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Abstract: It is generally accepted that colorectal cancer is initiated in the small
pits, called crypts, that line the colon. Normal crypts exhibit a regular pit pattern,
similar in two-dimensions to a U-shape, but aberrant crypts display different pat-
terns, and in some cases show bifurcation. According to several medical articles,
there is an interest in correlating pit patterns and the cellular kinetics, namely of
proliferative and apoptotic cells, in colonic crypts. This paper proposes and im-
plements a hybrid convection-diffusion-shape model for simulating and predicting
what has been validated medically, with respect to some aberrant colonic crypt mor-
phogenesis. The model demonstrates crypt fission, in which a single crypt starts
dividing into two crypts, when there is an increase of proliferative cells. The over-
all model couples the cell movement and proliferation equations with the crypt
geometry. It relies on classical continuum transport/mass conservation laws and
the changes in the crypt shape are driven by the pressure exerted by the cells on
the crypt wall. This pressure is related to the cell velocity by a Darcy-type law.
Numerical simulations are conducted and comparisons with the medical results are
shown.

Keywords: convection-diffusion equation, Darcy law, backward Euler method, fi-
nite elements, colonic crypts.

AMS Subject Classification (2000): 76R99, 35J15, 35R37, 65M06, 65M50, 65M60.

1. Introduction and motivation
Colorectal carcinoma (CRC) occurs as a consequence of several genetic

mutations in normal colonic mucosa, determining phenotypic modifications
with biological and morphologic consequences [12]. Those modifications lead
to dysfunction of the cellular process and cause loss of homeostasis in colonic
crypts.

In this context it is relevant correlating pit patterns and cellular kinetics
in colonic crypts. This is precisely the primary goal of this paper. We
introduce here a hybrid convection-diffusion-shape model for a single colonic
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crypt. It simulates and predicts what has been validated medically (see
[21, 38]), with respect to some aberrant colonic crypt morphogenesis. The
model demonstrates crypt fission, in which a single crypt starts dividing into
two crypts, when there is an increase of proliferative cells.

The overall model couples, in a two-dimensional setting, a convection-
diffusion system, describing the cell movement and proliferation process in-
side the single crypt (based on classical continuum transport/mass conserva-
tion laws) with the crypt geometry.

For setting up the convection-diffusion system, we can assemble (in a sim-
plest way, but without loss of generality) the different populations of cells,
that reside inside the colonic crypt, into two large classes: proliferative and
apoptotic cells, and consider that the sum of their densities is equal to one.
This means that these two populations of cells are understood in a broad
sense. The class of proliferative cells include stem, transit and/or semi-
differentiated cells and the class of apoptotic cells include, as well, fully dif-
ferentiated cells (see for instance [19] for a detailed description of the different
cell sets). We also suppose the convective velocities of both proliferative and
apoptotic cell densities are the same and furthermore this velocity obeys to
a Darcy-type law (supposing that the cells flow trough the crypt, like fluid
through a porous medium see [15, 35]). This means the convective veloc-
ity is related to an unknown pressure. This is also in good agreement with
[24, 8, 42] , where it is assumed that the essential mechanism, responsible for
the cell flux in the crypt, is the mitotic activity which causes pressure-driven
passive movement. In addition, we can solve the convection-diffusion system
only for the proliferative cell density and the results for the apoptotic cell
density are subsequently inferred, because the sum of the densities is equal
to one.

On the whole, the convection-diffusion system is a coupling of a parabolic
type equation, whose unknown is the proliferative cell density, with an elliptic
equation, whose unknown is the pressure (related to the convective velocity
of the proliferative cells by Darcy’s law mentioned above). The definitions
for parameters involved in the convection-diffusion system (i.e., rates of birth
and death, and the diffusion for the proliferative cell density), as well as, the
boundary and initial conditions are also explained in the paper and rely on
some qualitative information reported in the literature. In particular, we
suppose the rates of birth and death, are functions of the crypt height, which
means they depend on the cell position. This is in good agreement with
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experimental evidence, as reported in [44], where it is suggested ”parameters
controlling cellular process may depend on biochemical and bio-mechanical
signals and, thus, on cell position”. Then, the changes in the crypt geometry
are essentially ruled by the pressure exerted by the cells on the crypt wall. In
addition, some bio-mechanical assumptions, establishing a relation between
the movement of the different boundaries of the crypt, are also imposed.

In the paper we basically focus on two problems. In the first, called the
normal case, we derive values for the parameters, boundary and initial con-
ditions aiming at preserving the normal geometry of the colonic crypt, as
well as, at keeping a stabilized distribution of the density of proliferative
cells and pressure values, with time, and along the crypt axis. In the second,
called the abnormal case, we first increase the rate of birth of proliferative
cells at the bottom of the crypt. Secondly, using the information on the
pressure value, obtained in the normal case, we change one boundary con-
dition for the pressure. This is done in an appropriate way and based on
bio-mechanical reasoning. The model then leads to an aberrant crypt shape
exhibiting fission.

We emphasize, that the model proposed in this paper, does not provide any
justification for the increase of the rate of birth of proliferative cells. The
main goal is just to infer what is the deformation produced by this increase
in the crypt geometry.

In the literature, a reasonable collection of articles concerning the math-
ematical modelling of cell populations in individual colonic crypts can be
found, as well as works dealing with the mathematical modelling of colorec-
tal cancer and, more generally, of tumor growth. We refer, in particular,
to [3, 6, 8, 7, 13, 19, 28, 41, 42] for models concerning dynamics of cell
populations, to [5, 9, 16, 25, 33, 42, 43, 47] for papers reporting models
related to colorectal cancer, to [1, 2, 15, 23, 26, 29, 31, 32, 36] for the math-
ematical modelling of tumor growth, and also [17, 22], where the level set
technique is used to model the tumor’s boundary in time, and finally to
[11, 14, 18, 30, 34, 37, 39] for some medical papers related to aberrant crypt
foci and colorectal cancer. To the best of our knowledge, there are no math-
ematical models in the literature reporting the connection between cellular
kinetics and colonic crypt patterns, as done here in this paper. The results
presented here follows our previous work [10], where we used a convection-
diffusion type equation coupled with a level set equation, for tracking the
time evolution of an epithelial cell set, inside a colonic crypt, until it reaches
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the top of the crypt. However, in [10], the modifications induced on geometry
of the crypt, by the cells, were not considered.

After this introduction, this paper is organized in the following way. In
section 2 preliminaries of the mathematical model are defined together with
some explanations, based on known medical and biological information, which
support the model definition. Afterwards, sections 3 and 4 describe the nor-
mal and abnormal cases, respectively, and include the corresponding model
discretizations, and numerical algorithms for their approximate solutions.
The simulations and comparisons with the medical results are shown in sec-
tions 3.2.1 and 4.2.1. Finally in the last section there are some comments
and outlook work.

2. Mathematical models - preliminaries
The epithelium of the colon is perforated by millions of small crypts, which

play a crucial role in colon physiology. In effect, the colon epithelium under-
goes a complete renewal, by means of a programmed mechanism driven by
the cellular kinetics inside the crypts [19, 42]. Each crypt has a cylindrical
tube shape, that is closed at the bottom and with a round opening in the
top, directed at the lumen’s colon. Different types of cells fill the crypt.
These are aligned along the crypt wall: stems cells are believed to reside in
the bottom of the crypt, transit cells along the middle part of the crypt axis
and differentiated cells at the top of the crypt. In normal human colonic
crypts, the cells renew completely each 3-6 days, through an harmonious and
ordered procedure which includes the proliferation of cells, their migration
along the crypt wall towards the top and their apoptosis, as they reach the
orifice of the crypt and the cell cycle is finished.

For defining the mathematical model proposed in this paper, we use a two-
dimensional (2D) version of a colonic crypt. A vertical cut (i.e. along the
crypt axis) of a normal crypt shows a thin and long U-shape (see the medical
sub-figure 1 (a) right). In sub-figure 1 (b) it is depicted a schematic U-shape
of this vertical cut: (O, X, Y ) represents a Cartesian system, with origin O,
Ωc stands for the 2D-geometry of the crypt, and the rectangle Ω subset of R2
represents the portion of the colon where the crypt is located. The boundaries
of Ωc are also represented: Γ1 is the upper boundary (directed to the lumen
of the colon), Γ2 and Γ3 are respectively, the outer and inner boundaries. It
is worth mentioning that for humans, the average dimensions of a normal
crypt are: 73µm, the height 433µm for the height (where 1µm = 10−6m)
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(a) (b)

Figure 1. (a) Medical images (from [38], with permission of
Springer): scanning electron microscope image of an isolated
crypt (in the left) and corresponding normal histopathologically
vertical cut section (in the right). (b) Schematic vertical cut of
a normal colonic crypt Ωc and corresponding three boundaries.

and the thickness of the inner epithelium is about the size of a single cell.
The relation between the height and the diameter has been preserved in the
definition of the 2D-domain Ωc (see section 3.2.1).

We use a transport/mass conservation model to describe the dynamics of
different types of cells inside a colonic the crypt. Furthermore, we adopt a
two phase model, where only proliferative and apoptotic cells are considered.
The transit cells are then included in the proliferative cell group. In addition,
we suppose the proliferative cells move in a convective and diffusive manner
(the apoptotic cells do not have random motion). Thus denoting by N1
and N2, the densities of proliferative and apoptotic cells, respectively, these
equations are{

∂N1

∂t
+∇ · (v1N1) = ∇ · (D∇N1) + αN1 − βN1 in Ωc × (0, T ),

∂N2

∂t
+∇ · (v2N2) = βN1 in Ωc × (0, T ),

(1)

where D is the diffusion coefficient (it can be a scalar or a function), v1
and v2 are the convective velocities of N1 and N2, respectively, α and β the
rates of birth and death of the proliferative cells N1. It is usual to assume
v1 = v2 = v (see [35]). We also suppose the overall density of cells verify
N1 + N2 = 1. So, summing the two equations in (1), we get

∇ · v = ∇ · (D∇N1) + αN1. (2)

Furthermore, we assume that the interior of the colonic crypt is ”fluid-like”
and the cells flow through the fixed extracellular matrix like flow through a
porous media, obeying to Darcy’s law [33, 15, 46]. Therefore, the convective
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velocity is defined by
v = −∇p, (3)

where p is an (unknown) internal pressure. Consequently, by introducing
(3) in (2) and gathering the result with (1) yields the system

∂N1

∂t
−∇ · (∇pN1) = ∇ · (D∇N1) + αN1 − βN1 in Ωc × (0, T ),

∂N2

∂t
+∇ · (∇pN2) = βN1 in Ωc × (0, T ),

−∆p = ∇ · (D∇N1) + αN1 in Ωc × (0, T ).

(4)

Remark 2.1. We remark that instead of the condition N1+N2 = 1, we could
use the volume conservation relation V1N1 + V2N2 = 1, where V1 and V2 are,
respectively, the averages volumes of the live and dead cells [46]. Then, the
third equation in (4) would be

−∆p = ∇ ·
(
D∇(V1N1)

)
+ (αV1 − βV1 + βV2)N1

which is essentially of the same type.

Since the constraint N1 + N2 = 1 is not explicitly enforced in (4), we solve
this system only for N1, hereafter denoted by N , and infer the solution for
the apoptotic cell density N2, by using the relation N2 = 1 − N1. Thus,
finally the system (4) becomes{

∂N
∂t
−∇ · (∇pN) = ∇ · (D∇N) + αN − βN in Ωc × (0, T ),

−∆p = ∇ · (D∇N) + αN in Ωc × (0, T ).
(5)

We remark this is a coupled model, involving a parabolic-type equation
for N , the proliferative cell density, and an elliptic-type equation for the
pressure p, where p depends implicity on the time variable t, through N .
This model will be complete by giving initial (time) boundary conditions for
N , boundary conditions for both unknowns N and p, and by assigning values
to the parameters D, α and β.

The choice for these boundary conditions and parameters relies on the
descriptions that have been reported in the literature (see for instance [19,
42, 43]). We consider two cases. In the first case, that we hereafter call the
”normal case” the goal is to have the shape of the crypt Ωc preserved and a
normal distribution of cells along the crypt wall, as recurrently described in
the literature. In the second case, hereafter called the ”abnormal case”, the
aim is to recover aberrant colonic crypt shapes (this is also the primary goal
of the paper), by using the coupled model (5) and with the presupposition
(also often reported in the literature and medically validated experimentally),
that an abnormal behavior of the cell dynamics will induce a modification in
the shape of the colonic crypt.
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3. Normal Case
Boundary conditions for N. The initial (time) condition for the proliferative
cell density we set N(0, x, y) := N 0(x, y), where

N0(x, y) :=
1

2
(1 +

2

π
arctan(

2h
3
− y

ε
)) (6)

where h is the height of the crypt (measured along the crypt axis
−−→
OY ,

see Figure 1 (b), and ε is a very small positive scalar (see section 3.2.1,
for the exact values of h and ε). This definition is in good agreement with
experiments and literature (see for instance [8]), where it is claimed, the
proliferative cell activity occurs in the lower two-third part of the crypt. In
effect N 0 is then approximatively 1 and zero at the bottom and top of the
crypt, respectively.

In addition we set
N(t, x, y) := 0 in Γ1 × (0, T ),

∂N
∂n

(t, x, y) := 0 in
(
Γ2 ∪ Γ3

)
× (0, T ).

(7)

These two boundary conditions are also reasonable, since, it is well known,
that inside a crypt, the cell flux (mainly driven by mitotic-activity, i.e. cell
division) is directed towards the top, to the crypt orifice. Once the cells
reach the top of the crypt they undergo apoptosis. The first condition in
(7) simply states that at the top of the crypt there are not proliferative cells
and it allows for the shedding of cells into the lumen. The second condition
imposes that there is no flux of cells across the lateral boundaries Γ2 and Γ3,
which is also verified in normal crypts.
Boundary conditions for p (pressure). We set

p(t, x, y) := 1 in Γ1 × (0, T ),

∂p
∂n

(t, x, y) := 0 in
(
Γ2 ∪ Γ3

)
× (0, T ).

(8)

The first condition (Dirichlet condition) simply states that the pressure is
always constant at the crypt orifice, where the apoptotic cells are shed into
the lumen. The second condition states that, in normal crypts, the cell flux
is directed upwards and not laterally. This means that the normal velocity
of the cells on Γ2 and Γ3 verifies v · n = 0, where n is the unit outward
normal vector to the boundary of Ωc. Thus, and because of (3) (which states
v = −∇p), we have 0 = ∂p

∂n in Γ2 and Γ3.
Choice of the parameters D, α and β. We emphasize that the values for these
parameters are not known. However there is some qualitative informative
about them, that we use in the sequel for their definition.
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As mentioned before, the proliferative cells are essentially located in the
lower two-thirds of the crypt, with a strong activity at the bottom of the
crypt, while the fully differentiated and apoptotic cells are located in the
upper third part of the crypt. Accordingly, we choose for α a decreasing
function of the height of the crypt (quadratic at the crypt bottom), that
must be zero in the upper third top part (see also [45], where the rate of
birth α is a linear function of the crypt height). For defining β, the rate of
death of the proliferative cell density N , we just adopt the reverse definition
of α. Thus,

α(y) :=

{
(y − 2

3
h)2 τ1 y ∈ [0, 2

3
h]

0 y ∈ [2
3
h, h]

, β(y) :=

{
0 y ∈ [0, 2

3
h]

(y − 2
3
h)2 τ2 y ∈ [2

3
h, h]

(9)

where τ1 and τ2 are two positive small weighting parameters (see section
3.2.1, for their values).

The diffusion coefficient D is usually considered a constant. So we hereafter
set D := 1. Other definitions might be also possible, as for instance, a
function of the height of the crypt, like α and β, or a function of the unknown
cell density N (see [4, 35]).

3.1. Mathematical model - normal case. By gathering all these previous
definitions and equations, we can now formulate the mathematical model for
the normal cell dynamics inside the colonic crypt. Find N (the proliferative
cell density) and p (the pressure related to the convective velocity v, by the
equation v = −∇p), such that

∂N
∂t
−∇ · (∇pN) = ∇ · (D∇N) + (α− β)N in Ωc × (0, T ),

−∆p = ∇ · (D∇N) + αN in Ωc × (0, T ),

p = 1 in Γ1 × (0, T ),

∂p
∂n

= 0 in
(
Γ2 ∪ Γ3

)
× (0, T ),

N = 0 in Γ1 × (0, T ),

∂N
∂n

= 0 in
(
Γ2 ∪ Γ3

)
× (0, T ),

N(0, .) = N0(.) in Ωc,

(10)

with D = 1, α, β defined in (9), and N 0 in (6).
The problem (10) is a coupled problem. In order to solve it we basically

decouple N and p. We first solve the elliptic-tye equation for p, with a given
N , and afterwards the parabolic-type equation for N , with the previous
computed p, and this procedure is iterated on time. This methodology is
explained in the next section (see algorithm (3.2)). In the appendix we
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also comment on the existence and regularity of the solutions to these two
decoupled problems.

3.2. Numerical approximation - normal case. In order to actually com-
pute the finite-dimensional approximation to the solution of (10), we need
to define the discretization employed. We applied finite elements, for dis-
cretizing the space variable (x, y), and finite differences for the time variable
t. Thus, by first applying the finite element method, we have the following
semidiscrete Galerkin formulation (discrete in space and continuous on time),
of (10) 

M ∂N
∂t

(t) + C(p)N(t) = −KN(t) + M(α−β)N(t), in (0, T )

Kp = −KN(t) + MαN(t), in (0, T )

N(0) = N0.

(11)

Here, M and K are the usual mass and stiffness finite element matrices, Mα
and M(α−β) are modified mass matrices (resulting directly from the generation
of matrices by the finite element procedure) and C(p) is also a finite element
matrice, depending on the pressure p, that comes from the pressure equation.
We denote by p and N(t) the finite element approximations of p(.) and N(t, .),
respectively. This means that now p and N(t) are vectors of unknowns at
the finite element nodes. In addition N 0 is also the finite element vector
corresponding to the function defined in (6). We represent by ∂N

∂t (t) the
derivative of the vector N(t) with respect to the time variable. Let us now
proceed and subdivide the time interval [0, T ] into n− 1 subintervals

[0, T ] =
n−1⋃
i=0

[ti, ti+1], 0 = t1 < t2 < . . . < ti < . . . < tn = T

We assume, for simplicity, the time step size dt = ti− ti−1 = T
n−1 is constant

over the time interval. In addition, we approximate the time derivatives
∂N
∂t (ti+1) by the forward time difference scheme

∂N

∂t
(ti+1) ≈

N(ti+1)−N(ti)

dt
=

N i+1 −N i

dt
(12)

where the notations are self-explanatory. Consequently, we fully discretize
the equations (11), by the following system of equations{

M N i+1−N i

dt
+ C(p)N i+1 = −KN i+1 + M(α−β)N

i+1,

Kp = −KN i + MαN i,
(13)

for all i = 0, . . . , n − 1. This scheme corresponds to implicit (or backward)
Euler time discretization method, for the equation with unknown N . The
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coupled system (13) can equivalently be rewritten as{ (
M
dt

+ C(p) + K −M(α−β)

)
N i+1 = M

dt
N i,

Kp = (−K + Mα)Ni,
(14)

for all i = 0, . . . , n− 1.
The methodology we apply to solving the discrete problem (14) is next

described.
Algorithm - normal case.

Step 1 Initialize at time t = 0, with N0 given by (6) and p0 the solution of

Kp = (−K + Mα)N 0.

Step 2 For i ≥ 0:
(a) Determine N i+1, with the previous pi, by solving(M

dt
+ C(pi) + K −M(α−β)

)
N i+1 =

M

dt
N i.

(b) Determine pi+1, the solution of Kpi+1 = (−K + Mα)N i+1.
Step 3 Go to Step 2 and repeat with i replaced by i + 1.
Step 4 Stop when the final time T is reached.

3.2.1. Experiments - normal case. For all the experiments we take dimen-
sionless values, and the following have been used, unless otherwise mentioned.
The final time is T = 10. The size of the 2D crypt Ωc ⊂ R2 (see sub-figure
1 (b)) is based on average dimensions reported on the literature for human
colonic crypts, as described before in section 2. We consider the rectangle
Ω = [−10, 10] × [−5, 55] and for the boundary of Ωc (see again sub-figure 1
(b)), denoted by ∂Ωc = Γ1 ∪ Γ2 ∪ Γ3,

Γ1 := {(x, y) ∈ R2 : (−4 ≤ x ≤ −3 ∨ 3 ≤ x ≤ 4) ∧ y = 48},
Γ2 := {(x, y) ∈ R2 : (x = −4 ∨ x = 4) ∧ 4 < y < 48} ∪ {(x, y) ∈ R2 : y = 4−

√
16− x2},

Γ3 := {(x, y) ∈ R2 : (x = −3 ∨ x = 3) ∧ 4 < y < 48} ∪ {(x, y) ∈ R2 : y = 4−
√

9− x2}.
(15)

The parameters ε, τ1, τ2 and h, in the definition of N0, α and β (see (6)
and (9)), are equal to 4.8, 10−5 , 10−3 and 48, respectively.

The spatial domains Ω and Ωc are discretized with triangular finite ele-
ment meshes and linear shape functions. The implementation is done in
MATLABr [40].

The Figure 2 displays the result of the numerical simulations for final time
T = 10. In particular, the sub-figure (b) shows that the function N respects
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(a) (b) (c)

Figure 2. Normal crypt simulations for final time T = 10.
(a) Finite element mesh. (b) Proliferative cell density N . (c)
Pressure p.

the distribution of proliferative cells, along the crypt height, in a normal
colonic crypt.

We observe that we assigned values to the parameters ε and τ2, but the
choice 10−5, related to the rate of proliferation, was made differently. We
executed the algorithm 3.2, for a finite set S of τ1 values, and computed the
value τ ∗1 leading to

min
τ1∈S

‖Nnmax −N0‖, (16)

where nmax is the last iteration in algorithm 3.2, corresponding to the final
time T . The result was τ ∗1 = 10−5, and consequently in (9), τ1 = τ ∗1 = 10−5.
The corresponding pressure, denoted hereafter by p∗, will be used in the
abnormal case problem: this p∗ will be henceforth considered the ”normal
pressure” in a normal colonic crypt.

4. Abnormal case
The primary goal of this paper is to recover aberrant crypt shapes, by using

the dynamics of proliferative cells inside the crypt. In the previous ”normal
case”, the focus was on the cell dynamics, yielding a stabilized crypt shape.
As opposed to this ”normal case”, now we perturb this normal cell mecha-
nism, inside the crypt, check whether it disrupts the U-shape geometry of the
normal crypt, and recover abnormal crypt shapes (as in [21, 38]). It is in ef-
fect widely reported in the literature, and also validated experimentally, that
an abnormal shape of the colonic crypt could be associated to a modification
of the rate of birth α, of the proliferative cell density N . An increase of α
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should change the velocity v (3) of the flux of cells, as well as the pressure
p on the lateral boundaries Γ2 and Γ3. On the whole this would promote a
change in the geometry of the colonic crypt.

4.1. Mathematical model - abnormal case. The mathematical model
for the abnormal case has a structure somewhat similar to (10), with respect
to the cell dynamics. The main difference is that it is now formulated in
a time dependent crypt domain with moving boundaries. It is composed
of three parts: the coupled parabolic and elliptic equations, involving the
unknowns N and p, and the equation describing the evolution the spatial
domain Ωc.

Abnormal cell dynamics - N equations
∂N
∂t
−∇ · (∇pN) = ∇ · (D∇N) + αN − βN in Ωc(t)× (0, T ),

N = 0 in Γ1(t)× (0, T ),

∂N
∂n

= 0 in
(
Γ2(t) ∪ Γ3(t)

)
× (0, T ),

N(0, .) = N0(.) in Ωc(0) = Ωc.

(17)

Abnormal cell dynamics - p equations
−∆p = ∇ · (D∇N) + αN in Ωc(t)× (0, T ),

p = 1 in Γ1(t)× (0, T ),

∂p
∂n

= 0 in Γ2(t)× (0, T ),

∂p
∂n

= −γ(p− p∗) in Γ3(t)× (0, T ).

(18)

Time dependent crypt domain and moving boundaries
Ωc(0) := Ωc,

Ωc(t) := crypt domain at time t ∈ (0, T ], ∂Ωc(t) := Γ1(t) ∪ Γ2(t) ∪ Γ3(t),

Γ1(t) := Γ1,∀t ∈ [0, T ], Γ2(t) and Γ3(t) are defined in (23) and (22).

(19)

Here D = 1, β is defined in (9), N0 in (6); p∗ is the normal pressure obtained
by solving the elliptic equation in (10), in the time dependent domain Ωc(t),
i.e. 

−∆p = ∇ · (D∇N) + αN in Ωc(t)× (0, T ),

∂p
∂n

= 0 in
(
Γ2(t) ∪ Γ3(t)

)
× (0, T ),

p = 1 in Γ1(t)× (0, T ),

(20)
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and the rate of birth α is now defined, with a higher value at the bottom of
the crypt (compare with (9))

α(x, y) :=


(y − 2h

3
)2τ1 +

1√
x2 + (y−0.5)2

900
+ 1

y ∈ [0, 2
3
h], |x| < 0.5,

(y − 2h
3

)2τ1 y ∈ [0, 2
3
h], |x| ≥ 0.5,

0 y ∈ [2
3
h, h].

(21)

Moreover, we assume, that for each time t, the boundary condition for the
pressure in the inner lateral boundary Γ3(t) of the crypt should be propor-
tional to the difference between the current pressure p(t) and the normal

pressure p∗. That is, ∂p(t)
∂n = −γ(p(t) − p∗), where γ is a positive scalar (its

value is defined in section 4.2.1). Therefore, since the velocity of the prolif-
erative cell density N verifies (3), the normal velocity at each point of this
inner lateral boundary is vn(t) = γ

(
p(t) − p∗

)
. In particular, it points out-

wards the crypt if p(t) > p∗. Thus, motivated by this latter property, we
redefine the shape of the inner lateral boundary, at time t + dt, where dt is a
very small positive time increment, by using the following first-order Taylor
formula: any point (x, y)(t + dt) belonging to Γ3(t + dt) is derived from the
corresponding point (x, y)(t) in Γ3(t), by

(x, y)(t + dt) := (x, y)(t) + dt vn(t) n(t), (22)

where vn(t) is the the normal velocity at point (x, y)(t) (given by vn(t) =
γ
(
p(t) − p∗

)
), and n(t) is the unit outward normal vector to the boundary

Γ3(t), at the point (x, y)(t). In addition, since in a normal 2D-crypt, the inner
region is a thin layer, whose thickness corresponds to the size of only one cell,
we assume the deformation undergone by Γ2(t) follows Γ3(t). This means,
we suppose that a single cell deforms like an entire body. Consequently, any
point pΓ2(t) of Γ2(t), lying on the straight-line defined by the unit outward
normal vector to a point pΓ3(t) of Γ3(t), verifies

vn(pΓ2(t)) := −vn(pΓ3(t)). (23)

In this way, the thickness of the region inside the crypt domain, Ωc(t), is
always the same and fixed, for any time t.

4.2. Numerical approximation - abnormal case. Likewise the normal
case we use finite elements for discretizing the space variable (x, y) and finite
differences for the variable t. The procedure for solving the abnormal case is
summarized in the following algorithm.
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Algorithm - abnormal case.

Step 1 Initialize at time t = 0, with Ωc0 = Ωc, Γ10 = Γ1, Γ20 = Γ2, Γ30 = Γ3,
N0 defined in (6), and p∗0 the solution of (20). Determine the pressure
p0 by solving (20).

Step 2 For i ≥ 0:
(a) Determine N i+1, the solution of (17) in the current domain Ωi

c,
using the previous computed pi.

(b) Define the new domain Ωi+1
c , by determining the new boundaries

Γi+1
3 , Γi+1

2 as indicated in (22)–(23), and with Γi+1
1 = Γ1, for all

n ≥ 1.
(c) Define a new finite element mesh in the new domain Ωn+1

c .
(d) Define the extension N i+1 to the new domain Ωi+1

c , such that

N i+1(xi+1, yi+1) = N i(xi, yi)

where the points (xi+1, yi+1) ∈ Ωi+1
c and (xi, yi) ∈ Ωi

c either coin-
cide, or are related by (22) or (23).

(e) With N i+1 determine p∗i+1 and afterwards pi+1 in the new domain
Ωi+1

c (using (20) and (18), respectively).
Step 3 Go to Step 2 and repeat with i replaced by i + 1.
Step 4 Stop when the final time T is reached.

4.2.1. Experiments - abnormal case. Here we use the same values described
before, in section 3.2.1, for the rectangle, Ω, the crypt domain at time t = 0,
i.e. Ωc(0) = Ωc, and the parameters ε, τ1, and τ2. The new parameter γ is
equal to 10. Again, the spatial domains Ω and Ωc are discretized with trian-
gular finite element meshes and linear shape functions. The implementation
is done in MATLABr [40].

For each domain Ωc(t) the time step size verifies dt < c
b min(dx, dy), where

c is a constant less than 1, b is the maximum of the normal velocity vn

euclidean norm, in Γ3(t), i.e. b = max|vn|Γ3(t)|, and dx and dy are the spatial
step sizes in the OX and OY directions, respectively.

In Figure 3 we can see the beginning and the evolution of the bifurcation
process in a colonic crypt. By increasing the proliferative rate, at the bottom
of the crypt, the pressure becomes larger there, and leads to a deformation
of the outer and inner boundaries Γ2(t) and Γ3(t).

The Figure 4 displays the shape of the crypt at final time T = 40, and
illustrates the similarity with the bifurcation observed in a medical image
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(a) (b) (c) (d) (e)

Figure 3. Shape of the colonic crypt for different times: (a)
t = 0, (b) t = 1, (c) t = 2, (d) t = 5, (e) t = 10.

(a) (b) (c) (d)

Figure 4. Comparison of a medical image with the numeri-
cal simulations (obtained with model (17)-(18)-(19) at final time
T = 40). (a) Medical image exhibiting a bifurcated colonic crypt
(from [21], with permission of Springer). (b) Finite element mesh.
(c) Proliferative cell density N . (d) Pressure p.

(sub-figure 4 (a)). The sub-figures (c) and (d) show the proliferative cell
density and the pressure, respectively.

5. Conclusions and outlook
The main purpose of this paper has been to simulate colonic crypt bifur-

cation, by means of partial differential equations, more exactly, by using a
convection-diffusion-shape model. This model couples the dynamics of live



16 I. FIGUEIREDO, C. LEAL, G. ROMANAZZI, B. ENGQUIST AND P. FIGUEIREDO

and dead cells, residing inside a single crypt, with the shape of the crypt. It
was set up based on the cellular mechanism, that occurs in colonic crypts,
and which is reported in several biological and medical articles.

On the whole, the numerical simulations, produced with the proposed
model, reveal a good agreement with medical images exhibiting normal and
bifurcated colonic crypts, obtained with scanning electron microscopy (see
[21]). In addition, the simulations also demonstrate that a single crypt
changes its geometric pattern and starts bifurcating at the bottom, where
an abnormal increase of proliferative cells is taking place.

However, there is a need for further research, mainly with respect to the
parameters involved in the model. In effect, these parameters rule the out-
come of the numerical simulations. Yet, there is lack of information about
their values, and they are very unlikely (or impossible) to be determined or
tested experimentally. In the future we intend to address this issue. We will
try to figure out these parameter values, based on the available qualitative
information, and using again a mathematical approach.

Appendix. Given N(., t) it is well known that the elliptic problem,
−∆p = ∇ · (D∇N(., t)) + αN(., t) in Ωc,

p = 1 in Γ1,

∂p
∂n

= 0 in
(
Γ2 ∪ Γ3

)
,

(24)

has a solution and that its regularity depends on the regularity of N(., t).
However, the mixed Dirichlet-Neumann boundary conditions lead to a lack
of regularity of p in the corner points connecting Dirichlet and Neumann
boundary conditions. For ensuring the regularity of p in all the domain, the
crypt Ωc can be redefined in a natural way, by removing the corners (see
Figure 5, which displays one upper branch of the redefined 2D-crypt) and
modifying the boundary conditions in (24) (see [20] for a similar procedure).
This means, ∂Ωc = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4, and the solution of (24) becomes
p = 1 + p̄, where p̄ is the solution of

−∆p = ∇ · (D∇N(., t)) + αN(., t) in Ωc,

γ
∂p

∂n
+ ηp = 0 in ∂Ωc,

(25)

where γ and η are non negative enough smooth functions in ∂Ωc, such
that γ + η = 1, η = 1 in Γ1, η = 0 in Γ2. Assuming, furthermore that
N(., t) ∈ C∞(Ωc), then the solution of (25) is in C∞(Ωc). As a consequence,
we can guarantee (see for instance [27]), that for a fixed p = 1 + p̄ (with p̄
solution of (25)) the solution N of the parabolic-type equation with the two
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boundary conditions, with respect to N , replaced by γ ∂N
∂n + ηN = 0, is in

C∞(Ωc×]0, T ]). Moreover if the initial condition N0 ∈ C∞(Ωc) is positive,
then N ∈ C∞(Ωc×]0, T ]) is also positive.

Figure 5. Modified crypt boundary
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