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Introduction

The concept of higher-dimensional extension first appeared in the approach
to non-abelian homological algebra based on categorical Galois theory in semi-
abelian categories. In that context centrality of higher extensions plays a very
important role, but we do not treat this aspect in the current paper. We rather
focus on stability conditions of the higher extensions themselves. Initially we
work in a setting where all split epimorphisms are extensions, but in the last
section we slightly change our conditions to include examples such as T. Jane-
lidze’s relative homological and relative semi-abelian categories [35, 36, 37].

A major point of this article is that certain properties of simplicial objects and
simplicial resolutions are actually properties of the induced cubes and higher
extensions. As a consequence, some proofs (see, for instance, Proposition 3.11)
which are rather technical when considered from the simplicial point of view
become almost trivial when higher extensions are used instead.

Background on higher (central) extensions. Already the article [8] of
R. Brown and G. J. Ellis on higher Hopf formulae for groups was based on a
notion of higher extension of groups. Following G. Janelidze’s ideas set out
in [29, 30] and extending the theory from [33], higher-dimensional central ex-
tensions were introduced alongside a general categorical concept of higher-
dimensional extension in [17] to study homology in semi-abelian categories.
The theory presented there allows for an interpretation of the canonical como-
nadic homology objects induced by the reflection of a semi-abelian variety to
a subvariety in terms of (higher) Hopf formulae, generalising those obtained
in [8] to contexts beyond the case of abelianisation of groups. For instance,
if B is a loop and B ∼= A/K a projective presentation of B, then

H2(B, gp) ∼=
K ∩ [A,A,A]

[K,A,A]
,

where H2(B, gp) is the second homology of B relative to the category of groups
(i.e., with coefficients in the reflector gp : Loop → Gp) and the brackets on the
right hand side are associators [18].

The article [17] gives calculations of the homology objects for groups vs.
abelian groups, rings vs. zero rings, precrossed modules vs. crossed modules,
Lie algebras vs. modules, groups vs. groups of a certain nilpotency or solvability
class, etc., in all dimensions. This approach to homology was extended to
cover other examples [15, 16] and several theoretical perspectives were explored:
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slightly different approaches [13, 11, 32], links with higher-dimensional and
relative commutator theory [12, 14, 18, 20], first steps towards an interpretation
of cohomology [25, 44], the characterisation of higher central extensions [19],
and satellites [21, 23].

This gives an indication of the importance of higher central extensions in
non-abelian homological algebra, in particular in homology and cohomology of
non-abelian algebraic objects. However, they could not exist without higher
extensions themselves, and in this paper we examine certain stability conditions
that higher extensions may have. This leads to strong results on simplicial
objects, which of course also play an important role in the study of homology.

Higher extensions. Classically, one-dimensional extensions are just regular
epimorphisms in a regular category A, which, in the varietal case, are exac-
tly the surjections. Denoting by E the class of extensions in A, a double
extension is a commutative square

A1
f1 ,2

a
��

B1

b
��

A0
f0

,2 B0

in A where the morphisms a, b, f1, f0 and the universally induced morphism
〈a, f1〉 : A1 → A0 ×B0

B1 to the pullback of b and f0 are in E . We denote the
class of double extensions thus obtained by E1. Of course this definition does
not depend on the exact nature of one-dimensional extensions, so it can be used
for any (reasonable) class of morphisms E . In particular, it can be iterated to
give n-fold extensions for any n ≥ 2: then all the arrows in the induced diagram
are (n− 1)-fold extensions. We write ExtA for the full subcategory of the ca-
tegory of arrows ArrA in A determined by the extensions, and similarly ExtnA
for the full subcategory of the category of n-fold arrows ArrnA = ArrArrn−1A
determined by the n-fold extensions. We denote the class of (n + 1)-fold ex-
tensions by En. By treating extensions axiomatically, as described below, we
can deal with the pairs (ExtnA, En) just like the “base case” (A, E), since such
a pair is just another example of a category with a class of extensions. This
makes the statements and proofs of many results much easier, and also clarifies
in which other situations the results may hold.
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Axioms for extensions. Treating extensions axiomatically (rather than ad
hoc, as in [17]) has the following advantage. Because the set of axioms is such
that it “goes up” to higher dimensions, as first formulated by T. Everaert in
[11] and [13], it allows a simultaneous treatment of extensions in all dimensions
without having to remember which dimension is currently needed.

The main list of axioms for a class of extensions E in a category A considered
in this paper is the following.

(E1) E contains all isomorphisms;
(E2) pullbacks of morphisms in E exist in A and are in E ;
(E3) E is closed under composition;
(E4) if g◦f ∈ E then g ∈ E (right cancellation);
(E5) the E-Mal’tsev axiom: any split epimorphism of extensions

A1

f1 ,2

a
��

B1

b
��

lr

A0

f0 ,2 B0lr

in A is a double extension.

These axioms come in slightly different flavours and are not all treated at
once. The first three, (E1)–(E3), go up to higher dimensions without help of
the others and already imply the important fact that higher extensions are
symmetric. Axioms (E1)–(E5) are the setting of Section 3. In fact, (E5) is
equivalent to (E4) applied to (ExtA, E1) and implies axiom (E4) for (A, E). In
Section 4 we weaken (E4) in such a way that not all split epimorphisms need
to be in the class E , and add an axiom ensuring a certain stability of split
epimorphisms which do fall into E . The axiom (E5) in its absolute form comes
from D. Bourn’s [6]; see also [3].

Resolutions vs. extensions. In Section 2 we assume that the pair (A, E) sa-
tisfies axioms (E1)–(E3). We compare higher extensions satisfying these axioms
to simplicial E-resolutions, which are augmented simplicial objects in which all
comparison morphisms to the simplicial kernels are morphisms in E . Trunca-
ting an augmented simplicial object induces higher dimensional arrows, and we
prove in Theorem 2.17 that the augmented simplicial object is an E-resolution
if and only if each of these truncations gives rise to a higher dimensional ex-
tension. In this sense
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resolutions are infinite-dimensional extensions
or

higher extensions are finite-dimensional resolutions.

This is, in fact, also how they are used in practice, for example in [8] or [17].

The Kan property and Mal’tsev conditions. In Section 3 we work with
a pair (A, E) satisfying (E1)–(E5). In fact, under (E1)–(E4) we prove that

(E5) holds ⇔ every simplicial object in A is E-Kan

(Theorem 3.13). This justifies calling (E5) the relative Mal’tsev axiom, as it is
well known that a regular category A is Mal’tsev if and only if every simplicial
object in A is Kan [9, Theorem 4.2]. As a first indication on the usefulness of
the relative Kan property we prove that

contractible + E-Kan ⇒ E-resolution

for augmented E-simplicial objects (Proposition 3.9). Here an E-simplicial ob-
ject is one in which all faces ∂i are extensions, and such an object is E-Kan
when all comparison morphisms to the universal horn objects are in E .

Weaker conditions on extensions. Axioms (E1) and (E4) together imply
that all split epimorphisms are extensions. However, this is not the case in all
examples of interest. In Section 4 we substitute (E4) by the weaker axiom

(E4−) if f ∈ E and g◦f ∈ E then g ∈ E .

In this setting we have to slightly change the statement of (E5) and consider
another axiom ensuring a certain stability of those split epimorphisms which
do belong to E . Thus we have

(E5−) any split epimorphism of extensions

A1

f1 ,2

a
��

B1

b
��

lr

A0

f0 ,2 B0lr

in A with f1 and f0 in E is a double extension;
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(E6) given a split epimorphism of extensions

R[a]

r
��

,2
,2 A1

a ,2

f1
��

A0

f0
��

R[b] ,2
,2

LR

B1

LR

b
,2 B0

LR

with f1 and f0 in E , taking kernel pairs of a and b gives an extension r.

An example for such a weaker setting is given by T. Janelidze’s relative homo-
logical and relative semi-abelian categories [35, 37].

1. Axioms for extensions

We treat the concept of higher-dimensional extension [11, 13, 17] in an axio-
matic manner, recalling the basic definitions and proving fundamental proper-
ties: symmetry, and the axioms of extensions going up to higher dimensions
(Proposition 1.6).

Higher-dimensional arrows. To understand higher extensions, we must first
define what we mean by a higher-dimensional arrow. As these play a very im-
portant role throughout the paper, we shall take some time to really understand
these objects.

To set up a convenient numbering system for our higher-dimensional arrows,
we consider the natural numbers by their standard (von Neumann) construction
and write 0 = ∅ and n = {0, . . . , n− 1} for n ≥ 1. We write 2n for the power-
set of n. Recall that 2n is a category with an arrow S → T for each inclusion
S ⊆ T of subsets S, T ⊆ n. Clearly 21 = 2, the category generated by a single
morphism 0 → 1, is an obvious “template” for an arrow in a category.

Definition 1.1. The category ArrnA consists of n-dimensional arrows in A:
Arr0A = A, Arr1A = ArrA is the category of arrows Fun(2op,A) = A2op, and
Arrn+1A = ArrArrnA.

Example 1.2. A zero-fold arrow is just an object of A, a one-fold arrow is
given by an arrow in A, while a two-fold arrow A is a commutative square in A
with a specified direction:

A2
a1 ,2

a0
��

⇒

A1

a10
��

A{1}
a
{1}
0

,2 A0.

(A)
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This particular numbering of the objects and arrows will become clear below,
after Definition 1.3. Similarly an n-fold arrow is a commutative n-cube in A
with specified directions. By definition a morphism (a natural transformation)
between n-fold arrows is also an (n+ 1)-fold arrow.

Notice that, by induction, we have an isomorphism

ArrnA ∼= A2op×···×2op.

However, in the step which says that “a functor 2op → A2op corresponds to a
functor 2op × 2op → A” (and the higher versions of this) we may easily lose
sight of the direction of the arrow, as 2op × 2op is of course symmetric. This
leads to the concept of the n-cube corresponding to an n-fold arrow, which we
shall make more precise and connect to the issue above. Later we shall see
that distinguishing between a cube and an arrow with directions is often not
as important for our purposes as it may first seem.

Definition 1.3. Let n ≥ 0. We define an n-cube in A to be a functor

A : (2n)op → A.

A morphism between n-cubes A and B in A is a natural transformation
f : A → B. We write CubnA for the corresponding category.

Thus an n-cube is a diagram of a specified shape in A. Clearly a zero-
cube is just an object of A and a one-cube is a morphism in A, so we have
Cub0A = Arr0A = A and Cub1A = ArrA. A two-cube is a commutative
diagram as above, but (a priori) without a specified direction.

Notice that 2× 2 ∼= 22 and similarly 2× 2n ∼= 2n+1, but these isomorphisms
are not unique. Roughly speaking, the extra 1 can be inserted either “at the
bottom” or “at the top” or even “somewhere in the middle”, and this determines
how the new object is numbered. From the existence of these isomorphisms
we see that we can view every n-fold arrow as an n-cube, by replacing the
directions with a specific numbering, and that the two categories ArrnA and
CubnA are isomorphic—but there are several possible isomorphisms which re-
flect the different ways a direction may correspond to the numbering of the
objects. Also, a morphism between n-cubes can be viewed as an (n+ 1)-cube.
Conversely an (n+ 1)-cube can be considered as an arrow between n-cubes in
n+ 1 different ways.

Having chosen one of the isomorphisms ArrnA → CubnA mentioned above, we
may number an n-fold arrow by viewing it as an n-cube. If A is an n-fold arrow



8 TOMAS EVERAERT, JULIA GOEDECKE AND TIM VAN DER LINDEN

and S and T are subsets of n such that S ⊆ T , we write AS for the image A(S)
of S by the functor A and aTS : AT → AS for the image A(S ⊆ T ) of S ⊆ T .
If f : A → B is a morphism between n-fold arrows, we write fS : AS → BS

for the S-component of the natural transformation f . Moreover, in order to
simplify our notations, we write ai instead of ann\{i}, for 0 ≤ i ≤ n − 1. (See

the picture of a double extension (A) above for an example.)

Convention 1.4. As mentioned above, there are several different isomorphisms
between CubnA and ArrnA. We now describe one of these and we shall use this
one throughout the paper. Given an n-cube A : (2n)op → A, we see that each
edge or one-fold arrow in A is of the form AS∪{i} → AS for some i ∈ n and
some subset S ⊂ n not containing i. All edges of this form with the same i are
“parallel” in the n-cube. Thus for each k-cube inside A, we choose the direction
to be that which corresponds to the largest such i. As an example, consider
the following cube.

A{2,0} ,2

��

A1

��

A3
,2

��

:D����

A2

��

:D����

A{2} ,2 A0

A{1,2} ,2

:D

A{1}

:D����

Going from left to right is the direction of “leaving out 2”, from front to back is
“leaving out 1” and from top to bottom is “leaving out 0”. Therefore the right
and left square go from front to back, the front, back, top and bottom squares
all go from left to right, and the whole cube also goes from left to right.

Proposition 1.16 will show us that remembering the specified directions of an
n-fold arrow is often not necessary, so that we are mostly happy to use n-cubes
and n-fold arrows synonymously without specifying the isomorphism between
them.

Extensions. We now consider a class of morphisms E in a category A sa-
tisfying the following axioms:

(E1) E contains all isomorphisms;
(E2) pullbacks of morphisms in E exist in A and are in E ;
(E3) E is closed under composition.
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Given such a class E , we write E1 for the class of arrows (f1, f0) : a → b

A1

⇒

f1 ,2

a
��

B1

b
��

A0
f0

,2 B0

in ArrA such that all arrows in the induced diagram

A1 f1

�)

a

�!

�%

P ,2

��

B1

b
��

A0
f0

,2 B0

are in E . We write ExtA for the full subcategory of ArrA determined by the
arrows in E .

Remark 1.5. The pullback in the diagram above exists as we assume that b
and f0 are in E , and (E1) ensures that there is no ambiguity in the choice of
pullback.

Proposition 1.6. Let A be a category and E a class of arrows in A. If (A, E)
satisfies (E1)–(E3), then (ExtA, E1) satisfies the same conditions.

Proof : Mutatis mutandis the proof of [17, Proposition 3.5] may be copied.

Remark 1.7. Pullbacks of double extensions in ExtA are computed degree-
wise as in ArrA.

Remark 1.8. Notice that these axioms have a slightly different appearance
to their corresponding ones in [13]: there it is important to keep track of the
objects which can occur as domains or codomains of extensions. The class of
these objects is called E− and does not occur here because using (ExtA, E1)
instead of (ArrA, E1) automatically restricts us to the right domains and codo-
mains. In [13] this extra care is needed because the construction of the (higher)
centralisation functors depends on the categories ArrnA being semi-abelian (for
n ≥ 0). Note that, while A being semi-abelian implies that ArrA is semi-
abelian, in general ExtA does not keep this property (cf. Proposition 4.11).
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As we shall not be considering (higher) central extensions here, we can work
directly with ExtA and so dispense with the E−.

Definition 1.9. If (A, E) satisfies (E1)–(E3) then an element of E is called a
(one-fold) extension of A and an element of E1 a two-fold extension or
double extension of A. We also write E0 for E . By induction, we obtain a
class of arrows En = (En−1)1 in ArrnA and a full subcategory ExtnA of ArrnA
(determined by the elements of En−1) for all n ≥ 2. An object of ExtnA (= an
element of En−1) is called an n-fold extension of A. We shall sometimes talk
about n-fold E-extensions or simply of extensions.

Remark 1.10. Notice that, when A has finite products, (E2) and (E3) imply
that the product f × g of two extensions f and g is also an extension (to see
this, observe that f × g = (f × 1)◦(1× g)).

Example 1.11 (Regular epimorphisms). If A is a regular category (finitely
complete with coequalisers of kernel pairs and pullback-stable regular epi-
morphisms, see [2]) and E is the class of regular epimorphisms in A, then
the pair (A, E) satisfies conditions (E1)–(E3). Indeed, any isomorphism is a
regular epimorphism, and regular epimorphisms are pullback-stable and closed
under composition. The higher extensions obtained here are the ones conside-
red in [17].

Example 1.12 (Projective classes). Let A be a finitely complete category.
Recall that a projective class on A is a pair (P , E), where P is a class of
objects of A and E a class of morphisms of A, such that P consists of all
E-projectives P , E consists of all P-epimorphisms f , and A has enough E-
projectives.

A

f
��

P

∃
9D

∀
,2 B

It is easily seen that (A, E) satisfies (E1)–(E3).
Clearly, when A is a regular category with enough regular projective objects

and E is the class of regular epimorphisms in A, we regain Example 1.11.
An extreme case is given by taking P to be the class of all objects of A, so

that E consists of all split epimorphisms; see also Example 3.16.

Example 1.13 (Effective descent morphisms). Let A be a category with pull-
backs and let E be the class of effective descent morphisms in A. Then (A, E)
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satisfies (E1)–(E3), and also the axiom (E4), which we will meet in Section 3;
see e.g. [34].

Example 1.14 (Etale maps). Recall that an étale map is the same as a local
homeomorphism of topological spaces: a continuous map f : A → B such that
for any element a ∈ A there is an open neighbourhood U of a such that f(U)
is open in B and the restriction of f to a map U → f(U) is a homeomorphism.
Taking A to be the category Top of topological spaces and E the class of étale
maps, it is well known and easily verified that (E1)–(E3) hold for (A, E); see
e.g. [41].

Example 1.15 (Topological groups). Let GpTop be the category of topological
groups. Since this category is regular, Example 1.11 implies that (GpTop, E)
satisfies (E1)–(E3) when E is the class of all regular epimorphisms.

Another choice of E would be the class of morphisms which are split as
morphisms in the category of topological spaces. It is easy to check that (A, E)
satisfies the axioms (E1)–(E3). Similarly the category of topological groups
together with all morphisms which are split as morphisms of groups satisfies
(E1)–(E3). These two examples have been considered important elsewhere in
the literature, see for instance [26] and [48] (cf. also [35, Example 3.3.3]). In
fact, both these examples also satisfy the axiom (E4). More examples of this
kind are the category of rings together with morphisms which are split in the
category of abelian groups Ab and the category of R-modules for a ring R, with
morphisms which are split in Ab.

There is an alternative way of looking at extensions which is inspired by [8]
and [10].

Proposition 1.16. Given any n-fold arrow A, the following are equivalent:

(i) A is an extension;
(ii) for all ∅ 6= I ⊆ n, the limit limJ(I AJ exists and the induced morphism

AI → limJ(I AJ is in E .

Proof : We fix an isomorphism between ArrnA and CubnA, for instance the one
described in Convention 1.4. For n ≥ 1 let us denote the class of all n-cubes A
in A that satisfy Condition (ii) by Fn−1. Note that the classes Fn may also be
defined inductively as follows. The class F0 is E . Now suppose the class Fn−1 is
defined. Then Fn consists of all (n+1)-cubes A such that, when considered as
an arrow between n-cubes in any of the n+1 possible directions, the codomain
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n-cube is in Fn−1, and moreover the limit limJ(n+1AJ exists and the induced
morphism An+1 → limJ(n+1AJ is in E .

We are to show for all n that En consists of all (n+1)-fold arrows A of which
the corresponding (n+1)-cube is in Fn. Using the fixed isomorphism between
Arrn+1A and Cubn+1A, we can denote this by En = Fn. For n ∈ {0, 1} we
clearly have En = Fn. Now consider n ≥ 2 and suppose that E i−1 = F i−1 for
all i ≤ n. Let A be an (n+ 1)-fold arrow which is in Fn. Then A is a square
in Extn−1A as below.

·
a
�_

�$�_

,2

��

·

∈Fn−1

��

·

���
��
��
��
��
��
��
�

18jjjjjjjjjjjjjjj

·
∈Fn−1

,2 ·

·
b

�_

�$�_

,2

��

·

��

·

�

18

·
�$�_

�_

,2

��

:D
?�

?�
?�

?�
?�

?�
?�

?�

·

��

:D������������

·

?�
?�

?�

:D
?�

?�
?�

���
��
��
��
��
��
��
�

18jjjjjjjjjjjjjjj

· ,2 ·

· ,2

:D

·

:D������������

As A is in Fn, both the right and bottom arrow of the square are elements
of Fn−1 = En−1, so their pullback exists. We have to check that the comparison
morphism a is also in En−1 = Fn−1. For this we must first check that all possible
codomains of the (n − 1)-cube a are in Fn−2. For the direction given in the
square this is clear. So consider any other direction, and extend the square to a
cube in that direction as on the right hand side above. Then, as A is an element
of Fn, the back square of the cube is in Fn−1 = En−1, so the factorisation b to
the pullback, which is also the chosen codomain of a, is in En−2 = Fn−2.

Secondly, it is easy to see that limJ(n+1AJ is the same as limJ(n aJ , since a
is the comparison to a pullback. Therefore a is in Fn−1 = En−1 and A is in En.

Conversely, suppose A is in En. Then A is again a square in Extn−1A as before.
This time we know that the right and bottom arrows are in En−1 = Fn−1,
but we must also show it for any other direction. Pick such a direction and
extend the square to a cube as before. We are to show that the back square is
in Fn−1. We already know this of the right and bottom squares, so the right
and bottom arrow of the back square are in En−2. Now the comparison a is in
En−1 = Fn−1, so its codomain b is in En−2, which shows that the back square
is in En−1 = Fn−1.
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Finally, the limits limJ(n+1AJ and limJ(n aJ are again the same, so as a is
in Fn−1, the (n+ 1)-fold arrow A is in Fn, as desired.

Remark 1.17. The condition I 6= ∅ in (ii) just means that we do not de-
mand A0 to have global support, that is, we do not demand the unique morphism
A0 → 1 to the terminal object 1 to be an extension.

Remark 1.18. This proves that, in the case of surjective group homomorphisms
(which is an instance of Example 1.11), our higher extensions coincide with the
exact cubes considered in [10]; see also [8].

Depending on which is more convenient, from now on we shall use either of
these characterisations of extensions.

Remark 1.19. Proposition 1.16 implies that, for an n-fold arrow A, to be
an extension is rightfully a property of the corresponding n-cube of A. The
independence of the chosen isomorphism between ArrnA and CubnA means
that this property is preserved by all functors CubnA → CubnA induced by an
automorphism of 2n. Therefore we may sometimes say that an n-cube is an
extension, and the distinction between the different isomorphisms between the
categories ArrnA and CubnA becomes less important.

2. Resolutions and extensions

In this section we analyse the concept of simplicial E-resolution in terms of n-
fold E-extensions. Our main result in this section is Theorem 2.17 which states
that an augmented semi-simplicial object A is an E-resolution if and only if the
induced n-fold arrows arrnA are n-fold extensions for all n ≥ 1. From now on
we assume that the pair (A, E) satisfies (E1)–(E3).

E-resolutions. We start by giving the necessary definitions leading up to that
of an E-resolution.

Definition 2.1 (Augmented semi-simplicial objects). Let A be a category. The
category S+sA of (augmented) semi-simplicial objects in A and morphisms
between them is the functor category Fun((∆+

s )
op,A), where ∆+

s is the aug-
mented semi-simplicial category. Its objects are the finite ordinals n ≥ 0 and
its morphisms are (compositions of) monotone maps n → n+ 1. For a functor

A : (∆+
s )

op → A,

we denote the objects A(n) by An−1, and the image of the inclusion n → n+ 1
which does not reach i by ∂i, so that an augmented semi-simplicial object A
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corresponds to the following data: a sequence of objects (An)n≥−1 with face
operators (or faces) (∂i : An → An−1)0≤i≤n for 0 ≤ n,

· · ·
,2
,2
,2
,2
A2 ∂1 ,2

∂0 ,2

∂2

,2 A1

∂0 ,2

∂1

,2 A0
∂0 ,2 A−1

subject to the identities

∂i◦∂j = ∂j−1◦∂i

for i < j. The morphism ∂0 : A0 → A−1 is called the augmentation of A.

Definition 2.2 (Augmented quasi-simplicial objects). In addition to face ope-
rators, an (augmented) quasi-simplicial object A in A has degeneracy
operators (or degeneracies) (σi : An → An+1)0≤i≤n for 0 ≤ n, subject to the
identities

∂i◦σj =





σj−1◦∂i if i < j

1 if i = j or i = j + 1

σj◦∂i−1 if i > j + 1.

The augmented quasi-simplicial objects in A with the natural augmented quasi-
simplicial morphisms between them form a category S+qA which may be seen
as a functor category Fun((∆+

q )
op,A).

Definition 2.3. If, in addition to the above, an augmented quasi-simplicial
object A satisfies

σi◦σj = σj+1◦σi

for all i ≤ j, we recover the usual definition of (augmented) simplicial
object.

Example 2.4 (Comonadic resolutions and Tierney-Vogel resolutions). Given
a comonad G = (G, ǫ, δ) on a category A, each object A in A can be extended
to an augmented simplicial object A = GA by setting A−1 = A and Ai =
Gi+1A for i ≥ 0, with faces ∂i = GiǫGn−iA : G

n+1A → GnA and degeneracies
σi = GiδGn−iA : G

n+1A → Gn+2A (see e.g. [1]). This gives a genuine augmented
simplicial object.

Tierney-Vogel resolutions [46, 47] of an object on the other hand only give
rise to an augmented quasi-simplicial object. Such a resolution is obtained in
a category with a projective class (P , E) by covering A = A−1 by a projective
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object, then successively taking simplicial kernels (see Definition 2.7 below)
and covering these by a projective object again.

· · ·
,2
,2
,2
,2

E∋ �%B
BB

BB
BB

BB
P2

∈P ,2
,2
,2

E∋ �%A
AA

AA
AA

A
P1

∈P ,2
,2

E∋ �%A
AA

AA
AA

A
P0

∈P

∈E
,2 A−1

K3

9D}}}}}}}}

9D}}}}}}}}

9D}}}}}}}}

9D}}}}}}}}
K2

9D}}}}}}}}

9D}}}}}}}}

9D}}}}}}}}
K1

9D}}}}}}}}

9D}}}}}}}}

This does induce degeneracies which commute with the face operators as de-
manded, but they may not commute with each other as required for a simplicial
object.

Definition 2.5 (Contractibility). An augmented semi-simplicial object A is
contractible when there is a sequence of morphisms (σ−1 : An−1 → An)0≤n

such that
∂0◦σ−1 = 1 and ∂i◦σ−1 = σ−1◦∂i−1

for all i ≥ 1.

Example 2.6. Given a comonad G on a category A, any augmented simplicial
object of the form GGA is contractible.

Definition 2.7 (Simplicial kernels). Let

(fi : X → Y )0≤i≤n

be a sequence of n+ 1 morphisms in the category A. A simplicial kernel of
(f0, . . . , fn) is a sequence

(ki : K → X)0≤i≤n+1

of n+ 2 morphisms in A satisfying fikj = fj−1ki for 0 ≤ i < j ≤ n+ 1, which
is universal with respect to this property. In other words, it is the limit for a
certain diagram in A.

For example, the simplicial kernel of one morphism is just its kernel pair.
When simplicial kernels of a particular augmented semi-simplicial object A

exist, we can factor A through its simplicial kernels as follows.

· · ·
,2
,2
,2
,2

�'EE
EE

EE
EE

E A2
,2
,2
,2

�'EE
EE

EE
EE

A1
,2
,2

�'EE
EE

EE
EE

A0
,2 A−1

K3A

7Byyyyyyyy

7Byyyyyyyy

7Byyyyyyyy

7Byyyyyyyy K2A

7Byyyyyyyy

7Byyyyyyyy

7Byyyyyyyy
K1A

7Byyyyyyyy

7Byyyyyyyy

Here the Kn+1A are the simplicial kernels of the morphisms (∂i)i : An → An−1.
We may also sometimes write K0A = A−1.
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Definition 2.8. If all faces ∂i of an (augmented) semi-simplicial object A are
in E , we call A an (augmented) E-semi-simplicial object.

Definition 2.9. An (augmented) semi-simplicial object A is said to be E-
exact at An−1 when the simplicial kernel KnA exists and the factorisation
An → KnA is in E .

An augmented semi-simplicial object A is called an E-resolution (of A−1)
when A is E-exact at An for all n ≥ −1.

Remark 2.10. An E-resolution is always an augmented E-semi-simplicial ob-
ject.

Notation 2.11. Let A be an augmented semi-simplicial object in A. We can
form another augmented semi-simplicial object A− by setting

A−
n−1 = An and ∂−

i = ∂i+1 : An+1 → An,

for n ≥ 0 and 0 ≤ i ≤ n. This is the augmented semi-simplicial object obtained
from A by leaving out A−1 and all ∂0 : An → An−1. Observe that ∂ = (∂0)n
defines a morphism from A− to A.

When A is a (quasi)-simplicial object, the degeneracy operators can be shif-
ted in the same way to give a (quasi)-simplicial object A− and a morphism
∂ : A− → A of (quasi)-simplicial objects.

Remark 2.12. Note that A− is contractible when A is an augmented quasi-
simplicial object, and that an augmented semi-simplicial object A is contrac-
tible if and only if ∂ : A− → A is a split epimorphism of augmented semi-
simplicial objects.

Remark 2.13. We may also view the morphism ∂ : A− → A as an augmented
semi-simplicial object of arrows, say B, with the ∂0 : An+1 → An forming the
objects Bn. Notice that, when we view ∂ as a morphism of semi-simplicial
objects in A, the direction of a square goes parallel to the ∂0 as in the left
diagram below, depicting the morphism ∂−

i → ∂i, whereas if we view it as a
semi-simplicial object of arrows, the direction goes from one ∂0 to the next as
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in the right diagram, displaying the ∂i of the semi-simplicial object B.

An+1

∂0

��

∂i+1=∂−
i,2

⇓

An

∂0

��

An
∂i

,2 An−1

An+1

∂0=Bn

��

∂i+1 ,2

⇒

An

∂0=Bn−1

��

An
∂i

,2 An−1

Truncations and higher arrows. If an augmented semi-simplicial object A
in A is truncated at level n, it corresponds to an (n+1)-fold arrow in A as fol-
lows. Truncation at level zero automatically gives a morphism ∂0 : A0 → A−1.
When we truncate at level one, we can use ∂ : A− → A to view all the remaining
information as an augmented semi-simplicial object of morphisms B, truncated
at level zero.

A1

⇒∂0=B0

��

∂1 ,2 A0

∂0=B−1

��

A0
∂0

,2 A−1

This can clearly be viewed as a double arrow. Similarly an augmented semi-
simplicial object truncated at level n corresponds to an augmented semi-simpli-
cial object of morphisms truncated at level n − 1, which by induction corres-
ponds to an n-fold arrow of morphisms in A, which in turn can be viewed as
an (n+ 1)-fold arrow of objects in A.

Definition 2.14. The above determines a functor arrn : S
+
sA → ArrnA for any

n ≥ 1. We also consider

arr0 : S
+
sA → Arr0A = A : A 7→ A−1.

This description may be illustrated by the commutative square

S+sA
arrn+1 ,2

��

Arrn+1A

��
S+sArrA arrn

,2ArrnArrA

(B)

in which the left downward arrow sends A to ∂ : A− → A viewed as an augmen-
ted semi-simplicial object of arrows B as in Remark 2.13. The right downward
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arrow is the following isomorphism. We know that Arrn+1A ∼= A(2n+1)op and
ArrnArrA ∼= A(2n)op×2op (using the isomorphism fixed in Convention 1.4), so it
is enough to describe the isomorphism between 2n+1 and 2n × 2. Given a set
S ⊂ n, we write S+1 for the set obtained from S by shifting all elements up by
one, that is, we have i ∈ S if and only if i+ 1 ∈ S+1. Using this notation, we
choose the isomorphism which sends a set (S, 0) ∈ 2n × 2 to S+1 ∈ 2n+1 and
(S, 1) ∈ 2n × 2 to S+1 ∪ {0} ∈ 2n+1.

There is another way of obtaining the functors arrn which may be described
as follows. For any n ≥ 0, let

Fn : 2
n → ∆+

s

be the functor which maps a set S ⊆ n to the associated ordinal |S|, and
an inclusion S ⊆ T to the corresponding order-preserving map |S| → |T |: if
T = {x0 < x1 < · · · < x|T |−1} and S = {xi0 < xi1 < · · · < xi|S|−1

} then the
map |S| → |T | sends k to ik. We again fix the isomorphism ArrnA ∼= CubnA as
described in Convention 1.4.

Lemma 2.15. For any n ≥ 0, the functor arrn : S
+
sA → ArrnA is equal to

Fun(F op
n ,−) : Fun((∆+

s )
op,A) → Fun((2n)op,A).

Proof : As arrn+1 is defined inductively by the square (B) above and arr0 clearly
coincides with Fun(F op

0 ,−), it is enough to check that the square

S+sA
Fun(F op

n+1,−)
,2

��

Arrn+1A

��
S+sArrA

Fun(F op
n ,−)

,2ArrnArrA

commutes.

Lemma 2.16. Let A be an augmented semi-simplicial object, n ≥ 1 and arrnA

the induced n-fold arrow. As mentioned above, the corresponding n-cube may
be considered as an arrow between (n − 1)-cubes in n different ways. The
codomains of all of these arrows determine the same (n− 1)-cube.

Proof : A subset S of n determines the full subcategory 2S of 2n. If |S| = n−1,
the restriction of arrnA to 2S is one of the codomains considered in the statement
of the lemma. Given two subsets S and T of n such that |S| = |T | = n−1, the
subcategories 2S and 2T are mapped by the functor Fn to one and the same
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subcategory of ∆+
s . Thus, using the alternative description of the functor arrn−1

from Lemma 2.15, we see that for any augmented semi-simplicial object A, the
two induced restrictions of arrnA to the (n− 1)-cubes determined by S and T
are equal to each other.

This brings us to the main result of this section.

Theorem 2.17. An augmented semi-simplicial object A is an E-resolution if
and only if arrnA is an n-fold extension for all n ≥ 1.

Proof : If A is an E-resolution, then arr1A = ∂0 : A0 → A−1 is an extension
by definition, and conversely arr1A being an extension implies that A is E-
exact at A−1, which is the first condition for A to be an E-resolution. For
n ≥ 2, consider the full subcategory D of 2n determined by all sets S ⊆ n with
n− 2 ≤ |S| ≤ n− 1. It is easy to see that D is initial in the full subcategory
of (2n)op containing all objects except n. It follows that, for any n-fold arrow
A : (2n)op → A,

lim
J(n

AJ = lim
J∈|D|

AJ .

If now A = arrnA for an augmented semi-simplicial object A, the subdiagram
is exactly the diagram which determines KnA.

A1
∂1 ,2

∂0

��

A0

��

L
l2

,2_______

l0

���
�
�
�
�
�
�

l1
:D�

�
�

�

A1

∂0

��

∂1

:D������

A0
,2 A−1

A1
∂1

,2
∂0

:D������

A0

:D

This shows that if either limit exists, then the other exists and they are the
same. This automatically proves one of the implications, using the condition
for extensions given in (ii) of Proposition 1.16. For the other, we must also
show that each codomain of arrnA is an (n− 1)-extension. Lemma 2.16 shows
that checking one codomain suffices. The canonical codomain of the n-fold
arrow arrnA is arrn−1A and as such is an extension by induction.
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This makes clear that we can view (semi)-simplicial resolutions as “infinite
dimensional extensions”, and a higher extension as a finite-dimensional resolu-
tion.

Remark 2.18. Theorem 2.17 shows, in particular, that one can use the n-
truncation of a canonical simplicial resolution GA of an object A as an n-fold
projective presentation of A (a special kind of higher extension) in order to
compute the higher Hopf formulae which give the homology of A (as e.g. in the
article [17]).

Corollary 2.19. An augmented semi-simplicial object A is an E-resolution if
and only if the augmented semi-simplicial object of arrows ∂ : A− → A is an
E1-resolution.

Proof : For n ≥ 0, the (n + 1)-truncation arrn+1A of the augmented semi-
simplicial object of objects A is an (n + 1)-fold E-extension in A precisely
when the n-truncation arrnB of the augmented semi-simplicial object of arrows
B = ∂ : A− → A is an n-fold E1-extension in ExtA.

3. The relative Mal’tsev axiom

We now investigate a relative version of the Kan property for simplicial ob-
jects and its connections to properties of higher extensions. The main condition
on higher extensions in this context is a relative Mal’tsev axiom, which is equi-
valent to two other important conditions.

Throughout this section, we consider the following axioms on (A, E):

(E1) E contains all isomorphisms;
(E2) pullbacks of morphisms in E exist in A and are in E ;
(E3) E is closed under composition;
(E4) if g◦f ∈ E then g ∈ E ;
(E5) the E-Mal’tsev axiom: any split epimorphism of extensions

A1

f1 ,2

a
��

B1

b
��

lr

A0

f0 ,2 B0lr

in A is a double extension.

Notice that (E1) and (E4) together imply that all split epimorphisms are in E .
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Remark 3.1. Axioms (E1)–(E4) say exactly that our class E generates a
Grothendieck topology (or Grothendieck coverage) on A, see for instance [40,
Definition C2.1.8].

Axiom (E5). We will first show that (E5) is equivalent to two other condi-
tions, connecting the class of extensions E and the corresponding class E1 of
double extensions. To do this, we make use of the following lemma.

Lemma 3.2. Let (A, E) satisfy (E1)–(E4). Consider a diagram

R[f1]

r
��

π1

,2
π0 ,2 A1

f1 ,2

a
��

B1

b
��

R[f0]
π′
1

,2
π′
0 ,2 A0

f0

,2 B0

in A with a, b, f1 and f0 in E and R[f1] and R[f0] the kernel pairs of f1 and f0.
Either (hence both) of the left hand side commutative squares is in E1 if and
only if the right hand side square is in E1.

Proof : The right-to-left implication follows from (E2) for the class E1. Now
suppose that the square a◦π0 = π′

0◦r is in E1. The diagram induces the following
commutative cube and the right hand side commutative comparison square to
the pullback.

A1
f1 ,2

��

B1

��

R[f1] ,2

r

��

:D������

A1

��

f1

:D������

A0
f0 ,2 B0

R[f0] ,2

:D

A0

f0

:D������

R[f1]
π1 ,2

〈r,π0〉

��

A1

〈a,f1〉

��

R[f0]×A0
A1

π1×f0
f1

,2 A0 ×B0
B1

In the square, the morphism 〈r, π0〉 is in E by assumption. Furthermore, the
morphism π1×f0 f1 is in E as a pullback of the extension f1. It follows by (E3)
that 〈a, f1〉◦π1 is an extension, and so (E4) implies that 〈a, f1〉 is in E .

Proposition 3.3. Let A be a category and E a class of arrows in A which
satisfies the axioms (E1)–(E4). The following conditions are equivalent:
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(i) (E4) holds for the class E1, that is, if g◦f ∈ E1 then g ∈ E1;
(ii) (E5) holds, that is, all split epimorphisms of extensions are in E1;
(iii) every split epimorphism of split epimorphisms, i.e., every diagram

A1
f1

,2

a

��

B1

b

��

f1lr

A0

a

LR

f0

,2 B0,

b

LR

f0lr

(C)

such that f0a = bf1, f0b = af1, bf0 = f1a, af0 = f1b and f0f0 = 1B0
,

f1f1 = 1B1
, aa = 1A0

, bb = 1B0
is a double extension;

(iv) consider the diagram

R[f1]

r
��

,2
,2 A1

f1 ,2

a
��

B1

b
��

R[f0]
,2
,2 A0

f0

,2 B0

(D)

in A with a, b, f1 and f0 in E ; the arrow r is in E if and only if the
right hand side square is in E1.

Proof : Since all isomorphisms of extensions are double extensions, we see that
(i) implies (ii). Clearly (iii) is a special case of (ii). Now suppose that (iii)
holds and consider a diagram (D) as in (iv). Lemma 3.2 automatically gives
one direction, that is, if the right hand square is a double extension, then r is
in E . Conversely, taking kernel pairs vertically of the left hand side square gives
us a square as in (iii). By assumption this square is a double extension. Using
Lemma 3.2 twice we see that all squares in the diagram are double extensions.

Finally, suppose that (iv) holds and consider the morphisms f and g in ExtA
as in the diagram below.

R[a]
r ,2

�� ��

R[b]
s ,2

�� ��

R[c]

�� ��

A1
f1 ,2

a
��

B1
g1 ,2

b
��

C1

c
��

A0
f0

,2 B0 g0
,2 C0
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Assume that the composite g◦f is a double extension. Then by assumption s◦r
is in E . Axiom (E4) implies that s is in E , so (iv) implies that g is in E1.

The axioms (E1)–(E5) “go up”:

Proposition 3.4. Let A be a category and E a class of arrows in A. If (A, E)
satisfies (E1)–(E5) then (ExtA, E1) satisfies the same conditions.

Proof : By Proposition 3.3, Axiom (E5) for (A, E) is equivalent to Axiom (E4)
for (ExtA, E1). To see that Axiom (E5) for (ExtA, E1) holds, consider a split
epimorphism of double extensions in A such as the following left hand side
cube and recall Remark 1.19.

C ,2

��

D

��

lr

A ,2

��

:D�������

B

��

:D�������
lr

C ′ ,2 D′lr

A′ ,2

:D

B′

:D�������
lr

A ,2

��

B

��

lr

A′ ×C′ C ,2 B′ ×D′ D
lr

The arrows pointing to the right are split epimorphisms. By assumption, the
cube’s left and right hand side squares are double extensions; Axiom (E5) for
(A, E) implies, moreover, that the front, back, top and bottom squares are also
double extensions. Hence the induced right hand side comparison square to
the pullback exists. It is a double extension by Axiom (E5) for (A, E).

The E-Kan property. The Kan property is well known for simplicial sets
and simplicial groups and was used in [9] to extend the characterisation of
the Mal’tsev property in terms of simplicial objects from varieties to regular
categories. We slightly adapt the definition to obtain a relative notion of E-Kan
simplicial objects.

Definition 3.5. Let A be a semi-simplicial object and consider n ≥ 2 and
0 ≤ k ≤ n. The object of (n, k)-horns in A is an object A(n, k) together
with arrows ai : A(n, k) → An−1 for i ∈ {0, . . . , n} \ {k} satisfying

∂i◦aj = ∂j−1◦ai for all i < j with i, j 6= k

which is universal with respect to this property. We also define A(1, 0) =
A(1, 1) = A0.
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A semi-simplicial object is E-Kan when all A(n, k) exist and all comparison
morphisms An → A(n, k) are in E . In particular, the comparison morphisms
to the (1, k)-horns are ∂0 : A1 → A(1, 0) and ∂1 : A1 → A(1, 1).

For simplicity, we assume that A has a terminal object so that every semi-
simplicial object has a canonical augmentation. In fact this augmentation is
only needed to allow a formulation in terms of cubes.

Proposition 3.6. Let A be a semi-simplicial object and arrn+1A the (n+ 1)-
cube induced by (the canonical augmentation of) A for some n ≥ 1. Then A

satisfies the E-Kan property at level n (i.e., for all (n, k)-horns) if and only if
the domains of all arrows of n-cubes in arrn+1A (i.e., in all possible directions)
are extensions.

Proof : A domain of any arrow of n-cubes in arrn+1A is given by the n-subcube
which involves all faces ∂i : An → An−1 except for one particular ∂k. In the same
way as in the proof of Theorem 2.17, we see that the limit of the subdiagram
of this n-cube without the initial object An is exactly the (n, k)-horn object.
Therefore, by induction on n, the E-Kan property holds for the (n, k)-horn
object if and only if that particular cube is an extension.

Using Theorem 2.17 this gives us in particular

Corollary 3.7. Let (A, E) satisfy (E1)–(E4). For any E-semi-simplicial ob-
ject A which is E-Kan, the associated augmented semi-simplicial object A− is
an E-resolution.

As a first illustration of what the relative Kan property is useful for, we show
that a contractible augmented E-semi-simplicial object A which is also E-Kan
is always an E-resolution. For this we make an observation about the existence
of simplicial kernels.

Lemma 3.8. If A is a resolution up to level n then Kn+1A exists.

Proof : This follows from Lemma 2.16 and the following property of higher
cubes, which is proved inductively as in Proposition 1.16: if all codomains in
an (n+ 2)-cube A are extensions, then the limit limJ(n+2AJ exists.

Proposition 3.9. Let (A, E) satisfy (E1)–(E4). An augmented E-semi-simpli-
cial object in (A, E) which is contractible and satisfies the E-Kan property is
an E-resolution.
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Proof : As A is an E-semi-simplicial object, in particular the morphism

∂0 : A0 → A−1 = K0A

is in E , so A is an E-resolution at level 0.
Now let A be a resolution up to level n. By Lemma 3.8, we can assume

inductively that the simplicial kernel Kn+1A exists. So we can consider the
diagram

An+2

∂0

��

,2 A(n+ 2, 0)

a1 ,2

an+2

... ,2

r

��

An+1

∂1 ,2

∂n+1

... ,2

∂0

��

An

∂0

��

An+1
〈∂0,...,∂n+1〉

,2 Kn+1A

k0 ,2

LR

kn+1

... ,2
An

∂0 ,2

∂n

... ,2

σ−1

LR

An−1

σ−1

LR

in which Kn+1A and A(n+2, 0) are the simplicial kernels of the given morphisms.
As ∂ : A− → A is a split epimorphism of augmented E-semi-simplicial objects
by Remark 2.12, the induced morphism r between the limits is split epic, and
thus an extension. In fact, r = KnB, since B is a resolution up to level n−1, so
this simplicial kernel can be constructed by going to cubes as in Lemma 3.8. It
is pointwise because pullbacks of double extensions are pointwise in ExtA. The
comparison morphism An+2 → A(n+ 2, 0) is an extension as A is E-Kan, so the
composite ∂0◦〈∂0, . . . , ∂n+1〉 is an extension by (E3). Therefore 〈∂0, . . . , ∂n+1〉
is an extension by the cancellation property (E4).

Now we prove that, with a small extra assumption, the relative Mal’tsev
axiom (E5) is equivalent to every quasi -simplicial object being E-Kan.

Remark 3.10. Notice that any (quasi)-simplicial object is automatically an
E-semi-simplicial object, as all split epimorphisms are in E . However, this does
not automatically extend to augmented (quasi)-simplicial objects.

Proposition 3.11. If (A, E) satisfies (E1)–(E5) then every quasi-simplicial
object in A satisfies the E-Kan property.

Proof : For every quasi-simplicial object A, the E-Kan property for A(1, k) just
says that ∂0 and ∂1 : A1 → A0 are in E , which is automatically satisfied thanks
to (E1) and (E4), which imply that all split epimorphisms are in E .

Now assume that the E-Kan property holds up to level n for all pairs (A, E)
which satisfy Axiom (E1)–(E5). Let A be a quasi-simplicial object in A
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and B = ∂ : A− → A the induced quasi-simplicial object in ExtA. Axiom (E5)
for (A, E) ensures that (ExtA, E1) also satisfies (E4) and (E5) (Proposition 3.4).
So by assumption, B is E1-Kan up to level n. By Proposition 3.6 this means
that the domains of the (n+1)-cube arrn+1B in ExtA are n-fold E1-extensions.
Hence in the (n + 2)-cube arrn+2A in A, certain domains are (n + 1)-fold E-
extensions. This almost shows that A is E-Kan at level n + 1: the property
holds for all domains but one. The missing case follows by symmetry.

We can also prove a converse of Proposition 3.11, however we now need A to
have all simplicial kernels so that truncation of simplicial objects has a right
adjoint.

Proposition 3.12. Let A be a category with simplicial kernels and E a class
of morphisms in A which satisfies (E1)–(E4). If every simplicial object in A
has the E-Kan property then (A, E) satisfies (E5).

Proof : We have to prove that every split epimorphism of split epimorphisms
in A is a double extension. We may reduce the situation to a (truncated)
contractible augmented E-simplicial object

A1

∂1

,2

∂0 ,2
A0

∂0

,2σ0lr

σ−1lr

A−1.
σ−1lr

(G)

Consider the following split epimorphism of split epimorphisms (any of the four
possible squares commutes, and the arrows pointing down or right are the split
epimorphisms).

A
f

,2

a

��

B

b

��

f
lr

A′

a

LR

f ′
,2 B′

b

LR

f ′

lr

(H)

Write A−1 = B′ and A0 = A,

∂0 = f ′
◦a = b◦f : A0 → A−1

and σ−1 = a◦f ′ = f◦b : A−1 → A0; then already ∂0◦σ−1 = 1A−1
. Now con-

sider the extension a ×1B′ f , which is defined by pulling back the double
extension (f ′◦a, f ′) : a → 1B′ along the double extension (f ′◦a, b) : f → 1B′.
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Hence we can form the following pullback, which defines the morphisms ∂0 and
∂1 : A1 → A0.

A1
p

,2

〈∂0,∂1〉

��

A0

〈a,f〉

��

A0 ×A−1
A0

a×1
B′f

,2 A′ ×B′ B

We see that

∂0◦∂0 = f ′
◦a◦∂0 = f ′

◦a◦p = b◦f ◦p = b◦f ◦∂1 = ∂0◦∂1.

Write σ0 : A0 → A1 for the arrow universally induced by the equality

(a×1B′ f)◦〈1A0
, 1A0

〉 = 〈a, f〉◦1A0
;

then ∂0◦σ0 = ∂1◦σ0 = 1A0
. Finally, let σ−1 : A0 → A1 be the arrow universally

induced by the equality

(a×1B′ f)◦〈1A0
, a◦f ′◦f ′

◦a〉 = 〈a, f〉◦(a◦a).

Then ∂0◦σ−1 = 1A0
and ∂1◦σ−1 = a◦f ′◦f ′◦a = σ−1◦∂0. As both ∂0 and ∂1 are

split epimorphisms, they are in E .
The diagram (G) thus defined can be extended to a contractible augmen-

ted E-simplicial object A by constructing successive simplicial kernels, which
exist by assumption. This contractible augmented E-simplicial object is E-
Kan, so by Proposition 3.9 it is an E-resolution. In particular, the induced
comparison morphism 〈∂0, ∂1〉 : A1 → K1A is in E . Using (E4) on the square
defining 〈∂0, ∂1〉, we see that 〈a, f〉 is also in E , which means that the split
epimorphism of split epimorphisms (H) is a double extension. This proves
that (A, E) satisfies (E5).

Theorem 3.13. Let A be a category with simplicial kernels and E a class of
morphisms in A satisfying (E1)–(E4). Then the following are equivalent:

· (A, E) satisfies (E5);
· every quasi-simplicial object in A is E-Kan;
· every simplicial object in A is E-Kan.

Some examples. We start with an obvious example: regular Mal’tsev cate-
gories.
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Example 3.14 (Regular Mal’tsev categories). It is shown in [6] that when A
is finitely complete with coequalisers of effective equivalence relations and E
is the class of regular epimorphisms, the pair (A, E) satisfies (E1)–(E5) if and
only if A is regular Mal’tsev. Alternatively, this result follows from the above
together with [9, Theorem 4.2].

More generally, when A is finitely complete, it was shown in [3] that A
is Mal’tsev (i.e., every reflexive relation in A is an equivalence relation) if
and only if Condition (iii) of Proposition 3.3 holds for E the class of strong
(= extremal) epimorphisms. Given a pair (A, E) which satisfies (E1)–(E5),
this implies that A is Mal’tsev as soon as E is contained in the class of strong
epimorphisms.

Example 3.15 (Higher extensions). Proposition 3.4 implies that (ExtA, E1),
the category of extensions (regular epimorphisms) in a regular Mal’tsev cate-
gory A together with the double extensions, also satisfies (E1)–(E5), as do all
other (ExtnA, En).

Example 3.16 (Naturally Mal’tsev categories). By a result in [3], a cate-
gory is naturally Mal’tsev [39] when, given a split epimorphism of split
epimorphisms as in Diagram (C), if it is a (downward) pullback of split epi-
morphisms, then it is an (upward) pushout of split monomorphisms. If now
A is a naturally Mal’tsev category and E is its class of split epimorphisms,
then it is easily seen that Condition (iii) in Proposition 3.3 holds. It is then
obvious that (A, E) satisfies (E1)–(E5). However, we do not know whether the
opposite implication also holds, and the axiom (E5) implies that A is naturally
Mal’tsev.

Now we give two examples where E need not be contained in the class of
regular epimorphisms of A.

Example 3.17 (Weakly Mal’tsev categories). A category is called weakly
Mal’tsev [42] when it has pullbacks of split epimorphisms and the following
property holds: in any split epimorphism of split epimorphisms such as Dia-
gram (C) which is a (downwards) pullback, the splittings a and f1 are jointly
epic.

Let A be a category and E a class of epimorphisms in A such that (E1)–(E5)
hold. Then A is weakly Mal’tsev as soon as A has either pushouts of split
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monomorphisms or equalisers. Indeed, in the first case, consider the diagram

P

�%

�$

�&

A1
f1

,2

a

��

B1

f̃0

ip

b

��

f1lr

A0

b̃

OU

a

LR

f0

,2 B0

b

LR

f0lr

in which the square is a pullback of f0 and b and P is a pushout of f0 and b.
Then b̃ and f̃0 are jointly (strongly) epic, and by Proposition 3.3 the dotted
comparison morphism is also an epimorphism. It follows that the splittings a
and f1 in the pullback are jointly epic.

In the second case, given two parallel morphisms which coequalise a and f1,
their equaliser P → A1 induces a diagram such as above. Then this morphism
is both epic and regular monic, so that the two given parallel morphisms are
equal to each other.

Conversely, for any pair (A, E), where A is a weakly Mal’tsev category and E
is the class of all epimorphims, the conditions (E1), (E3) and (E4) hold, but
for (E2) we need epimorphisms in A to be pullback-stable. In this case Pro-
position 3.3 tells us that (A, E) satisfies (E5). A concrete situation where this
occurs is given in Example 3.23.

Example 3.18 (All morphisms as extensions). For any category with pull-
backs, a trivial example is obtained by taking E to be the class of all morphisms.

The following two examples satisfy a stronger axiom, cf. [4, 11, 13, 35].

(E5+) Given a diagram in A

0 ,2 K[a] ,2

k
��

A1
a ,2

f

��

A0
,2 0

0 ,2 K[b] ,2 B
b

,2 A0
,2 0

with short exact rows and a and b in E , if k ∈ E then also f ∈ E .

Notice that Axiom (E2) ensures the existence of kernels of extensions. Axiom
(E5+) implies (E5): consider a split epimorphism of extensions as in (E5). Take
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kernels of a and b to obtain a split epimorphism of short E-exact sequences:

0 ,2 K[a]
Ker a ,2

k
��

A1
a ,2

f1
��

A0

f0
��

,2 0

0 ,2 K[b]

LR

Ker b
,2 B1

LR

b
,2 B0

LR

,2 0

As k is a split epimorphism and thus in E , (E5+) implies that the right hand
square is a double extension.

Example 3.19 (Topological groups 1). Example 1.15 of topological groups
and morphisms split in the category of topological spaces satisfies (E1)–(E4), as
commented earlier. This example also satisfies the axiom (E5+) and hence (E5).
Consider a diagram in GpTop as in (E5+), and assume that in Top the morphism k
is split by a continuous map u : K[b] → K[a], a is split by s and b is split by
t = f ◦s. Any element β in the domain of an extension b : B → A0 can be
written as a product of an element κ of the kernel K[b] with an element tb(β)
in the image of the splitting t, because β = β · (tb(β))−1 · tb(β). We show that
the morphism f : A1 → B is also split in Top. A splitting B → A1 is given by
the composite

B ,2 K[b]×A0
,2 A1

β � ,2 (β · (tb(β))−1, b(β)) � ,2 u(β · (tb(β))−1) · sb(β)

which is easily seen to be continuous.

Example 3.20 (Rings and modules). The category of rings together with
morphisms split in abelian groups and the category of R-modules with morphisms
split in Ab also satisfy the axioms (E1)–(E4) and (E5+), and thus (E5).

Let A be a category with pullbacks, (B,F) a pair which satisfies (E1)–(E5)
and U : A → B a pullback-preserving functor. Then the class of morphisms
in A given by E = U−1F gives a pair (A, E) which also satisfies (E1)–(E5).
The following examples are instances of this situation.

Example 3.21 (Topological groups 2). Using the above, the category of topo-
logical groups may be equipped with another class of extensions, different from
the one considered in Example 3.19, but such that (E1)–(E5) still hold: let U
be the forgetful functor GpTop → Gp and take E = U−1F with F the class of
all regular epimorphisms in Gp.
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Example 3.22 (Reflective subcategories). Another instance of this occurs
when U is the inclusion of a reflective subcategory; hence any class of ex-
tensions satisfying (E1)–(E5) restricts to any reflective subcategory where it
still satisfies (E1)–(E5).

Example 3.23 (Weakly Mal’tsev but not Mal’tsev). Finally let A be the cate-
gory of sets equipped simultaneously with a group structure and a topology, and
morphisms which are continuous group homomorphisms. (We are not assuming
any compatibility between the group structure and the topology as in the case
of GpTop.) Consider the forgetful functor to Gp; then the class of extensions
E induced by the regular epimorphisms of groups, i.e., the continuous surjec-
tive homomorphisms in A, satisfies the conditions (E1)–(E5). On the other
hand, A is not a Mal’tsev category in the absolute sense (though it is weakly
Mal’tsev). The regular epimorphisms in A are in particular quotients (inducing
the final topology on the codomain) so that not every extension is a regular epi.
As a counterexample to the absolute Mal’tsev property, consider the group of
integers Z with the indiscrete topology. Then Z×Z also carries the indiscrete
topology, while Z + Z carries the final topology for the (algebraic) coproduct
inclusions. Now the universally induced comparison morphism Z+ Z → Z× Z

to the pullback in the split epimorphism of regular epimorphisms

Z+ Z ,2

��

Z

��

Z ,2 0

is not a regular epimorphism, as the topology on Z × Z is different from the
induced quotient topology. To see this, it suffices to note that the singleton
{(1, 1)} is not open in Z×Z, whereas its inverse image along Z+ Z → Z× Z

is open in Z+ Z.

4. When split epimorphisms need not be extensions

In the previous two sections we have assumed that all split epimorphisms
are in the class E . However, most results can be adapted to hold in a slightly
weaker setting, where we assume a weak cancellation property instead of (E4)
and a suitable stability of those split epimorphisms which are in E . We sketch
this situation in the current section, but leave some details to the reader.

We first give those axioms which change slightly as well as the new one
ensuring that split epimorphisms behave “nicely”: we want the subcategory
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of ArrA which is determined by the extensions that are split epimorphisms to
be closed under pullbacks in the category ArrA. In fact, we only assume this
closedness for certain pullbacks, and demand that (A, E) satisfies (E1)–(E3) as
well as the axioms

(E4−) if f ∈ E and g◦f ∈ E then g ∈ E ;
(E5−) any split epimorphism of extensions

A1

f1 ,2

a
��

B1

b
��

lr

A0

f0 ,2 B0lr

in A with f1 and f0 in E is a double extension;
(E6) given a split epimorphism of extensions

R[a]

r
��

,2
,2 A1

a ,2

f1
��

A0

f0
��

R[b] ,2
,2

LR

B1

LR

b
,2 B0

LR

with f1 and f0 in E , taking kernel pairs of a and b gives an extension r.

Proposition 4.1. Let (A, E) satisfy (E1)–(E4−). Then E contains all split
epimorphisms if and only if (E4) holds.

Proof : By (E1), one of the implications is obvious. To prove the other, let g◦f
be in E . Pulling back induces the following commutative diagram.

P
f

,2

π0

��

R[g]
π1

,2

π0

��

B

g

��

lr

A
f

,2

LR

B g
,2

LR

C

The split epimorphism π0 is in E by assumption. Furthermore, the composite
π1◦f is in E by (E2). Now (E4−) implies that g is in E .

Clearly, when E contains all split epimorphisms, (E5−) is equivalent to (E5).
Furthermore, under (E1)–(E3), Axiom (E5−) implies (E6), but we shall also
need (E6) in situations where (E5−) is not assumed.
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Given this new axiom (E6), almost all the results of the previous two secti-
ons go through, and we obtain new examples. In particular, relative homo-
logical categories as defined by T. Janelidze [35] form an example. These
are pairs (A, E), where A has finite products and E is a class of normal epi-
morphisms, which satisfy our axioms (E1)–(E3), (E4−) and (E5+), as well as
the axiom

(F) if a morphism f in A factors as f = e◦m with m a monomorphism and
e ∈ E , then it also factors (essentially uniquely) as f = m′◦e′ with m′

a monomorphism and e′ ∈ E .

Axiom (F) implies that split epimorphisms behave nicely, as demonstrated by
the following lemma.

Lemma 4.2. If A has finite products, E is a class of regular epimorphisms
in A and (A, E) satisfies (E1)–(E3) and (F), then (E6) holds.

Proof : The morphism (f1 × f1)◦〈π0, π1〉 factors as a monomorphism followed
by an extension, so by (F) it admits a factorisation 〈r0, r1〉◦e, where (R, r0, r1)
is a relation on B1 and e is in E . Since e is an epimorphism by assumption, we
have b◦r0 = b◦r1, and R is contained in R[b]. Now r being a split epi implies
that R = R[b].

In this weaker setting, Proposition 3.3 does not quite hold with equivalence
between all four points. Instead we have:

Proposition 4.3. Let (A, E) satisfy (E1)–(E3), (E4−) and (E6). Consider
the following statements:

(i) (E4−) holds for E1, that is, if g◦f ∈ E1 and f ∈ E1 then g ∈ E1;
(ii) Axiom (E5−) holds;
(iii) every split epimorphism of split epimorphisms (C) with a, b, f1 and f0

in E is a double extension;
(iv) given a diagram (D) in A with a, b, f1 and f0 in E , the arrow r is in

E if and only if the right hand side square is in E1.

Then (ii), (iii), and (iv) are equivalent and imply (i).

Proof : The axiom (E6) is used going from (iii) to (iv) and from (iv) to (ii).

It can be seen that (E1)–(E4−) and (E5−) still go up to higher dimensions
together.
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Theorem 4.4. Let A have simplicial kernels and (A, E) satisfy (E1)–(E4−)
and (E6). Then (E5−) holds if and only if every E-quasi-simplicial object in A
is E-Kan.

Proof : The proofs of Proposition 3.11 and Proposition 3.12 may easily be adap-
ted to this setting. However, we have to show that ∂0 and ∂1 which are cons-
tructed in the proof of Proposition 3.12 are also extensions. We may decompose
the diagram defining, say, ∂0, as

A1
r ,2

〈∂0,∂1〉
��

Q ,2

〈a,f〉
��

A0

〈a,f〉
��

A0 ×A−1
A0

r ,2

π0

��

P ,2

πA′

��

A′ ×B′ B

πA′

��

A0 A0 a
,2 A′.

The induced morphism r is an extension (since the bottom rectangle is a double

extension), hence so is r. The composite πA′◦〈a, f〉 is also an extension, as a
pullback of a = πA′◦〈a, f〉. Hence ∂0 = π0◦〈∂0, ∂1〉 is an extension by (E3).
Similarly, so is ∂1.

Relative Mal’tsev categories in the sense of T. Janelidze. Classically,
Mal’tsev categories are defined using properties of relations. Therefore we
now connect our relative Mal’tsev condition (E5−) to the conditions on E-
relations studied by T. Janelidze [37, 36]. For this, we use a context given
in T. Janelidze’s Condition 2.1 in [37], that is, we assume that A has finite
products, E is a class of regular epimorphisms in A and (A, E) satisfies axioms
(E1)–(E3), (E4−) and (F). In [22] such a pair (A, E) is called a relative regular
category. For a more detailed explanation see [37] and [22].

Definition 4.5 (E-relations). Given two objects A and B in A, an E-relation
from A to B is a subobject of A × B such that for any representing mo-
nomorphism 〈r0, r1〉 : R → A× B, the morphisms r0 : R → A and r1 : R → B
are in E .

Using the axioms given, such E-relations can be composed and this compo-
sition is associative. The usual definitions and calculations of relations apply.
This setting allows us to copy proofs and methods from [9] to a relative situa-
tion. Many of these things were proved by T. Janelidze in her thesis [36]. In
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particular, we can easily adapt the proof of the fact that a regular category is
Mal’tsev (i.e., every reflexive relation is an equivalence relation) if and only if
every simplicial object in the category is Kan from [9] to a relative context.

Proposition 4.6 (cf. [9, Theorem 4.2]). If A has finite products and simplicial
kernels, E is a class of regular epimorphisms in A and (A, E) satisfies (E1)–
(E4−) and (F), then every reflexive E-relation in (A, E) is an equivalence E-
relation if and only if every E-simplicial object is E-Kan.

This gives us:

Theorem 4.7. If A has finite products and simplicial kernels, E is a class of
regular epimorphisms in A and (A, E) satisfies (E1)–(E4−) and (F), then the
following are equivalent:

· every reflexive E-relation in (A, E) is an equivalence E-relation;
· Axiom (E5−);
· every E-quasi-simplicial object is E-Kan;
· every E-simplicial object is E-Kan.

This suggests a definition of relative Mal’tsev categories to fit into the context
of relative homological and relative semi-abelian categories.

Definition 4.8. A relative Mal’tsev category is a pair (A, E) where A is a
category with finite products and simplicial kernels and E is a class of regular
epimorphisms in A such that the following axioms hold:

(E1) E contains all isomorphisms;
(E2) pullbacks of morphisms in E exist in A and are in E ;
(E3) E is closed under composition;

(E4−) if f ∈ E and g◦f ∈ E then g ∈ E ;
(E5−) any split epimorphism of extensions

A1

f1 ,2

a
��

B1

b
��

lr

A0

f0 ,2 B0lr

in A with f1 and f0 in E is a double extension;
(F) if a morphism f in A factors as f = e◦m with m a monomorphism and

e ∈ E , then it also factors (essentially uniquely) as f = m′◦e′ with m′

a monomorphism and e′ ∈ E .



36 TOMAS EVERAERT, JULIA GOEDECKE AND TIM VAN DER LINDEN

On the one hand, if we have all split epimorphisms in E , (E5−) is equivalent
to (E5) and (E4−) is equivalent to (E4). On the other hand, using Axiom (F)
instead of (E6) allows the comparison to the relational situation above and
makes the category relatively regular [22]. Thus a similar definition with (E6)
instead of (F) could be used to get a “non-regular” context. In such a context
D. Bourn’s approach from [3] could be followed instead of the regular approach
in [9].

On the axiom (F). We explain under which conditions, in the absolute case,
Axiom (F) goes up to higher dimensions. Here E is the class of all regular
epimorphisms in A.

Remark 4.9. Notice that a morphism f = (f1, f0) : a → b between extensions
a and b is a monomorphism in ExtA if and only if f1 is a monomorphism. In
particular, there are no restrictions on f0. When A is regular, pushouts of
regular epimorphisms are exactly the regular epimorphisms in ExtA.

Proposition 4.10. Let A be a regular category and E the class of all regular
epimorphisms in A. The following conditions are equivalent:

(i) A is exact Mal’tsev;
(ii) the pushout of an extension by an extension exists and is a double

extension;
(iii) (ExtA, E1) satisfies (F).

Proof : The equivalence of (i) and (ii) was proved by A. Carboni, G. M. Kelly
and M. C. Pedicchio in [9]. Assuming (ii), any morphism f : a → b in ExtA
factors as a double extension followed by a monomorphism as follows.

A1

⇒

e ,2

a
��

I
⇒

��

m ,2 B1

b
��

A0
,2 P ,2 B0

Here f1 = m◦e is the regular epi-mono factorisation of f1 and the left hand
square is the pushout of e by a. Note that the former exists because A is
regular and the latter by assumption. Hence, (ii) implies (iii). To see that (iii)
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implies (ii), consider extensions f and g and the morphism of extensions

A

⇒

f
,2

g
��

B

��

C ,2 1

where 1 is the terminal object. This square can be factored as a monomorphism
(in the category of extensions) followed by a double extension as follows.

A
g

��
⇒

A

⇒

f
,2

��

B

��

C ,2 1 1

The assumption implies that the square can also be factored as a double ex-
tension followed by a monomorphism.

A

⇒

e ,2

g
��

I

⇒

m ,2

��

B

b
��

C ,2 I ′ ,2 1

But this means in particular that m is a monomorphism. Hence, it is an
isomorphism, since it is also a regular epimorphism (as f is). It follows that
the pushout of f by g exists (it is given by the left hand square) and is a double
extension, as desired.

Let us now investigate under which circumstances Axiom (F) goes up to
(Ext2A, E2). Clearly, as soon as (Ext2A, E2) satisfies (F), the same will be
true for (ExtA, E1). Hence, by Proposition 4.10, a necessary condition for
(Ext2A, E2) to satisfy (F) is that A is exact Mal’tsev. Observe that, in this case,
ExtA is regular: regular epimorphisms in ExtA are double extensions, which
we know are pullback-stable. Hence, we can apply Proposition 4.10 to ExtA
and find, in particular, that (Ext2A, E2) satisfies (F) if and only if ExtA is exact
Mal’tsev.

Now, recall from [43] that an exact Mal’tsev category is arithmetical if
every internal groupoid is an equivalence relation. Examples of arithmetical
categories are the dual of the category of pointed sets, more generally, the dual
of the category of pointed objects in any topos, and also the categories of von
Neumann regular rings, Boolean rings and Heyting semi-lattices. It was proved
in [5] that an exact Mal’tsev category is arithmetical if and only if the category
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EquivA of internal equivalence relations in A is exact. In this case EquivA is
in fact again arithmetical and, in particular, exact Mal’tsev. Since, moreover,
there is a category equivalence EquivA ≃ ExtA because A is exact, we find:

Proposition 4.11. Let A be an exact Mal’tsev category and E the class of all
regular epimorphisms in A. The following are equivalent:

(i) A is arithmetical;
(ii) ExtA is arithmetical;
(iii) ExtA is exact Mal’tsev;
(iv) any pushout of a double extension by a double extension exists (in the

category ExtA) and is a three-fold extension;
(v) (Ext2A, E2) satisfies (F).

Remark 4.12. Notice that Proposition 4.11 also implies that axiom (F) is
satisfied by (ExtnA, En) for every n as soon as the category A is arithmetical.
Conversely, the category A is arithmetical as soon as there exists an n ≥ 2
such that (F) holds for (ExtnA, En).

Remark 4.13. While in Propositions 4.10 and 4.11 we considered only the
absolute case, it is certainly possible to formulate and prove relative versions
of these results. The reader is invited to verify, in particular, that the proof of
the result from [5] we used for Proposition 4.11 can indeed be relativised.

Since being arithmetical is a rather restrictive property for a (Mal’tsev) ca-
tegory to have, we can conclude this analysis by saying that Axiom (F) “hardly
ever” goes up to (Ext2A, E2) or higher.

More examples. We end this article with several examples and counterexam-
ples.

Example 4.14 (Relative homological categories). Also in the weaker situa-
tion, using (E4−) and (F), the axiom (E5+) considered in Example 3.19 im-
plies (E5−). Hence relative homological and relative semi-abelian categories as
defined by T. Janelidze [35, 37] are relatively Mal’tsev, but generally need not
satisfy the stronger (E4) and (E5). An example for a relative semi-abelian ca-
tegory is a semi-abelian category A with E being the class of central extensions
in the sense of Huq, closed under composition [36, Proposition 5.3.2]. That is,
any morphism in E is the composition of regular epimorphisms f : A → B with
[K[f ], A] = 0, where [K[f ], A] is the commutator of K[f ] and A in the sense of
Huq [27].



RESOLUTIONS, HIGHER EXTENSIONS AND THE RELATIVE MAL’TSEV AXIOM 39

When E is a class of regular epimorphisms in a regular Mal’tsev category A
satisfying (E1)–(E2), then it is easy to check that (E3), (E4−) and (E5−) hold
as soon as the following two out of three property is satisfied: given a
composite g◦f of regular epimorphisms f : A → B and g : B → C, if any two
of g◦f , f and g lie in E , then so does the third. We shall make use of this fact
when considering the following two examples, which are given by categorical
Galois theory [28, 31]. Notice that this uses the regular Mal’tsev property to
show that, in the square given in (E5−), the comparison to the pullback is
already a regular epimorphism, and then the two out of three property shows
it is in fact in E .

Example 4.15 (Trivial extensions). Let B be a full and replete reflective sub-
category of a regular Mal’tsev category A. Write I : A → B for the left adjoint
of the inclusion functor. Assume that I preserves regular epimorphisms and is
admissible (with respect to regular epimorphisms) [31]. For instance, B could
be a Birkhoff subcategory of A (a full reflective subcategory closed under su-
bobjects and regular quotients) if A is also Barr exact (see [33]).

Recall that a trivial extension (with respect to I) is a regular epimorphism f
such that the commutative square induced by the unit η : 1A ⇒ I

A
f

,2

ηA
��

B
ηB

��

IA
If

,2 IB

(I)

is a pullback. With E the class of all trivial extensions, we claim that (A, E)
satisfies conditions (E1)–(E4−) and (E5−). (The stronger axiom (E4) need
not hold as in general not every split epimorphism is a trivial extension: for
instance, when A is pointed, a morphism A → 0 is a trivial extension if and
only if A is in B.) Indeed, the validity of (E1) is clear while (E2) follows from
the admissibility of I . Hence, it suffices to prove the two out of three property,
of which only one implication is not immediate. To see that g : B → C is a
trivial extension as soon as f : A → B and g◦f are, it suffices to note that,
since If is a pullback-stable regular epimorphism, the change of base functor
(If)∗ : (E ↓ IB) → (E ↓ IA) is conservative [34]. Here we have written (E ↓ X)
for the full subcategory of the slice category (A ↓ X) determined by E .

When A is Barr exact and B is a Birkhoff subcategory of A, then (A, E) also
satisfies (F). Indeed, condition (F) is easily inferred from the fact that in this
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case the square (I) is a pushout, hence a regular pushout (a double extension)
for any regular epimorphism f [9, 33]. When A is semi-abelian, T. Janelidze
explained in her talk [38] that (A, E) is in fact relatively semi-abelian.

Example 4.16 (Torsion theories). Let A be a homological category in which
every regular epimorphism is effective for descent (for instance, A could be
semi-abelian) and let F be a torsion-free subcategory of A (a full regular epi-
reflective subcategory of A such that the associated radical T : A → A is
idempotent, see [7]). Then the reflector F : A → F is admissible with respect
to all morphisms, so that, in particular, the previous example applies. Thus
we find that (A, E) satisfies conditions (E1)–(E4−) and (E5−), for E the class
of all trivial extensions.

Let us now write E∗ for the class of (regular epi)morphisms f : A → B that
are “locally in E”, in the sense that there exists an effective descent morphism
p : E → B in A such that the pullback p∗(f) : E ×B A → E is in E . The
morphisms in E∗ are usually called coverings or central extensions. While
the pair (A, E∗) satisfies conditions (E1) and (E2) because (A, E) does, E∗ is
in general not closed under composition. However, it was shown in [15] that E∗

is composition-closed as soon as the reflector F is protoadditive [16, 15]: F
preserves split short exact sequences. Let us briefly recall the argument. First
of all, it was shown in [15] that the central extensions with respect to F (which
we shall, from now on, assume to be protoadditive) are exactly those regular
epimorphisms f : A → B whose kernel K[f ] is in F . Now, let f : A → B and
g : B → C be regular epimorphisms. Then we have a short exact sequence

0 ,2 K[f ] ,2 K[g◦f ] ,2 K[g] ,2 0

and we see that g◦f is a central extension as soon as f and g are, since
the torsion-free subcategory F is closed under extensions (which means that
when K[f ] ∈ F and K[g] ∈ F then K[g◦f ] ∈ F) [7]. Furthermore, since F is
a (regular epi)-reflective subcategory of A, F is closed under subobjects, and
so f is a central extension as soon as g◦f is. If we assume that F is, moreover,
closed under regular quotients (i.e., F is a Birkhoff subcategory of A) then g is
a central extension as soon as g◦f is, and we may conclude that E∗ satisfies the
two out of three property. Once again using that F is closed under subjects
in A, it is easily verified that (A, E∗) also satisfies Axiom (F). (Note that the
same two out of three property can be used to show that (A, E∗) is, in fact,
relatively homological.)
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Examples of such an A and F are given, for instance, by taking A to be
the category of compact Hausdorff groups and F the subcategory of profinite
groups [15], or A to be the category of internal groupoids in a semi-abelian cate-
gory and F the subcategory of discrete groupoids [16]. Since a reflector into an
epi-reflective subcategory of an abelian category is necessarily (proto)additive,
any cohereditary torsion theory (meaning that F is closed under quotients)
in an abelian category A provides an example as well. However, there are no
non-trivial examples in the categories of groups or of abelian groups, as follows
from Proposition 5.5 in [45].

Example 4.17 (Internal groupoids—see [24] for the absolute case). Let the
pair (A, E) satisfy (E1)–(E4−), (E5−) and (F). Denote by GpdEA the category
of internal E-groupoids in A: groupoids G in A with the property that
all split epimorphisms occurring in the diagram of G are in E . Write E for
the class of degree-wise E-extensions. Then (GpdEA, E) is relatively Mal’tsev.
Indeed, to see that axioms (E2) and (E5−) are satisfied, observe that pullbacks
along morphisms in E are degree-wise pullbacks in A. For Axiom (F) note
that products are computed degree-wise as well, and that GpdEA is closed
in RGEA—the category of “reflexive E-graphs” in A—under “E-quotients”, as
a consequence of the relative Mal’tsev condition for (A, E).

Example 4.18 (Regular pullback squares). This is an example of a pair (A, E)
which satisfies (E1)–(E4−) and (E5−), but where not every split epimorphism is
an extension, nor does (F) hold. (Remember however that (E5−) implies (E6).)
We take A to be the category ExtGptf of extensions (regular epimorphisms) in
the category of torsion-free groups. The class E consists of regular pullback
squares, i.e., pullbacks of regular epimorphisms. It is easy to find a split epi-
morphism of extensions which is not a pullback, and it is also easy to see that
(E1)–(E4−) and (E5−) hold using that Gptf is regular Mal’tsev. We give a
counterexample for Axiom (F); it is based on the fact that pushouts in Gptf
are different from pushouts in Gp and may not be regular pushouts. They are
constructed by reflecting the pushout in Gp into the subcategory Gptf .

An example of a pushout in Gptf which is not a pushout in Gp is the square

Z×Z2
Z ,2

��

Z

��

Z ,2 0.

(J)
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(Z2 is torsion while Z is torsion-free.) The diagram

Z×Z2
Z ,2

��

Z× Z

��

,2 Z

��

Z Z ,2 0

now displays a monomorphism composed with an E-extension which cannot be
written as an E-extension composed with a monomorphism, as the square (J)
is not in E .

Acknowledgement. We would like to thank Tamar Janelidze for fruitful dis-
cussion on the subject of this paper.
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