. (3.2)

Now, departing from the equality (3.2), we get that, on one hand,

mY · Tg ≤ r′ ·mB · Tf · T l, because l′r′ ≤ 1B and T is locally monotone
= r′ · f ·mA · T l, since f ∈ X T

= g · r ·mA · T l = g ·mX ;
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and, on the other hand,

mY · Tg = r′ ·mB · T l′ · Tr′ · Tf · (TmA · TηA) · T l, since mAηA = 1A
≥ r′ ·mB · T l′ · T (r′ · f ·mA) · ηTA · T l, because TηA ≥ ηTA
= r′ ·mB · T l′ · ηY · r′ · f ·mA · T l
= mY · ηY · r′ · f ·mA · T l
= r′ · f ·mA · T l = g · r ·mA · T l = g ·mX .

Consequently, mY Tg = gmX , i.e., g ∈ X T.

Conversely, let A be a KZ-reflective subcategory of X closed under core-
flective right adjoints, with U the inclusion functor and F the left adjoint of
U . Then the corresponding monad T, with T = UF , is of the Kock-Zöberlein
type. In fact, T is locally monotone because F is so, and ηTX = ηUFX =
ηFX ≤ FηX = UFηX . It remains to show that the comparison functor

A
K // X T

given byKA = (A, εA) andKf = f for every object A and every morphism f
of A (where ε is the counit of the adjunction) is an isomorphism of categories.
K is clearly injective on objects and on morphisms. Let (A,mA) be a T-
algebra. Thus, as mentioned in Remark 3.12, ηA ⊣C mA. Since A is closed
under coreflective right-adjoints, this assures that A ∈ A. But then, from
Remark 3.8, we know that ηA ⊣C εA. Hence, mA = εA and K(A) = (A,mA).

Finally, given a morphism KA = (A,mA)
g

// (B,mB) = KB in X T, again

the fact that A is closed under coreflective right adjoints, combined with the
equality gmA = mBFg, implies that g ∈ A. 2

Remark 3.14. Let A be a KZ-reflective subcategory of X closed under core-
flective right adjoints, let U and F be the corresponding inclusion and reflec-
tor functors, respectively, and let T = UF . Then T is the endofunctor part
of a KZ-monad and A is the category of algebras for that monad. It is clear,
from the Definition 3.6, that every F -embedding is a T -embedding. On the
other hand, as mentioned in Remark 3.12, the T -algebras, that is, the objects
of A, are precisely those objects of X which are right-Kan injective w.r.t. T -
embeddings. From 4.3.4 of [7] it also follows that the T -morphisms (in our
case, the morphisms of A) are right-Kan injective w.r.t. T -embeddings. But,
by Proposition 3.7, the largest class of morphisms w.r.t. which all objects and
morphisms of A are right-Kan-injective are the F -embeddings. Thus, every



22 MARGARIDA CARVALHO AND LURDES SOUSA

T -embedding is an F -embedding and, therefore, the class of T -embeddings
coincides with the one of F -embeddings.

4. Right-Kan injective hulls of finite subcategories of

Top0

In this section we give some examples of KZ-reflective subcategories of
Top0, based on results of [9] and references there, and we prove that they
are the right-Kan injective hull of a finite subcategory of Top0, that is,
they are of the form

(

A
)

for a finite subcategory A. As a byproduct,
we obtain new characterizations of embeddings, dense embeddings and flat
embeddings in Top0. Moreover, in Remark 4.7, we consider the dual notions
of KZ-reflective subcategory and F -embedding and relate them to results of
[2].

Examples 4.1. The subcategories of Top0 described in the following are
KZ-reflective:

(1) ContI denotes the category of continuous lattices and maps which
preserve directed supremums and infimums. It is known that, consid-
ering every continuous lattice endowed with the Scott topology,ContI

becomes a subcategory of Top0 ([12]).
(2) ScottDI is the category of continuous Scott domains and maps which

preserve directed supremums and non empty infimums. ScottDI is a
subcategory of Top0, again via the Scott topology ([12]).

(3) SComp denotes the subcategory of Top0 consisting of all stably com-
pact spaces and stable continuous maps. Thus, the objects of SComp

are those spaces which are sober, locally compact and whose family
of all saturated compact sets is closed under finite intersection ([13],
[21]). (A set A of a T0 space X is saturated if it coincides with the
upper set A ↑ for X equipped with the specialization order.) The
morphisms of SComp are the stable continuous maps, that is, mor-
phisms f : X → Y of Top0 such that for every pair of open sets U
and V and a compact set K in Y such that U ⊆ K ⊆ V , there exists
a compact K ′ in X such that f−1(X) ⊆ K ′ ⊆ f−1(Y ).

The KZ-reflectivity of the above three subcategories follows immediately from
the fact that they are categories of algebras of KZ-monads (see Theorem
3.13). Concerning ContI, it is known from Day [5] and Wyler [22] that it
coincides with the category of Einlenberg-Moore algebras of the filter monad,
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and, as it was observed by Escardó ([6]), this monad is of Kock-Zöberlein
type. The category ScottDI was proved to be the category of algebras of
the proper filter monad by Wyler [22], and this monad was showed to be
of Kock-Zöberlein type by Escardó and Flagg in [9]. At last, we know from
Simmons [20] and Wyler [23] that SComp is the category of algebras of the
prime filter monad, and, again from [9], that this monad is also a KZ-monad.
In [9] the authors present other examples of categories of algebras of KZ-

monads over Top0, which are, consequently, KZ-reflective subcategories of
Top0.

In what follows, given a space X we denote its lattice of open sets by
ΩX. Given a continuous map f : X → Y , the frame homomorphism f−1 :
ΩY → ΩX preserves all joins and, hence, has a right adjoint, denoted by
f∗ : ΩX → ΩY , in the category SLat of meet-semilattices with a top and
maps which preserve the meet and the top. The map f∗ is given by

f∗ (U) =
⋃

{

V : f−1 (V ) ⊆ U
}

, U ∈ ΩX.

Remark 4.2. In [9], Escardó and Flagg proved that for the filter and the
proper filter monads T over Top0 the T -embeddings are the embeddings and
the dense embeddings, respectively (see also [19]). It is easy to see that a
map f in Top0 is an embedding iff the map f−1 is surjective ([13]), and
it is a dense embedding iff, moreover, f∗(∅) = ∅ ([9]). Moreover, f is an
embedding iff the adjunction f−1 ⊢ f∗ is reflective, i.e., f−1f∗ = 1ΩX . These
characterizations will be used in the following.
Also in [9], it was proven that, when T is the prime filter monad, the T -

embeddings are the flat embeddings, that is, the maps of Top0 such that f−1

is surjective and its right adjoint f∗ preserves finite unions.

Next we show that the three categories listed in 4.1 are the right-Kan
injective hull of a finite subcategory of Top0.

Let 2 and 3 denote the chains 0 < 1 and 0 < 1 < 2, respectively. In
particular 2, as an object of Top0, is the Sierpiński space.

Lemma 4.3. For S the subcategory of Top0 consisting of the Sierpiński
space 2 and the identity on 2, it holds that

(

S
)

= ContI. Moreover, a
continuous map between T0 topological spaces is an embedding iff 2 is right-
Kan injective w.r.t. it.
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Proof We know that ContI is the category of algebras of the filter monad
T over Top0 and that the T -embeddings are the embeddings (see 4.1 and
4.2). Furthermore, from 3.13 and 3.14, we have that the T -embeddings are
just the F -embeddings for F the left adjoint of the inclusion of ContI into
Top0. Consequently, by 3.7 and 3.9, we conclude that ContI = E , where E
is the class of all embeddings. Therefore, we only have to show that S = E .
Since the Sierpiński space is in ContI, it is clear that E ⊆ S . The

other way round is also immediate: if g : X → Y belongs to S , then, in
particular, 2 is injective w.r.t. g, and it is known, and easy to prove, that,
then, g is an embedding. 2

Remark 4.4. Let g : X → Y be an embedding (in Top0). Then, it is easily
seen that, for every map χU : X → 2, with U an open set of X, we have that
χU/g = χg∗(U).
More generally, let h : X → Z be a morphism of Top0 with Z a finite

continuous lattice. In this case the topology of Z is generated by all sets of
the form z ↑= {w ∈ Z : z ≤ w}. We are going to show that the map h/g is
defined by

h/g(y) =
∨

{z ∈ Z : y ∈ g∗(h
−1(z ↑))}. (4.1)

First of all, it is continuous, with (h/g)−1(z ↑) = g∗(h
−1(z ↑)), for all z ∈

Z. To conclude that h/g · g(x) = h(x) for every x ∈ X, we observe that
h−1(h(x) ↑) = g−1g∗(h

−1(h(x) ↑)), because g is an embedding (see Remark
4.2); consequently, g(x) ∈ g∗(h

−1(h(x) ↑)). Moreover, h(x) is the supremum
of all z for which g(x) ∈ g∗(h

−1(z ↑)), since

g(x) ∈ g∗(h
−1(z ↑)) ⇔ x ∈ g−1g∗(h

−1(z ↑)) ⇔ x ∈ h−1(z ↑) ⇔ h(x) ≥ z.

Let now k : Y → Z be a morphism such that kg ≤ h. In order to show that
k ≤ h/g, it suffices to verify that, for every y ∈ Y , y ∈ g∗(h

−1(k(y) ↑)), that
is, that there is some V ∈ ΩY such that y ∈ V and g−1(V ) ⊆ h−1(k(y) ↑
). The set V = k−1(k(y) ↑) fulfils this requirement, since x ∈ g−1(V ) is
equivalent to x ∈ (kg)−1(k(y) ↑), and this implies that x ∈ h−1(k(y) ↑),
because kg ≤ h.

Proposition 4.5. The subcategory ScottDI of Top0 coincides with
(

A
)

,
where A is the two-objects category whose only non-identity morphism is

the inclusion 2
�

�

f
// 3 . Moreover, a continuous map between T0 topological
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spaces is a dense embedding iff the inclusion 2
�

�

f
// 3 is right-Kan injective

w.r.t. it.

Proof By using an argument similar to the one used at the beginning of
the proof of Lemma 4.3, we conclude that ScottDI = D , where D is

the class of all dense embeddings. Moreover, since the morphism 2
�

�

f
// 3

belongs to ScottDI, we know that D ⊆ A . So we only have to show that
A ⊆ D. Let g : X → Y be a morphism in A . Then, in particular, 2 g;

hence, by 4.3, g is an embedding. Now, for the inclusion 2
f
→֒3 and the map

χ∅ : X → 2, we have that

(f · χ∅) /g = f · (χ∅/g) = f · χg∗(∅),

taking into account that f g and the description of χ∅/g given in Remark
4.4. Thus, the image of (f · χ∅) /g does not contain the point 2, and, con-
sequently, from the characterization of (f · χ∅) /g given by (4.1) in Remark

4.4, we know that no point y of Y belongs to g∗

(

(f · χ∅)
−1 ({2})

)

, i.e.,

g∗

(

(f · χ∅)
−1 ({2})

)

= ∅. But (f · χ∅)
−1 ({2}) is clearly empty, then we

have g∗ (∅) = ∅, that is, g is a dense embedding. 2

Let A be the poset with underlying set {0, a, b, 1}, where a and b are non-
comparable and 0 and 1 are the bottom and the top elements, respectively.
And let k : A → 2 be the map which takes 0 to 0 and all the other elements
of A to 1.

Proposition 4.6. The subcategory SComp of Top0 coincides with
(

A
)

,
where A is the category whose only non-identity morphisms are k : A → 2

and f : 2 →֒ 3. Furthermore, a continuous map between T0 topological spaces
is a flat embedding iff the maps k and f are right-Kan injective w.r.t. it.

Proof Of course every finite space of Top0 is stably compact. Moreover,
every continuous map between finite T0-spaces is trivially stable. Thus, the
above morphism k belongs to SComp. Now, arguing as at the beginning of
the proof of Lemma 4.3, we see that the only thing to prove is that A ⊆ F
for F the class of all flat embeddings.
Let g : X → Y belong to A . Then, since 2 g, g is an embedding. We

are going to show that, moreover, it must be flat, i.e., that g∗(G ∪ H) =
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g∗(G)∪ g∗(H) for all G, H ∈ ΩX. Let then G and H be open sets of X and
define h : X → A by

h(x) =















1 if x ∈ G ∩H
a if x ∈ G \G ∩H
b if x ∈ H \G ∩H
0 if x 6∈ G ∪H

Then, from Remark 4.4, we know that h/g : Y → A is given by

h/g(y) =















1 if y ∈ g∗(G ∩H)
a if y ∈ g∗(G) \ g∗(G ∩H)
b if y ∈ g∗(H) \ g∗(G ∩H)
0 if y 6∈ g∗(G) ∪ g∗(H)

Consequently,

(k · (h/g))(y) =

{

1 if y ∈ g∗(G) ∪ g∗(H)
0 if y 6∈ g∗(G) ∪ g∗(H)

(4.2)

But, by 4.4, (kh)/g = χg∗(G∪H), and we know that (kh)/g = k · (h/g), since k
is right-Kan injective w.r.t. g. Hence, by (4.2), χg∗(G∪H) = χg∗(G)∪g∗(H), thus
g∗(G ∪H) = g∗(G) ∪ g∗(H), as requested. 2

Remark 4.7. Let X be a poset enriched category. The dual category X op

may be seen as a poset enriched category with the order given by f op ≤ gop

iff f ≤ g. This way, the dual notions of right-Kan injectivity, KZ-reflectivity
and KZ-monad are clear. In particular:

• Given a morphism f : X → Y and an object A in X , we say that A is
right-Kan-projective w.r.t. f if it is right-Kan injective w.r.t. f op in
X op. That is, for every morphism g : A → Y , there exists g′ : A → X
such that f · g′ = g and f · t ≤ g ⇒ t ≤ g′, for all possible morphisms
t.

• A co-reflective subcategoryA of X , with right adjointG and co-unit ε,
is said to be KZ-co-reflective in X provided that G is locally monotone
and the inequality εGX ≤ GεX is fulfilled for all X ∈ X (equivalently,
ηGA ≥ GηA for all A ∈ A, see Remark 3.3).

Analogously, we obtain the definition of a KZ-comonad. For the dual of the
concept of F -embedding, we use the term G-quotient; that is, if G : X → A
is a locally monotone functor between poset enriched categories, a morphism
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f : X → Y is said to be a G-quotient if the morphism Gf has a reflective
right adjoint in A.
In [2], B. Banaschewski introduced the notion of K-flat morphism in the

category Frm of frames, which gives a general approach to the study of
projectivity in Frm, unifying several previously known results. Let SLat

denote the category whose objects are meet-semilattices with a top, and
whose morphisms are maps preserving the meet and the top. Let K be a
subcategory of SLat in which Frm is reflective, with reflector F and such
that, for every reflection ηA : A → FA, the frame FA is generated by the
image of ηA. A frame homomorphism h : L → M is K-flat if it is onto and
its right adjoint h∗ : M → L (which exists in SLat) belongs to K. As it
is shown in [2], when K is a category under the above described conditions,
F is locally monotone and the comonad H : Frm → Frm induced by the
adjunction between Frm and K is of Kock-Zöberlein type. Furthermore, it
is easy to see that the K-flat morphisms are exactly the H-quotients, or,
equivalently, the frame homomorphisms which are F -quotients. To show
that, first observe that, given a K-flat frame homomorphism f : L → N ,
the adjunction f ⊣ f∗ is reflective: For every y ∈ N , the sobrejectivity of f
assures the existence of some x such that f(x) = y, and then we have that
(f · f∗) (y) = (f · f∗) (f (x)) = f ((f∗ · f) (x)) ≥ f(x) = y; thus f · f∗ = 1N .
Now it is clear that Ff ⊣R Ff∗. Conversely, a reflective adjunction Ff ⊣R

(Ff)∗, with f : L → N in Frm, implies that f ⊣R εL · (Ff)∗ · ηN , where η
and ε are the unit and counit.
B. Banaschewski showed that several examples of projectivity in Frm are

instances of K-projectivity for a convenient category K. These examples
encompass several cases of projectivity previously studied (in [14], [3], [8],
[17] and more) and, in particular, the frame counterpart of examples of 4.1.
From 3.7, we know that the K-flat morphisms are not only a class of mor-
phisms w.r.t. which the corresponding category of co-algebras is right-Kan
projective, but, moreover, that it is the largest one with such property.
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