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Introduction
The property of n-permutability of congruences for a variety of universal

algebras E has been widely studied by several authors over the past years. In
[13], Mal’tsev shows that the 2-permutability of congruences for a variety of
universal algebras E holds precisely when the theory of E admits a ternary
operation p such that p(x, y, y) = x and p(x, x, y) = y. Such an operation is
called a Mal’tsev operation and E is called a Mal’tsev variety. The categorical
generalization gives rise to the remarkable notion of a Mal’tsev category [5]:
a regular category [1] for which the composition of equivalence relations on
a same object is commutative. The beauty of this concept is a result of its
long list of useful properties. In this work, we are interested in exploring the
property stating that the notions of reflexive multiplicative graph, internal
category and internal groupoid coincide in a Mal’tsev context (see [6] for
categories and [11] for varieties).
It is natural to ask if internal structures have such a behavior in the weaker

Goursat (3-permutable) context and, more generally, in any n-permutable
one. The aim of this paper is to give a positive answer for Goursat vari-
eties and a partially positive answer for n-permutable varieties. The reader
interested in this line of research should also see [12] where the congruence
modular case is investigated (a common property only of the Mal’tsev and
Goursat contexts) and [14] where the internal categories and groupoids are
compared in a weak Mal’tsev context.
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A variety of universal algebras is called Goursat when the congruences
are 3-permutable. In general, for any n ≥ 2, the n-permutability of the
congruences gives rise to the notion of an n-permutable variety. It is well
known that such varieties are characterized by the existence of n− 1 ternary
operations, q1, . . . , qn−1, satisfying certain identities [10]: two Mal’tsev type
identities (for the first and last operations q1 and qn−1) and several other
identities comparing each operation qi with the next one qi+1, i = 1, . . . , n−2.
The nature of these identities allows us to adapt the proofs used in the
Mal’tsev case [7] to the general n-permutable case.

1. n-permutability
A regular category [1] C is called a Mal’tsev category [5] when the com-

position of equivalence relations is 2-permutable: RS = SR, for any pair of
equivalence relations R and S on a same object A in C. The regular Goursat
categories satisfy the strictly weaker 3-permutability condition: RSR = SRS
[4]. These are the first two particular cases of the infinite family of regular
n-permutable categories satisfying the condition (R, S)n = (S,R)n, where
the composition of n alternating factors R and S is denoted by (R, S)n =
RSRS · · · [4].
A variety E of universal algebras is called n-permutable when it is an n-

permutable category. It is well known that a variety of universal algebras is
n-permutable when its theory T contains n− 1 ternary operations satisfying
appropriate identities [10]. For the 2-permutability (Mal’tsev) property the
theory T contains a ternary (Mal’tsev) operation p such that

(M1) p(x, y, y) = x,
(M2) p(x, x, y) = y,

and for the 3-permutability (Goursat) condition it contains two ternary op-
erations r and s satisfying the identities

(G1) r(x, y, y) = x,
(G2) r(x, x, y) = s(x, y, y),
(G3) s(x, x, y) = y.
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The general n-permutability is characterized by the fact that its theory T
contains n− 1 ternary operations q1, . . . , qn−1 such that

(N1) q1(x, y, y) = x,
(N2) qi(x, x, y) = qi+1(x, y, y), i = 1, . . . , n− 2,
(N3) qn−1(x, x, y) = y.

2. Internal structures
Let C represent an arbitrary category with pullbacks. Recall that an (in-

ternal) reflexive graph (in C) is given by a diagram

X1

d //

c
//X0,eoo

whereX0 is called the “object of objects” andX1 the “object of arrows”, such
that the domain morphism d, codomain morphism c and identity morphism
e satisfy de = ce = 1X0

. In set theoretical terms, given an object A of X0

and an arrow f : A → B of X1, we have e(A) = 1A, d(f) = A and c(f) = B.
If (π1, π2) denotes the pullback of (c, d), then a reflexive graph is called a
reflexive multiplicative graph when it is equipped with a multiplication (also
called composition) m

X2 m //
π1 //

π2

// X1

d //

c
// X0eoo

such that
(R1) m(ed, 1X1

) = 1X1
,

(R2) m(1X1
, ec) = 1X1

.

We call X2 the “object of composable pairs”. In set theoretical terms, the
composition of a composable pair (f : A → B, g : B → C) of X2, is denoted
by m(f, g) = g ◦ f . The identities (R1) and (R2) just mean that f ◦ 1A =
f = 1B ◦ f .
An internal category is a reflexive multiplicative graph such that

(IC1) dm = dπ1,
(IC2) cm = cπ2,
(IC3) m(m×X0

1X1
) = m(1X1

×X0
m).

So, g ◦ f has the same domain as f and the same codomain as g and the
composition is associative. Finally, an internal category is called an internal



4 DIANA RODELO

groupoid when there exists an inversion morphism i : X1 → X1 such that

(IG1) di = c,
(IG2) ci = d,
(IG3) m(i, 1X1

) = ec,
(IG4) m(1X1

, i) = ed.

We denote the inverse of an arrow f : A → B of X1 by i(f) = f−1 : B → A.
The identities (IG3) and (IG4) mean that f ◦ f−1 = 1B and f−1 ◦ f = 1A.
The above identities express the usual axioms for a category or a groupoid.
Note that, if we consider such internal structures in a variety, then all

the morphisms involved must be homomorphisms of algebras, i.e. they must
preserve any n-ary operation. Suppose w is a ternary operation (the only
arity we are interested in throughout this work), then it must be preserved
by the domain:

d(w(f1, f2, f3) ) = w( d(f1), d(f2), d(f3) ),

for fi ∈ X1, i = 1, 2, 3; it must be preserved by the composition:

w(g1, g2, g3) ◦ w(f1, f2, f3) = w(g1 ◦ f1, g2 ◦ f2, g3 ◦ f3),
for (fi, gi) ∈ X2, i = 1, 2, 3, etc.
We write Rg(C), Rmg(C), Cat(C) and Gpd(C) for the categories of reflex-

ive graphs, reflexive multiplicative graphs, internal categories and internal
groupoids in C, respectively. We obtain a chain of forgetful functors

Gpd(C) � � U // Cat(C) � � V // Rmg(C) � � W // Rg(C),
where U and V are always full. If C is a Mal’tsev category, then W is also full
and, moreover, U and V are isomorphisms [6]. It is also known that Cat(C)
is exact [1] and Mal’tsev whenever C is [7]. In [9] it is shown that Gpd(C)
is a reflective subcategory of Rg(C) for a regular Goursat category C with
coequalisers and, consequently, Gpd(C) is also a regular Goursat category.

3. Internal structures in Mal’tsev varieties
We begin by recalling the known case of (internal structures in) Mal’tsev

varieties [11], where it is shown that the notions of reflexive multiplicative
graph, internal category and internal groupoid coincide. We shall use the
same notations as in Section 2. The approach used in the Mal’tsev case will
give us some ideas on how to generalize the result to the case of Goursat
varieties.
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In this section E will denote a Mal’tsev variety. So, its theory contains a
Mal’tsev operation p such that the identities (M1) and (M2) hold.
First we prove that every internal category in E is an internal groupoid.

Given an arrow f : A → B in X1, we must define its inverse, thus an arrow in
the opposite direction. Such an arrow is obtained by applying the Mal’tsev
operation p to the triple (1A, f, 1B). We define f−1 as

p(A,A,B)
(M2)
= B

f−1=p(1A,f,1B) //
A

(M1)
= p(A,B,B).

Now, to see that it is actually the inverse of f , we use the fact that the
composition preserves p

f ◦ p(1A, f, 1B)
(M1)
= p(f, 1B, 1B) ◦ p(1A, f, 1B)
= p(f ◦ 1A, 1B ◦ f, 1B ◦ 1B)
= p(f, f, 1B)

(M2)
= 1B;

similarly, p(1A, f, 1B) ◦ f = 1A.
We have defined an inversion morphism i : X1 → X1 by i = p(ed, 1X1

, ec),
which is necessarily a homomorphism of algebras. This is a direct conse-
quence of the uniqueness of inverses and the fact that the composition is a
homomorphism of algebras.
As a final remark, we point out the fact that the inverse of f could equally

be defined with the triple (1B, f, 1A), i.e. p(1A, f, 1B) = f−1 = p(1B, f, 1A).
Now we prove that every reflexive multiplicative graph in E is an internal

category and that, moreover, the multiplicative structure is unique. We begin
by obtaining a formula for the composition of a composable pair of arrows
(f : A → B, g : B → C) in X2, again using the fact that the composition
preserves p,

g ◦ f (M1),(M2)
= p(g, 1B, 1B) ◦ p(1B, 1B, f)
= p(g ◦ 1B, 1B ◦ 1B, 1B ◦ f)
= p(g, 1B, f).

Then, we conclude that d(g ◦ f) = d( p(g, 1B, f) ) = p( d(g), d(1B), d(f) ) =
p(B,B,A) = A = d(f), since the domain preserves p; similarly, we can show
that c(g ◦ f) = c(g). The associativity and uniqueness of m follow directly
from the above formula for the composition.
We also remark that the composition of (f, g) could be equally be defined

as p(g, 1B, f) = g ◦ f = p(f, 1B, g).
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4. Internal structures in Goursat varieties
After analyzing internal structures in Mal’tsev varieties, we turn our at-

tention to Goursat varieties. In this section, E will denote a Goursat variety;
its theory contains two ternary operations r and s such that the identities
(G1)-(G3) hold. The goal is to get similar results to those obtained in the
Mal’tsev case by using similar arguments. The main difficulty in adapting
these arguments comes from the fact that now we have two ternary opera-
tions r and s, each satisfying only one of the Mal’tsev identities, designated
by (G1) and (G3), respectively. However, there is also the extra identity
(G2) providing a link between the two ternary operations r and s which will
help us overcome this difficulty.
In a Goursat context we can still claim that the notions of reflexive multi-

plicative graph, internal category and internal groupoid coincide. Again, we
use the same notations as in Section 2.
From this section on, we will not write trivial compositions as 1B ◦ 1B,

f ◦ 1A, 1B ◦ f , etc.

Proposition 4.1. In a Goursat variety E, every internal category is an in-
ternal groupoid.

Proof : Given an arrow f : A → B in X1, we must define its inverse f−1 : B →
A. Now, if we apply both ternary operations r and s to the same triple
(1A, f, 1B) as used in the Mal’tsev case, then r(1A, f, 1B) is a map from
r(A,A,B) to r(A,B,B) = A, while s(1A, f, 1B) is a map from s(A,A,B) = B
to s(A,B,B). But, we also have s(A,B,B) = r(A,A,B), thus giving a
composable pair. We define f−1 as the composition

s(A,A,B)
(G3)
= B

s(1A,f,1B) //

f−1=r(1A,f,1B)◦s(1A,f,1B)

55s(A,B,B)
(G2)
= r(A,A,B)

r(1A,f,1B) //A
(G1)
= r(A,B,B).

Next we prove the identity (IG3) (the proof of (IG4) is similar)

f ◦ r(1A, f, 1B) ◦ s(1A, f, 1B)
(G1)
= r(f, 1B, 1B) ◦ r(1A, f, 1B) ◦ s(1A, f, 1B)
= r(f, f, 1B) ◦ s(1A, f, 1B)
(G2)
= s(f, 1B, 1B) ◦ s(1A, f, 1B)
= s(f, f, 1B)
(G3)
= 1B.
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This defines the inversion morphism i = m( s(ed, 1X1
, ec) , r(ed, 1X1

, ec) ),
necessarily a homomorphism of algebras as explained in the Mal’tsev case.

Remark 4.2. As in the Mal’tsev case, the inverse of an arrow f : A → B in
X1 could equally be defined with the triple (1B, f, 1A), that is, r(1A, f, 1B) ◦
s(1A, f, 1B) = f−1 = s(1B, f, 1A) ◦ r(1B, f, 1A).

Remark 4.3. Mal’tsev vs. Goursat varieties.
It is well known that a Mal’tsev variety E is necessarily a Goursat vari-
ety. That is, if the theory contains a Mal’tsev operation p, then it also
contains Goursat operations r and s defined, for instance, by r(x, y, z) =
p(x, p(y, z, y), z) and s(x, y, z) = p(x, p(x, y, x), z). Given an arrow f : A → B
in a reflexive graph, then the Mal’tsev and Goursat inverse of f is the same

r(1A, f, 1B) ◦ s(1A, f, 1B) = p(1A, p(f, 1B, f), 1B) ◦ p(1A, p(1A, f, 1A), 1B)
= p(1A, p(f, 1B, f) ◦ p(1A, f, 1A), 1B)
= p(1A, p(f, f, f), 1B)
= p(1A, f, 1B).

Proposition 4.4. In a Goursat variety E, every reflexive multiplicative graph
is an internal category. Such a multiplicative structure is unique.

Proof : For a reflexive multiplicative graph to be an internal category, we just
need to prove that the equalities (IC1) and (IC2) hold, since the associativity
and uniqueness ofm follow from Corollary 4.4 [3] (see also Remark 4.5 below).
Consider a composable pair of arrows (f : A → B, g : B → C) in X2. By
applying the ternary operation r to the same triple (g, 1B, f) as used in the
Mal’tsev case

r(g, 1B, f) = r(g, 1B, 1B) ◦ r(1B, 1B, f)
(G1),(G2),(G3)

= s(1B, 1B, g) ◦ s(1B, f, f)
= s(1B, f, g ◦ f).

They must have the same codomain

c( r(g, 1B, f) ) = c( s(1B, f, g ◦ f) )
⇒ r(c(g), B,B) = s(B,B, c(g ◦ f))

(G1),(G3)⇒ c(g) = c(g ◦ f).

Similarly, s(g, 1B, f) = r(g ◦ f, g, 1B) and, by applying the domain, we get
d(f) = d(g ◦ f).
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Remark 4.5. By Corollary 4.4 [3], given a reflexive multiplicative graph that
satisfies (IC1) and (IC2), the multiplication m is necessarily associative and
unique in a Goursat context. We now give a direct proof of these facts which
serves as a motivation for the generalization to the n-permutable case.
Let W represent the equalizer of m(m×X0

1X1
) and m(1X1

×X0
m). For any

composable triple of arrows (f : A → B, g : B → C, h : C → D) in such a re-
flexive multiplicative graph, we have (f, g, 1C), (1C , 1C , 1C), (1C , 1C , h) ∈ W .
By applying r, we conclude that ( r(f, 1C , 1C), r(g, 1C , 1C), r(1C , 1C , h) ) ∈
W , thus (f, g, s(1C , h, h)) ∈ W . So

s(1C , h, h) ◦ (g ◦ f) = (s(1C , h, h) ◦ g) ◦ f
(G3)⇒ s(1C , h, h) ◦ s(1C , 1C , g ◦ f) = (s(1C , h, h) ◦ s(1C , 1C , g)) ◦ s(1C , 1C , f)
⇒ s(1C , h, h ◦ (g ◦ f)) = s(1C , h, h ◦ g) ◦ s(1C , 1C , f)
⇒ s(1C , h, h ◦ (g ◦ f)) = s(1C , h, (h ◦ g) ◦ f).

If we compose both sides with s(h, 1D, 1D), we get

s(h, 1D, 1D) ◦ s(1C , h, h ◦ (g ◦ f)) = s(h, 1D, 1D) ◦ s(1C , h, (h ◦ g) ◦ f)
⇒ s(h, h, h ◦ (g ◦ f)) = s(h, h, (h ◦ g) ◦ f)
(G3)⇒ h ◦ (g ◦ f) = (h ◦ g) ◦ f.

The uniqueness of the multiplicative structure follows a similar argument.
Suppose there exists another multiplication m′. Given a composable pair of
arrows (f : A → B, g : B → C) inX2, we denotem

′(f, g) = g∗f . Let U be the
equalizer of m and m′. We have (f, 1B), (1B, 1B), (1B, g) ∈ U . By applying r,
we conclude that ( r(f, 1B, 1B) , r(1B, 1B, g) ) ∈ U , i.e. (f, s(1B, g, g) ∈ U . So

s(1B, g, g) ◦ f = s(1B, g, g) ∗ f
(G3)⇒ s(1B, g, g) ◦ s(1B, 1B, f) = s(1B, g, g) ∗ s(1B, 1B, f)
⇒ s(1B, g, g ◦ f) = s(1B, g, g ∗ f).

Now, if we use m (or m′) to compose both sides with s(g, 1C , 1C), we get

s(g, 1C , 1C) ◦ s(1B, g, g ◦ f) = s(g, 1C , 1C) ◦ s(1B, g, g ∗ f)
⇒ s(g, g, g ◦ f) = s(g, g, g ∗ f)
(G3)⇒ g ◦ f = g ∗ f.
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5. Internal structures in n-permutable varieties
In this section E will denote an n-permutable variety, n ≥ 4. So, its theory

contains n− 1 ternary operations q1, . . . , qn−1 such that the identities (N1)-
(N3) hold. In this context, we shall adapt the arguments used for Goursat
varieties to compare the notions of reflexive multiplicative graph, internal
category and internal groupoid. We use the notations of Section 2 once again.
As before, we still have two ternary operations q1 and qn−1, each satisfying
only one of the Mal’tsev identities, designated by (N1) and (N3). Now, the
main difficulty comes from the existence of the ternary operations q2, . . . , qn−2

that do not satisfy any kind of Mal’tsev identity. These operations only
satisfy the identities (N2) that link them with the previous or the next one.
In particular, q2 and qn−2 can be associated to (the more manageable) q1 and
qn−1 by the identities q1(x, x, y) = q2(x, y, y) and qn−2(x, x, y) = qn−1(x, y, y).

Proposition 5.1. In an n-permutable variety E, every internal category is
an internal groupoid.

Proof : The proof of this result is similar to that of Proposition 4.1 done for
Goursat varieties. Given an arrow f : A → B in X1, we define its inverse
f−1 : B → A as the composition

B
(N3)
= qn−1(A,A,B)

qn−1(1A,f,1B)//
qn−1(A,B,B)

(N2)
= qn−2(A,A,B)

qn−2(1A,f,1B)// · · ·

· · ·
q2(1A,f,1B)

//
q2(A,B,B)

(N2)
= q1(A,A,B) q1(1A,f,1B)

//
q1(A,B,B)

(N1)
= A,

i.e.

f−1 = q1(1A, f, 1B) ◦ q2(1A, f, 1B) ◦ · · · ◦ qn−1(1A, f, 1B).

As for the equality (IG3) (the proof of (IG4) is similar), we have
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f ◦ q1(1A, f, 1B) ◦ q2(1A, f, 1B) ◦ · · · ◦ qn−1(1A, f, 1B)
(N1)
= q1(f, 1B, 1B) ◦ q1(1A, f, 1B) ◦ q2(1A, f, 1B) ◦ · · · ◦ qn−1(1A, f, 1B)
= q1(f, f, 1B) ◦ q2(1A, f, 1B) ◦ · · · ◦ qn−1(1A, f, 1B)
(N2)
= q2(f, 1B, 1B) ◦ q2(1A, f, 1B) ◦ · · · ◦ qn−1(1A, f, 1B)
= q2(f, f, 1B) ◦ · · · ◦ qn−1(1A, f, 1B)
...
= qn−2(f, f, 1B) ◦ qn−1(1A, f, 1B)
(N2)
= qn−1(f, 1B, 1B) ◦ qn−1(1A, f, 1B)
= qn−1(f, f, 1B)
(N3)
= 1B.

This defines the inversion morphism (we write 1 instead of 1X1
)

i = m(qn−1(ed, 1, ec), . . . ,m(q3(ed, 1, ec),m(q2(ed, 1, ec), q1(ed, 1, ec))) · · · ),

necessarily a homomorphism of algebras as explained in the Mal’tsev case.

Remark 5.2. As in the Mal’tsev case, the inverse of an arrow f : A → B in
X1 could equally be defined with the triple (1B, f, 1A); again q1(1A, f, 1B) ◦
q2(1A, f, 1B)◦ · · · ◦qn−1(1A, f, 1B) = f−1 = qn−1(1B, f, 1A)◦ · · · ◦q2(1B, f, 1A)◦
q1(1B, f, 1A).

The fact that the notions of internal category and internal groupoid coin-
cide for any n-permutable variety gives us hope that also reflexive multiplica-
tive graphs are internal categories in this context. However, many difficulties
were found concerning the proof of the identities (IC1) and (IC2). All the
tested approaches seamed to fail and it still remains an open question. Nev-
ertheless, if we assume identities (IC1) and (IC2) to hold, then we can prove
the associativity of m and, consequently, that we have an internal category;
the uniqueness of the multiplication also holds (Proposition 5.3). In the proof
we will repeatedly use the following kind of equalities (to simplify notation,
we write 1 instead of 1X , for any object X ∈ X0)

q1(x, y, z) ◦ a
(N1)
= q1(x, y, z) ◦ q1(a, 1, 1) = q1(x ◦ a, y, z)

qi(x, y, z) ◦ a = qi(x, y, z) ◦ qi(a, a, a) = qi(x ◦ a, y ◦ a, z ◦ a), i = 2, . . . , n− 2

qn−1(x, y, z) ◦ a
(N3)
= qn−1(x, y, z) ◦ qn−1(1, 1, a) = qn−1(x, y, z ◦ a),

(1)
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whenever the composition of arrows x, y, z and a of X1 are defined. Similar
equalities hold for composites of the type a ◦ qi(x, y, z), i = 1, . . . , n− 1.

Proposition 5.3. In an n-permutable variety E, every reflexive multiplica-
tive graph that satisfies (IC1) and (IC2) is an internal category. Such a
multiplicative structure is unique.

Proof : Let us prove that m is associative and unique by generalizing the
arguments used in Remark 4.5. Let W represent the equalizer of m(m ×X0

1X1
) andm(1X1

×X0
m) and consider any composable triple of arrows (f : A →

B, g : B → C, h : C → D) in such a reflexive multiplicative graph. The
following triples belong to W

(f, g, 1C) (f, 1B, 1B)
(1C , 1C , 1C) (1B, 1B, 1B)
(1C , 1C , h) (1B, g, h)

(2)

By applying q1 to the left triples of (2), we conclude that (f, g, q1(1C , 1C , h)) ∈
W , then (f, g, q2(1C , h, h)) ∈ W . Thus

q2(1C , h, h) ◦ (g ◦ f) = ( q2(1C , h, h) ◦ g ) ◦ f
(1)⇒ q2(g ◦ f, h ◦ (g ◦ f), h ◦ (g ◦ f)) = q2(g, h ◦ g, h ◦ g) ◦ f
(1)⇒ q2(g ◦ f, h ◦ (g ◦ f), h ◦ (g ◦ f)) = q2(g ◦ f, (h ◦ g) ◦ f, (h ◦ g) ◦ f).

By composing both sides with q2(h, 1D, 1D), we get

(L1) h ◦ (g ◦ f) = q2(h ◦ (g ◦ f), (h ◦ g) ◦ f, (h ◦ g) ◦ f)
(N2)
= q1(h ◦ (g ◦ f), h ◦ (g ◦ f), (h ◦ g) ◦ f).

Similarly, by applying q1 to the right triples of (2) we conclude that

(R1) (h ◦ g) ◦ f = q1((h ◦ g) ◦ f, (h ◦ g) ◦ f, h ◦ (g ◦ f)).
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Next, we apply q2 to the left triples of (2) to obtain

q2(1C , 1C , h) ◦ q2(g ◦ f, 1C , 1C) =
= (q2(1C , 1C , h) ◦ q2(g, 1C , 1C)) ◦ q2(f, 1C , 1C)

(N2)⇒ q2(1C , 1C , h) ◦ q1(g ◦ f, g ◦ f, 1C) =
= (q2(1C , 1C , h) ◦ q1(g, g, 1C)) ◦ q1(f, f, 1C)

(1)⇒ q1( q2(g ◦ f, g ◦ f, h ◦ (g ◦ f)) , g ◦ f , 1C ) =
= q1( q2(g, g, h ◦ g), g, 1C ) ◦ q1(f, f, 1C)

(1)⇒ q1( q2(g ◦ f, g ◦ f, h ◦ (g ◦ f)) , g ◦ f , 1C ) =
= q1( q2(g ◦ f, g ◦ f, (h ◦ g) ◦ f) , g ◦ f , 1C ).

By precomposing both sides with q1(1A, 1A, g ◦ f) and using (N1), we get

q2(g ◦ f, g ◦ f, h ◦ (g ◦ f)) = q2(g ◦ f, g ◦ f, (h ◦ g) ◦ f);

composing both sides with q2(h, h, 1D) gives

(L2) h ◦ (g ◦ f) = q2(h ◦ (g ◦ f) , h ◦ (g ◦ f) , (h ◦ g) ◦ f ).

Similarly, by applying q2 to the right triples of (2) we conclude that

(R2) (h ◦ g) ◦ f = q2( (h ◦ g) ◦ f , (h ◦ g) ◦ f , h ◦ (g ◦ f) ).

By applying qj to the triples of (2), we can prove that

(Lj) h ◦ (g ◦ f) = qj(h ◦ (g ◦ f) , h ◦ (g ◦ f) , (h ◦ g) ◦ f )
(Rj) (h ◦ g) ◦ f = qj( (h ◦ g) ◦ f , (h ◦ g) ◦ f , h ◦ (g ◦ f) ),

for 2 ≤ j ≤ m and m = n/2 (when n is even) or m = (n − 1)/2 (when n
is odd). For j ≥ 3, to obtain the identity (Lj) we use (Rj−1). In fact, by
applying qj to the left triples of (2), we get

qj(1C , 1C , h) ◦ qj(g ◦ f, 1C , 1C) =
= (qj(1C , 1C , h) ◦ qj(g, 1C , 1C)) ◦ qj(f, 1C , 1C)

(N2)⇒ qj(1C , 1C , h) ◦ qj−1
(g ◦ f, g ◦ f, 1C) =

= (qj(1C , 1C , h) ◦ qj−1
(g, g, 1C)) ◦ qj−1

(f, f, 1C)
(1)⇒ qj(qj−1

(g◦f, g◦f, 1C), qj−1
(g◦f, g◦f, 1C), qj−1

(h◦(g◦f), h◦(g◦f), h)) =
= qj(qj−1

(g, g, 1C), qj−1
(g, g, 1C), qj−1

(h ◦g, h ◦g, h)) ◦q
j−1

(f, f, 1C)
(1)⇒ qj(qj−1

(g◦f, g◦f, 1C), qj−1
(g◦f, g◦f, 1C), qj−1

(h◦(g◦f), h◦(g◦f), h)) =
= qj(qj−1

(g◦f, g◦f, 1C), qj−1
(g◦f, g◦f, 1C), qj−1

((h◦g)◦f, (h◦g)◦f, h)).
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By composing both sides with qj(qj−1
(h, h, h◦(g◦f)), q

j−1
(h, h, h◦(g◦f)), 1D)

we get

qj(h ◦ (g ◦ f) , h ◦ (g ◦ f) , qj−1(h ◦ (g ◦ f), h ◦ (g ◦ f), h) ) =
qj(h ◦ (g ◦ f) , h ◦ (g ◦ f) , qj−1((h ◦ g) ◦ f, (h ◦ g) ◦ f, h) )

and precomposing both sides with qj(1A, 1A, qj−1(1A, 1A, g ◦ f)) gives

h ◦ (g ◦ f) =
= qj(h ◦ (g ◦ f) , h ◦ (g ◦ f) , qj−1((h ◦ g) ◦ f, (h ◦ g) ◦ f, h ◦ (g ◦ f)) )

(Rj−1)
= qj(h ◦ (g ◦ f), h ◦ (g ◦ f), (h ◦ g) ◦ f ).

Similarly, to get (Rj) we use (Lj−1).
Using similar arguments, by applying qk to the triples of (2), we can prove

that

(Lk) h ◦ (g ◦ f) = qk( (h ◦ g) ◦ f , h ◦ (g ◦ f) , h ◦ (g ◦ f) )
(Rk) (h ◦ g) ◦ f = qk(h ◦ (g ◦ f) , (h ◦ g) ◦ f , (h ◦ g) ◦ f ),

for m + 1 ≤ k ≤ n − 1. In this case, we should begin by obtaining directly
the identities (Ln−1), (Rn−1), (Ln−2) and (Rn−2). Then, to obtain (Lk) we use
(Rk+1) and to get (Rk) we use (Lk+1), for m+ 1 ≤ k ≤ n− 3.
Finally, we compare the identities (Lm) and (Rm+1)

h ◦ (g ◦ f) (Lm)
= qm(h ◦ (g ◦ f) , h ◦ (g ◦ f) , (h ◦ g) ◦ f )
(N2)
= qm+1(h ◦ (g ◦ f) , (h ◦ g) ◦ f , (h ◦ g) ◦ f )

(Rm+1)
= (h ◦ g) ◦ f.

The uniqueness of the multiplicative structure follows a similar argument.
Suppose there exists another multiplication m′. Given a composable pair of
arrows (f : A → B, g : B → C) in X2, we denote m′(f, g) = g ∗ f . Let U
be the equalizer of m and m′. We have (f, 1B), (1B, 1B), (1B, g) ∈ U . By
applying each qi, i = 1, . . . , n− 1, to this triple we get

(Mj) g ◦ f = qj(g ◦ f, g ◦ f, g ∗ f), 1 ≤ j ≤ m
(Mk) g ◦ f = qk(g ∗ f, g ◦ f, g ◦ f), m+ 1 ≤ k ≤ n− 1.

If we switch the roles of m and m′, we obtain

(M′
j) g ∗ f = qj(g ∗ f, g ∗ f, g ◦ f), 1 ≤ j ≤ m

(M′
k) g ∗ f = qk(g ◦ f, g ∗ f, g ∗ f), m+ 1 ≤ k ≤ n− 1.
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To finish, we compare the equalities (Mm) and (M′
m+1)

g ◦ f (Mm)
= qm(g ◦ f, g ◦ f, g ∗ f)
(N2)
= qm+1(g ◦ f, g ∗ f, g ∗ f)

(M′
m+1)
= g ∗ f.
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